EXERCISE

PAGE: 128

In questions 1 to 41, there are four options out of which one is correct. Write the correct one.

(b) supplementary

(d) both are obtuse

- 1. The angles between North and West and South and East are
- (a) complementary
- (c) both are acute

Solution:-

(b) supplementary

The angle between North and West is 90° , angle between South and East is 90° as shown in the figure above. So, $90^{\circ} + 90^{\circ} = 180^{\circ}$.

Then, the angles between North and West and South and East are supplementary. When the sum of the measures of two angles is 180°, then the angles are called supplementary angles.

2. Angles between South and West and South and East are

(a) vertically opposite angles

- (b) complementary angles
- (d) adjacent but not supplementary

Solution:-

(c) making a linear pair

(c) making a linear pair

A linear pair is a pair of adjacent angles whose non-common sides are opposite rays.

3. In Fig. 5.9, PQ is a mirror, AB is the incident ray and BC is the reflected ray. If \angle ABC = 46°, then \angle ABP is equal to

(d) 62°

(a) 44°

Solution:-

(b) 67°

As we know that, the angle formed by the incident ray and angle formed by the reflected ray is equal.

From the given figure,

PQ is a straight line,

So, $\angle ABP + \angle ABC + \angle CBQ = 180^{\circ}$ Let us assume the $\angle ABP = \angle CBQ = x$

Then,

```
x + 46^{\circ} + x = 180^{\circ}

2x + 46^{\circ} = 180^{\circ}

2x = 180^{\circ} - 46^{\circ}

2x = 134^{\circ}

x = 134^{\circ}/2

x = 67^{\circ}
```

Therefore, the $\angle ABP = \angle CBQ = 67^{\circ}$

4. If the complement of an angle is 79°, then the angle will be of(a) 1°(b) 11°(c) 79°(d) 101°Solution:-

(b) 11°

When the sum of the measures of two angles is 90°, the angles are called complementary angles. Each of them is called complement of the other. The given complement of an angle is 79°

Let the measure of the angle be x° .

Then,

 $x + 79^{\circ} = 90^{\circ}$ $x = 90^{\circ} - 79^{\circ}$ $x = 11^{\circ}$

Hence, the measure of the angle is 11°.

5. Angles which a (a) 95°, 85° Solution:-	re both supplementary a (b) 90°, 90°	and vertically opposite are (c) 100°, 80°	(d) 45°, 45°
(b) 90° <i>,</i> 90°			
When the sum of supplementary ar	the measures of two ang ngles.	les is 180°, then the angles a	re called
6. The angle whic (a) 29°	h makes a linear pair wit (b) 61° (c) 1	th an angle of 61° is of 22° (d) 119°	
Solution:- (d) 119°	., ., .,	25	
A linear pair is a p We know that, me	air of adjacent angles wh easure of sum of adjacen	nose non-common sides are on the second state of the second state	pposite rays.
Let the measure c	of other angle be x°.		
Then,			
$x + 61^{\circ} = 18$			
x = 180° – 6 x = 119°			
7. The angles x ar	nd 90° – x are	36	
(a) supplementar	У	(b) complementary	•
(c) vertically oppo	osite	(d) making a linear p	air
Solution:-			
(b) complemental			
complementary a	ring measures of two ang ngles.	gies is 90°, then the angles are	e called
$x + 90^{\circ} - x = 90^{\circ}$	0		
90° = 90°			
LHS = RHS			
8. The angles x – (a) interior angles (b) making a linea (c) complementar (d) supplementar	10° and 190° – x are s on the same side of the ar pair ry Y	e transversal	
	https://	/byjus.com	

Solution:-

(d) supplementary When the sum of the measures of two angles is 180°, then the angles are called supplementary angles. $x - 10^{\circ} + 190^{\circ} - x = 180^{\circ}$ $190^{\circ} - 10 = 180^{\circ}$ $180^{\circ} = 180^{\circ}$ LHS = RHS

9. In Fig. 5.10, the value of x is

(d) 150°

Sum of all angles about a point given in the figure are equal to 360° . Then, $100^{\circ} + 46^{\circ} + 64^{\circ} + x = 360^{\circ}$

210° + x = 360° x = 360° - 210° x = 150°

10. In Fig. 5.11, if AB || CD, \angle APQ = 50° and \angle PRD = 130°, then \angle QPR is

(a) 130° Solution:- (c) 80°	(b) 50°	(c) 80°	(d) 30°
We know that, $\angle APR = \angle PRD$ $\angle APQ + \angle QPR = 130^{\circ}$ $50^{\circ} + \angle QPR = 130^{\circ}$ $\angle QPR = 130^{\circ} - 50^{\circ}$ $\angle QPR = 80^{\circ}$		[because interior alternate angles	

11. In Fig. 5.12, lines I and m intersect each other at a point. Which of the following is false?

m Fig. 5.12 (b) ∠d = ∠c (a) ∠a = ∠b (d) ∠a = ∠d (c) $\angle a + \angle d = 180^{\circ}$ Solution:-(d) ∠a = ∠d ∠a ≠ ∠d $\angle a = \angle b$ [because vertically opposite angles] $\angle d = \angle c$ [because vertically opposite angles] $\angle a + \angle d = 180^{\circ}$ [Linear pair of angles] 12. If angle P and angle Q are supplementary and the measure of angle P is 60°, then the measure of angle Q is (a) 120° (b) 60° (c) 30° (d) 20° Solution:-(a) 120° When the sum of the measures of two angles is 180°, then the angles are called supplementary angles. $P + Q = 180^{\circ}$ $60^{\circ} + Q = 180^{\circ}$ $Q = 180^{\circ} - 60^{\circ}$

Q = 120°

13. In Fig. 5.13, POR is a line. The value of a is

Solution:-

(a) 40°

```
(a) 40°
```

We know that, when the sum of the measures of two angles is 180°, then the angles are called supplementary angles.

```
(3a + 5)^{\circ} + (2a - 25)^{\circ} = 180^{\circ}

3a + 5 + 2a - 25 = 180^{\circ}

5a - 20 = 180^{\circ}

5a = 180^{\circ} + 20

5a = 200

a = 200/5

a = 40^{\circ}
```

14. In Fig. 5.14, POQ is a line. If $x = 30^\circ$, then \angle QOR is

BYJU'S

NCERT Exemplar Class 7 Maths Solutions Chapter 5 Lines and Angles

(a) 90° Solution:-	(b) 30°	(c) 150°	(d) 60°
(a) 90°			
Sum of all angles a	about a straight lin	e given in the	figure are equal to 180°.
Then, 30° + 2y + 3	y = 180°		
30° + 5y = 1	.80°		
5y = 180° –	30°		
5y = 150°			
y = 150/5			
$y = 30^{\circ}$	200		
So, $2y = 2 \times 30 = 6$	10°		
$3y = 3 \times 30 = 9$	0°		
	. – 50		
15. The measure	of an angle which	is four times i	ts supplement is
(a) 36°	(b) 144°	(c) 16°	(d) 64°
Solution:-			
(b) 144°			
We know that, wh	nen the sum of the	measures of t	two angles is 180°, then the angles are
called supplement	tary angles.		
Let us assume the	angle be x.	e la	
Then, its supplem	ent angle = $(180^{\circ} -$	x)	
As per the conditi	on given in the que	estion, $x = 4$ (1	.80° - x)
		x = 720	r = 4x
		x + 4x 5v - 7	2 – 720 720°
		x = 72	20 20°/5
		x =14	4°
16. In Fig. 5.15, th	e value of y is		
	1		
	V		
<	6y 2y	\rightarrow	

Fig. 5.15

(a) 30° (b) 15° (c) 20° (d) 22.5°

Solution:-

(c) 20°

Sum of all angles about a straight line given in the figure are equal to 180°.

Then, $6y + y + 2y = 180^{\circ}$ $9y = 180^{\circ}$

y = 180/9 y = 20°

So, value of y is 20°.

17. In Fig. 5.16, PA || BC || DT and AB || DC. Then, the values of a and b are respectively.

18. The difference of two complementary angles is 30°. Then, the angles are(a) 60°, 30°(b) 70°, 40°(c) 20°, 50°(d) 105°, 75°Solution:-

(a) 60°, 30°

When the sum of the measures of two angles is 90°, then the angles are called complementary angles.

So, $60^{\circ} + 30^{\circ} = 90^{\circ}$

As per the condition in the question, $60^{\circ} - 30^{\circ} = 30^{\circ}$

19. In Fig. 5.17, PQ || SR and SP || RQ. Then, angles a and b are respectively

(b) corresponding angles

(c) alternate interior angles

(d) vertically opposite angles

Solution:-

(c) alternate interior angles

21. If two supplementary angles are in the ratio 1: 2, then the bigger angle is

(a) 120° (b) 125° (c) 110° (d) 90°

Solution:-

(a) 120°

We know that, when the sum of the measures of two angles is 180°, then the angles are called supplementary angles.

Let us assume two angles be 1x and 2x.

 $1x + 2x = 180^{\circ}$ $3x = 180^{\circ}$ $x = 180^{\circ}/3$

x = 60°

Then the bigger angle is $2x = 2 \times 60^{\circ} = 120^{\circ}$

22. In Fig. 5.19, \angle ROS is a right angle and \angle POR and \angle QOS are in the ratio 1: 5. Then, \angle QOS measures

So, \angle QOS measures = 5x = 5 × 15° = 75°

23. Statements a and b are as given below:

a : If two lines intersect, then the vertically opposite angles are equal.

b : If a transversal intersects, two other lines, then the sum of two interior angles on the same side of the transversal is 180°.

Then

Solution:-

(a) Both a and b are true(c) a is false and b is true

(b) a is true and b is false

(d) both a and b are false

(b) a is true and b is false

24. For Fig. 5.20, statements p and q are given below:

B

p : a and b are forming a linear pair.

q : a and b are forming a pair of adjacent angles.

b/a A O Fig. 5.20

Then,

(a) both p and q are true

(b) p is true and q is false

(c) p is false and q is true

(d) both p and q are false

Solution:-

(a) both p and q are true

25. In Fig. 5.21, $\angle AOC$ and $\angle BOC$ form a pair of

(a) vertically opposite angles

- (b) complementary angles
- (c) alternate interior angles
- (d) supplementary angles

Fig. 5.21

Solution:-

(d) supplementary angles

[because vertically opposite angles] $\angle AOF = \angle COD = 90^{\circ}$ Sum of all angles about a straight line given in the figure are equal to 180°. Then, $\angle BOC + \angle COD + \angle DOE = 180^{\circ}$ $40^{\circ} + 90^{\circ} + 5a = 180^{\circ}$ $130^{\circ} + 5a = 180^{\circ}$ 5a = 180° - 130° $5a = 50^{\circ}$ a = 50/5 a = 10° 27. In Fig. 5.23, if QP || SR, the value of a is 60° 30° R Fig. 5.23 (d) 80° (c) 90° (a) 40° (b) 30° Solution:-(c) 90° To find out the value of 'a', draw a line XY, to cut at 'a'. 60° 30° R So, XY || SR $\angle XTS = \angle TSR = 30^{\circ}$... [because interior alternate angles] $\angle PQT = \angle QTX = 60^{\circ}$... [because interior alternate angles] Then, a = $\angle XTS + \angle QTX$ $= 30^{\circ} + 60^{\circ}$ = 90° https://byjus.com

28. In which of the following figures, a and b are forming a pair of adjacent angles?

Solution:-

In figure (d) a and b are forming a pair of adjacent angles.

29. In a pair of adjacent angles, (i) vertex is always common, (ii) one arm is always common, and (iii) uncommon arms are always opposite rays

Then

- (a) All (i), (ii) and (iii) are true
- (b) (iii) is false
- (c) (i) is false but (ii) and (iii) are true
- (d) (ii) is false

Solution:-

(b) (iii) is false

Two angles are called adjacent angles, if they have a common vertex and a common arm but no common interior points.

30. In Fig. 5.25, lines PQ and ST intersect at O. If \angle POR = 90° and x : y = 3 : 2, then z is equal to

(a) 126° (b) 144° (c) 136° (d) 154°

Solution:-

(a) 35°

(b) 100°

(b) 144° Sum of all angles about a straight line given in the figure are equal to 180°. PQ is a straight line. Then, $\angle POR + \angle ROT + \angle TOQ = 180^{\circ}$ Given, x : y = 3 : 2 Let us assume x = 3a, y = 2a90° + 3a + 2a = 180° 90° + 5a = 180° $5a = 180^{\circ} - 90^{\circ}$ 5a = 90° a = 90/5 a = 18° So, x = 3a = 3 × 18 = 54° $y = 2a = 2 \times 18 = 36^{\circ}$ From the figure SOT is a straight line, Then, $z + y = 180^{\circ}$ $z + 36^{\circ} = 180^{\circ}$ $z = 180^{\circ} - 36^{\circ}$ z = 144° 31. In Fig. 5.26, POQ is a line, then a is equal to

(c) 80°

https://byjus.com

(d) 135°

Solution:-

(c) 80° From the figure POQ is a straight line, Then, $100 + a = 180^{\circ}$ $a = 180^{\circ} - 100$ $a = 80^{\circ}$

- **32.** Vertically opposite angles are always
- (a) supplementary

(b) complementary (d) equal

Solution:-

(c) adjacent

(d) equal

33. In Fig. 5.27, a = 40°. The value of b is(a) 20°(b) 24°(c) 36°

(d) 120°

5b2a

Fig. 5.27

Solution:-

(a) 20° Given, a = 40° B BYJU'S

NCERT Exemplar Class 7 Maths Solutions Chapter 5 Lines and Angles

Then, $2a = 2 \times 40 = 80^{\circ}$ From the figure, angles formed on the straight line are equal to 180° , Then, $5b + 2a = 180^{\circ}$ $5b + 80^{\circ} = 180^{\circ}$ $5b = 180^{\circ} - 80^{\circ}$ $5b = 100^{\circ}$ b = 100/5 $b = 20^{\circ}$

34. If an angle is 60° less than two times of its supplement, then the greater angle is

(a) 100°	(b) 80°	(c) 60°	(d) 120°
Solution:-			
(a) 100°			
Let us assume the	angle be P.		
Then, its suppleme	ent is 180° – P		
As per the condition	on in the question,		
$P = 2(180^{\circ} - P) - 60^{\circ}$	Do		
$P = 360^{\circ} - 2P - 60$	0		
P + 2P = 300°			
3P = 300°			
P = 300/3			
P = 100°			
So, its supplement	t is $180^{\circ} - P = 180^{\circ} - P$	- 100° = 80°	
Therefore, the gre	ater angle is 100°.		

35. In Fig. 5.28, PQ || RS. If ∠1=(2a+b)° and ∠6=(3a-b)°, then the measure of ∠2 in terms of b is
(a) (2+b)°
(b) (3-b)°
(c) (108-b)°
(d) (180-b)°

Solution: -

(c) (108–b)° From the question it is given that, $\angle 1 = (2a + b)^{\circ}$ and $\angle 6 = (3a - b)^{\circ}$ Since $\angle 5$ and $\angle 6$ forms a linear pair of angles Then, ∠5 = (180-3a + b)° ... [equation 1] $\angle 5 = \angle 1 = (180-3a + b)^{\circ}$ [Because Corresponding angles] ...equation (2) From equation (2) we get, 2a + b = 180-3a + b 5a = 180 $a = 36^{\circ}$ Since $\angle 1$ and $\angle 2$ forms a linear pair so ∠2 = 180⁰- 2a-b Substituting the value of a $\angle 2 = 180^{\circ} - 72^{\circ} - b$ ∠2 = 108⁰- b

36. In Fig. 5.29, PQ | | RS and a : b = 3 : 2. Then, f is equal to

Fig. 5.29 (a) 36° (b) 108° (c) 72° (d) 144° Solution: -(b) 108° From the figure, PQ||RS. From the question it is given that, a: b = 3: 2 So, let us assume a = 3m and b = 2m We know that, sum of angles on the straight line is equal to 180° Then, $\angle a + \angle b = 180°$

$$3m + 2m = 180^{\circ}$$

 $5m = 180^{\circ}$
 $m = 180^{\circ}/5$
 $m = 36^{\circ}$
So, $a = 3m = 3 \times 36^{\circ} = 108^{\circ}$
 $b = 2m = 2 \times 36^{\circ} = 72$
Therefore, $\angle a = \angle f = 108^{\circ}$

[because corresponding angles]

37. In Fig. 5.30, line I intersects two parallel lines PQ and RS. Then, which one of the following is not true?

38. In Fig. 5.30, which one of the following is not true?

Fig. 5.30 (a) $\angle 1 + \angle 5 = 180^{\circ}$ (b) $\angle 2 + \angle 5 = 180^{\circ}$ (c) $\angle 3 + \angle 8 = 180^{\circ}$ (d) $\angle 2 + \angle 3 = 180^{\circ}$ Solution:-(d) $\angle 2 + \angle 3 = 180^{\circ}$ We know that, interior opposite angles are equal $\angle 2 = \angle 3$

39. In Fig. 5.30, which of the following is true?

Fig. 5.30 (a) $\angle 1 = \angle 5$ (b) $\angle 4 = \angle 8$ Solution:-

(c) ∠5 = ∠8

(d) ∠3 = ∠7

(c) $\angle 5 = \angle 8$ From the figure, PQ||RS $\angle 5 = \angle 8$ [interior alternate angles are equal]

BYJU'S

NCERT Exemplar Class 7 Maths Solutions Chapter 5 Lines and Angles

Solution: -

(b) 135° From the figure, PO is a straight line We know that, sum of angles on the straight is equal to 180° . Then, $y + \angle PQR = 180^{\circ}$ $y + 130^{\circ} = 180^{\circ}$ $y = 50^{\circ}$ Then, $\angle QOS = \angle TSO$ [Co-interior angle] $x = 85^{\circ}$ x + y = 135

41. In Fig. 5.32, if PQ||RS and QR||TS, then the value a is


```
We know that, corresponding angles are equal
So,
\angle RQP = \angle TSR = 85° (Corresponding angles)
a + \angle TSR = 180°
\anglea = 95
```

In questions 42 to 56, fill in the blanks to make the statements true. 42. If sum of measures of two angles is 90°, then the angles are ______. Solution:-

If sum of measures of two angles is 90°, then the angles are <u>complementary</u>.

43. If the sum of measures of two angles is 180°, then they are ______. Solution:-

If the sum of measures of two angles is 180°, then they are supplementary.

44. A transversal intersects two or more than two lines at _____ points. Solution:-

A transversal intersects two or more than two lines at <u>distinct</u> points.

If a transversal intersects two parallel lines, then (Q. 45 to 48).

45. sum of interior angles on the same side of a transversal is _____. Solution:-

Sum of interior angles on the same side of a transversal is <u>180°</u>.

46. Alternate interior angles have one common ______.

Solution:-

Alternate interior angles have one common arm.

47. Corresponding angles are on the ______ side of the transversal.

Solution:-

Corresponding angles are on the <u>same</u> side of the transversal.

48. Alternate interior angles are on the ______ side of the transversal. Solution:-

Alternate interior angles are on the <u>opposite</u> side of the transversal

49. Two lines in a plane which do not meet at a point anywhere are called _____ lines.

Solution:-

Two lines in a plane which do not meet at a point anywhere are called <u>parallel</u> lines.

50. Two angles forming a pair are supplementary.
Two angles forming a <u>linear</u> pair are supplementary.
51. The supplement of an acute is always angle. Solution:- The supplement of an acute is always <u>obtuse</u> angle.
52. The supplement of a right angle is always angle. Solution:- The supplement of a right angle is always <u>right</u> angle.
53. The supplement of an obtuse angle is always angle. Solution:- The supplement of an obtuse angle is always <u>acute</u> angle.
 54. In a pair of complementary angles, each angle cannot be more than Solution:- In a pair of complementary angles, each angle cannot be more than <u>90°</u>.
 55. An angle is 45°. Its complementary angle will be Solution:- An angle is 45°. Its complementary angle will be <u>45°.</u>
56. An angle which is half of its supplement is of Solution:- An angle which is half of its supplement is of <u>60°</u> .
Let us assume the angle be p, and supplement be 2p $p + 2p = 180^{\circ}$ $3p = 180^{\circ}$ $p = 60^{\circ}$

