

## **EXERCISE 15.1**

PAGE NO: 15.9

# 1. Discuss the applicability of Rolle's Theorem for the following functions on the indicated intervals:

(i) 
$$f(x) = 3 + (x-2)^{\frac{2}{3}}$$
 on [1,3]

## **Solution:**

Given function is

$$\Rightarrow$$
 f(x) = 3 + (x-2)<sup>2</sup>/<sub>3</sub> on [1, 3]

Let us check the differentiability of the function f(x).

Now we have to find the derivative of f(x),

$$\Rightarrow f'(x) = \frac{d}{dx} \left( 3 + (x-2)^{\frac{2}{3}} \right)$$

$$\Rightarrow f'(x) = \frac{d(3)}{dx} + \frac{d\left((x-2)^{\frac{2}{3}}\right)}{dx}$$

$$\Rightarrow f'(x) = 0 + \frac{2}{3}(x-2)^{\frac{2}{3}-1}$$

$$\Rightarrow f'(x) = \frac{2}{3}(x-2)^{-\frac{1}{3}}$$

$$\Rightarrow f'(x) = \frac{2}{3(x-2)^{\frac{1}{3}}}$$

Now we have to check differentiability at the value of x = 2

$$\lim_{x \to 2} f'(x) = \lim_{x \to 2} \frac{2}{3(x-2)^{\frac{1}{3}}}$$

$$\lim_{x \to 2} f'(x) = \frac{2}{3(2-2)^{\frac{1}{2}}}$$

$$\lim_{x\to 2} f'(x) = \frac{2}{3(0)}$$



$$\lim_{x \to 2} f'(x) = \text{undefined}$$

 $\therefore$  f is not differentiable at x = 2, so it is not differentiable in the closed interval (1, 3).

So, Rolle's theorem is not applicable for the function f on the interval [1, 3].

## (ii) f(x) = [x] for $-1 \le x \le 1$ , where [x] denotes the greatest integer not exceeding x

### **Solution:**

Given function is f(x) = [x],  $-1 \le x \le 1$  where [x] denotes the greatest integer not exceeding x.

Let us check the continuity of the function f.

Here in the interval  $x \in [-1, 1]$ , the function has to be Right continuous at x = 1 and left continuous at x = 1.

$$\lim_{x \to 1+} f(x) = \lim_{x \to 1+} [x]$$

$$\lim_{x\to 1+} f(x) = \lim_{x\to 1+h} [x]$$
 Where h>0.

$$\lim_{x \to 1+} f(x) = \lim_{h \to 0} 1$$

$$\lim_{x\to 1+} f(x) = 1 \dots (1)$$

$$\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} [x]$$

$$\lim_{x\to 1-} f(x) = \lim_{x\to 1-h} [x], \text{ where h>0}$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} 0$$

$$\lim_{x\to 1^-} f(x) = 0 \dots (2)$$

From (1) and (2), we can see that the limits are not the same so, the function is not continuous in the interval [-1, 1].

: Rolle's Theorem is not applicable for the function f in the interval [-1, 1].



(iii) 
$$f(x) = \sin \frac{1}{x}$$
 for  $-1 \le x \le 1$ 

#### **Solution:**

Given function is 
$$f(x) = \sin(\frac{1}{x})$$
 for  $-1 \le x \le 1$ 

Let us check the continuity of the function 'f' at the value of x = 0. We cannot directly find the value of limit at x = 0, as the function is not valid at x = 0. So, we take the limit on either sides or x = 0, and we check whether they are equal or not.

So consider RHL:

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} \sin\left(\frac{1}{x}\right)$$

We assume that the limit  $\lim_{h\to 0} \sin\left(\frac{1}{h}\right) = k$ ,  $k \in [-1, 1]$ .

$$\lim_{x\to 0+} f(x) = \lim_{x\to 0+h} \sin\left(\frac{1}{x}\right), \text{ where h>0}$$

$$\lim_{x\to 0+} f(x) = \lim_{h\to 0} \sin\left(\frac{1}{h+0}\right)$$

$$\lim_{x \to 0+} f(x) = \lim_{h \to 0} \sin\left(\frac{1}{h}\right)$$

$$\lim_{x\to 0+} f(x) = k \dots (1)$$

Now consider LHL:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \sin\left(\frac{1}{x}\right)$$

$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}h} \sin\left(\frac{1}{x}\right), \text{ where h>0}$$

$$\lim_{x\to 0^-} f(x) = \lim_{h\to 0} \sin\left(\frac{1}{0-h}\right)$$

$$\lim_{x\to 0^-} f(x) \ = \ \lim_{h\to 0} \sin\left(\frac{\scriptscriptstyle 1}{\scriptscriptstyle -h}\right)$$



$$\lim_{x\to 0^-} f(x) \; = \; \lim_{h\to 0} -\sin\left(\tfrac{1}{h}\right)$$

$$\lim_{x\to 0-} f(x) \; = \; - \!\! \lim_{h\to 0} \sin\left(\! \frac{1}{h}\! \right)$$

$$\lim_{x\to 0^-} f(x) = -k \dots (2)$$

From (1) and (2), we can see that the Right hand and left – hand limits are not equal, so the function 'f' is not continuous at x = 0.

: Rolle's Theorem is not applicable to the function 'f' in the interval [-1, 1].

(iv) 
$$f(x) = 2x^2 - 5x + 3$$
 on [1, 3]

## **Solution:**

Given function is  $f(x) = 2x^2 - 5x + 3$  on [1, 3]

Since given function f is a polynomial. So, it is continuous and differentiable everywhere.

Now, we find the values of function at the extreme values.

$$\Rightarrow$$
 f (1) = 2(1)<sup>2</sup>-5(1) + 3

$$\Rightarrow$$
 f (1) = 2 - 5 + 3

$$\Rightarrow$$
 f (1) = 0..... (1)

$$\Rightarrow$$
 f (3) = 2(3)<sup>2</sup>-5(3) + 3

$$\Rightarrow$$
 f (3) = 2(9)-15 + 3

$$\Rightarrow$$
 f (3) = 18 – 12

$$\Rightarrow$$
 f (3) = 6..... (2)

From (1) and (2), we can say that,  $f(1) \neq f(3)$ 

: Rolle's Theorem is not applicable for the function f in interval [1, 3].

(v) f (x) = 
$$x^{2/3}$$
 on [-1, 1]

#### **Solution:**

Given function is  $f(x) = x^{\frac{1}{2}}$  on [-1, 1]

Now we have to find the derivative of the given function:

$$\Rightarrow f'(x) = \frac{d\left(x^{\frac{2}{3}}\right)}{dx}$$



$$\Rightarrow f'(x) = \frac{2}{3}x^{\frac{2}{3}-1}$$

$$\Rightarrow f'(x) = \frac{2}{3}x^{-\frac{1}{3}}$$

$$\Rightarrow f'(x) = \frac{2}{\frac{1}{3x^3}}$$

Now we have to check the differentiability of the function at x = 0.

$$\lim_{x\to 0}f'(x) \ = \ \lim_{x\to 0}\frac{2}{3x^{\frac{1}{2}}}$$

$$\lim_{x \to 0} f'(x) = \frac{2}{3(0)^{\frac{1}{2}}}$$

$$\lim_{x \to 0} f'(x) = undefined$$

Since the limit for the derivative is undefined at x = 0, we can say that f is not differentiable at x = 0.

∴ Rolle's Theorem is not applicable to the function 'f' on [-1, 1].

(vi) 
$$f(x) = \begin{cases} -4x + 5, & 0 \le x \le 1 \\ 2x - 3, & 1 < x \le 2 \end{cases}$$

### **Solution:**

Given function is 
$$f(x) = \begin{cases} -4x + 5, 0 \le x \le 1 \\ 2x - 3, 1 < x \le 2 \end{cases}$$

Now we have to check the continuity at x = 1 as the equation of function changes.

Consider LHL:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} -4x + 5$$

$$\lim_{x \to 1^{-}} f(x) = -4(1) + 5$$



$$\lim_{x \to 1^{-}} f(x) = 1 \dots (1)$$

Now consider RHL:

$$\lim_{x \to 1+} f(x) = \lim_{x \to 1+} 2x - 3$$

$$\lim_{x \to 1+} f(x) = 2(0) - 3$$

$$\lim_{x \to x^{-1} +} f(x) = -1 \dots (2)$$

From (1) and (2), we can see that the values of both side limits are not equal. So, the function 'f' is not continuous at x = 1.

: Rolle's Theorem is not applicable to the function 'f' in the interval [0, 2].

# 2. Verify the Rolle's Theorem for each of the following functions on the indicated intervals:

(i) 
$$f(x) = x^2 - 8x + 12$$
 on [2, 6]

## **Solution:**

Given function is  $f(x) = x^2 - 8x + 12$  on [2, 6]

Since, given function f is a polynomial it is continuous and differentiable everywhere i.e., on R.

Let us find the values at extremes:

$$\Rightarrow$$
 f (2) =  $2^2 - 8(2) + 12$ 

$$\Rightarrow$$
 f (2) = 4 - 16 + 12

$$\Rightarrow$$
 f (2) = 0

$$\Rightarrow$$
 f (6) =  $6^2 - 8(6) + 12$ 

$$\Rightarrow$$
 f (6) = 36 – 48 + 12

$$\Rightarrow$$
 f (6) = 0

 $\therefore$  f (2) = f(6), Rolle's theorem applicable for function f on [2,6].

Now we have to find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(x^2 - 8x + 12)}{dx}$$

$$\Rightarrow f'(x) = \frac{d(x^2)}{dx} - \frac{d(8x)}{dx} + \frac{d(12)}{dx}$$



$$f'(x) = 2x - 8 + 0$$

$$\Rightarrow$$
 f'(x) = 2x - 8

We have  $f'(c) = 0 \in [2, 6]$ , from the above definition

$$\Rightarrow$$
 f'(c) = 0

$$\Rightarrow$$
 2c  $-8 = 0$ 

$$\Rightarrow$$
 2c = 8

$$\Rightarrow c = \frac{8}{2}$$

$$\Rightarrow$$
 C = 4  $\in$  [2, 6]

: Rolle's Theorem is verified.

(ii) 
$$f(x) = x^2 - 4x + 3$$
 on [1, 3]

## **Solution:**

Given function is  $f(x) = x^2 - 4x + 3$  on [1, 3]

Since, given function f is a polynomial it is continuous and differentiable everywhere i.e., on R. Let us find the values at extremes:

$$\Rightarrow$$
 f (1) =  $1^2 - 4(1) + 3$ 

$$\Rightarrow$$
 f (1) = 1 - 4 + 3

$$\Rightarrow$$
 f (1) = 0

$$\Rightarrow$$
 f (3) =  $3^2 - 4(3) + 3$ 

$$\Rightarrow$$
 f (3) = 9 - 12 + 3

$$\Rightarrow$$
 f (3) = 0

 $\therefore$  f (1) = f(3), Rolle's theorem applicable for function 'f' on [1,3].

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(x^2-4x+3)}{dx}$$

$$\Rightarrow f'(x) = \frac{d(x^2)}{dx} - \frac{d(4x)}{dx} + \frac{d(3)}{dx}$$

$$\Rightarrow f'(x) = 2x - 4 + 0$$

$$\Rightarrow$$
 f'(x) = 2x - 4



We have f'(c) = 0,  $c \in (1, 3)$ , from the definition of Rolle's Theorem.

$$\Rightarrow$$
 f'(c) = 0

$$\Rightarrow$$
 2c - 4 = 0

$$\Rightarrow$$
 2c = 4

$$\Rightarrow$$
 c = 4/2

$$\Rightarrow$$
 C = 2  $\in$  (1, 3)

: Rolle's Theorem is verified.

(iii) 
$$f(x) = (x-1)(x-2)^2$$
 on [1, 2]

## **Solution:**

Given function is  $f(x) = (x - 1)(x - 2)^2$  on [1, 2]

Since, given function f is a polynomial it is continuous and differentiable everywhere that is on R.

Let us find the values at extremes:

$$\Rightarrow$$
 f (1) = (1 - 1) (1 - 2)<sup>2</sup>

$$\Rightarrow$$
 f (1) = 0(1)<sup>2</sup>

$$\Rightarrow$$
 f (1) = 0

$$\Rightarrow$$
 f (2) =  $(2-1)(2-2)^2$ 

$$\Rightarrow$$
 f (2) =  $0^2$ 

$$\Rightarrow$$
 f (2) = 0

 $\therefore$  f (1) = f (2), Rolle's Theorem applicable for function 'f' on [1, 2].

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d((x-1)(x-2)^2)}{dx}$$

Differentiating by using product rule, we get

$$\Rightarrow f'(x) = (x-2)^2 \times \frac{d(x-1)}{dx} + (x-1) \times \frac{d((x-2)^2)}{dx}$$

$$\Rightarrow$$
 f'(x) = ((x-2)<sup>2</sup>×1) + ((x-1) × 2 × (x-2))

$$\Rightarrow$$
 f'(x) = x<sup>2</sup> - 4x + 4 + 2(x<sup>2</sup> - 3x + 2)

$$\Rightarrow$$
 f'(x) = 3x<sup>2</sup> - 10x + 8

We have f'(c) = 0  $c \in (1, 2)$ , from the definition of Rolle's Theorem.

$$\Rightarrow$$
 f'(c) = 0



$$\Rightarrow$$
 3c<sup>2</sup> - 10c + 8 = 0

$$\Rightarrow C = \frac{10 \pm \sqrt{(-10)^2 - (4 \times 3 \times 8)}}{2 \times 3}$$

$$\Rightarrow c = \frac{10 \pm \sqrt{100 - 96}}{6}$$

$$\Rightarrow$$
 c =  $\frac{10\pm2}{6}$ 

$$\Rightarrow$$
 c =  $\frac{12}{6}$  or c =  $\frac{8}{6}$ 

$$\Rightarrow$$
 c =  $\frac{4}{3}$   $\in$  (1, 2) (neglecting the value 2)

: Rolle's Theorem is verified.

(iv) 
$$f(x) = x(x-1)^2$$
 on [0, 1]

## **Solution:**

Given function is  $f(x) = x(x-1)^2$  on [0, 1]

Since, given function f is a polynomial it is continuous and differentiable everywhere that is, on R.

Let us find the values at extremes

$$\Rightarrow$$
 f (0) = 0 (0 - 1)<sup>2</sup>

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow$$
 f (1) = 1 (1 - 1)<sup>2</sup>

$$\Rightarrow$$
 f (1) =  $0^2$ 

$$\Rightarrow$$
 f (1) = 0

 $\therefore$  f (0) = f (1), Rolle's theorem applicable for function 'f' on [0,1].

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(x(x-1)^2)}{dx}$$

Differentiating using product rule:

$$\Rightarrow f'(x) = (x-1)^2 \times \frac{d(x)}{dx} + x \frac{d((x-1)^2)}{dx}$$

$$\Rightarrow$$
 f'(x) = ((x - 1)<sup>2</sup>×1) + (x×2×(x - 1))



$$\Rightarrow$$
 f'(x) = (x - 1)<sup>2</sup> + 2(x<sup>2</sup> - x)

$$\Rightarrow$$
 f'(x) = x<sup>2</sup> - 2x + 1 + 2x<sup>2</sup> - 2x

$$\Rightarrow$$
 f'(x) = 3x<sup>2</sup> - 4x + 1

We have f'(c) = 0  $c \in (0, 1)$ , from the definition given above.

$$\Rightarrow$$
 f'(c) = 0

$$\Rightarrow$$
 3c<sup>2</sup> – 4c + 1 = 0

$$\Rightarrow C = \frac{4 \pm \sqrt{(-4)^2 - (4 \times 3 \times 1)}}{2 \times 3}$$

$$\Rightarrow c = \frac{4 \pm \sqrt{16 - 12}}{6}$$

$$\Rightarrow$$
 c =  $\frac{4\pm\sqrt{4}}{6}$ 

$$\Rightarrow$$
 c =  $\frac{6}{6}$  or c =  $\frac{2}{6}$ 

$$\Rightarrow c = \frac{1}{3} \in (0, 1)$$

: Rolle's Theorem is verified.

(v) 
$$f(x) = (x^2 - 1)(x - 2)$$
 on [-1, 2]

# **Solution:**

Given function is  $f(x) = (x^2 - 1)(x - 2)$  on [-1, 2]

Since, given function f is a polynomial it is continuous and differentiable everywhere that is on R.

Let us find the values at extremes:

$$\Rightarrow$$
 f (-1) = ((-1)<sup>2</sup> - 1)(-1-2)

$$\Rightarrow$$
 f (-1) = (1-1)(-3)

$$\Rightarrow$$
 f (-1) = (0)(-3)

$$\Rightarrow$$
 f  $(-1) = 0$ 

$$\Rightarrow$$
 f (2) =  $(2^2 - 1)(2 - 2)$ 

$$\Rightarrow f(2) = (4-1)(0)$$

$$\Rightarrow$$
 f (2) = 0



 $\therefore$  f (-1) = f (2), Rolle's theorem applicable for function f on [-1,2]. Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d((x^2-1)(x-2))}{dx}$$

Differentiating using product rule,

$$\Rightarrow f'(x) = (x-2) \times \frac{d(x^2-1)}{dx} + (x^2-1) \frac{d(x-2)}{dx}$$

$$\Rightarrow$$
 f'(x) = ((x - 2) × 2x) + ((x<sup>2</sup> - 1) × 1)

$$\Rightarrow$$
 f'(x) = 2x<sup>2</sup> - 4x + x<sup>2</sup> - 1

$$f'(x) = 3x^2 - 4x - 1$$

We have f'(c) = 0  $c \in (-1, 2)$ , from the definition of Rolle's Theorem

$$f'(c) = 0$$

$$3c^2 - 4c - 1 = 0$$

$$c = 4 \pm \sqrt{(-4)^2 - (4 \times 3 \times -1)}/(2 \times 3)$$
 [Using the Quadratic Formula]

$$c = 4 \pm \sqrt{[16 + 12]/6}$$

$$c = (4 \pm \sqrt{28})/6$$

$$c = (4 \pm 2\sqrt{7})/6$$

$$c = (2 \pm \sqrt{7})/3 = 1.5 \pm \sqrt{7}/3$$

$$c = 1.5 + \sqrt{7/3}$$
 or  $1.5 - \sqrt{7/3}$ 

So,

$$c = 1.5 - \sqrt{7/3}$$
 since  $c \in (-1, 2)$ 

: Rolle's Theorem is verified.

(vi) 
$$f(x) = x(x-4)^2$$
 on  $[0, 4]$ 

## **Solution:**

Given function is  $f(x) = x(x-4)^2$  on [0, 4]

Since, given function f is a polynomial it is continuous and differentiable everywhere i.e., on R.

Let us find the values at extremes:

$$\Rightarrow$$
 f (0) = 0(0 - 4)<sup>2</sup>

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow f(4) = 4(4-4)^2$$

$$\Rightarrow$$
 f (4) = 4(0)<sup>2</sup>

$$\Rightarrow$$
 f (4) = 0



 $\therefore$  f (0) = f (4), Rolle's theorem applicable for function 'f' on [0,4]. Let's find the derivative of f(x):

$$\Rightarrow f'(x) = \frac{d(x(x-4)^2)}{dx}$$

Differentiating using product rule

$$\Rightarrow f'(x) = (x-4)^2 \times \frac{d(x)}{dx} + x \frac{d((x-4)^2)}{dx}$$

$$\Rightarrow$$
 f'(x) = ((x-4)<sup>2</sup>×1) + (x×2×(x-4))

$$\Rightarrow$$
 f'(x) = (x - 4)<sup>2</sup> + 2(x<sup>2</sup> - 4x)

$$\Rightarrow$$
 f'(x) = x<sup>2</sup> - 8x + 16 + 2x<sup>2</sup> - 8x

$$\Rightarrow$$
 f'(x) = 3x<sup>2</sup> - 16x + 16

We have f'(c) = 0 c  $\epsilon$  (0, 4), from the definition of Rolle's Theorem.

$$\Rightarrow$$
 f'(c) = 0

$$\Rightarrow 3c^2 - 16c + 16 = 0$$

$$\Rightarrow C = \frac{16 \pm \sqrt{(-16)^2 - (4 \times 3 \times 16)}}{2 \times 3}$$

$$\Rightarrow C = \frac{16 \pm \sqrt{256 - 192}}{6}$$

$$\Rightarrow$$
 c =  $\frac{16\pm\sqrt{64}}{6}$ 

$$\Rightarrow c = \frac{8}{6} \text{ or } c = \frac{24}{6}$$

$$\Rightarrow c = \frac{8}{6} \in (0, 4)$$

: Rolle's Theorem is verified.

(vii) 
$$f(x) = x(x-2)^2$$
 on  $[0, 2]$ 

### **Solution:**

Given function is  $f(x) = x(x-2)^2$  on [0, 2]



Since, given function f is a polynomial it is continuous and differentiable everywhere that is on R.

Let us find the values at extremes:

$$\Rightarrow$$
 f (0) = 0(0 - 2)<sup>2</sup>

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow$$
 f (2) = 2(2 - 2)<sup>2</sup>

$$\Rightarrow$$
 f (2) = 2(0)<sup>2</sup>

$$\Rightarrow$$
 f (2) = 0

f(0) = f(2), Rolle's theorem applicable for function f on [0,2].

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(x(x-2)^2)}{dx}$$

Differentiating using UV rule,

$$\Rightarrow f'(x) = (x-2)^2 \times \frac{d(x)}{dx} + x \frac{d((x-2)^2)}{dx}$$

$$\Rightarrow$$
 f'(x) = ((x - 2)<sup>2</sup>×1) + (x×2×(x - 2))

$$\Rightarrow$$
 f'(x) = (x - 2)<sup>2</sup> + 2(x<sup>2</sup> - 2x)

$$\Rightarrow$$
 f'(x) = x<sup>2</sup> - 4x + 4 + 2x<sup>2</sup> - 4x

$$\Rightarrow$$
 f'(x) = 3x<sup>2</sup> - 8x + 4

We have f'(c) = 0  $c \in (0, 1)$ , from the definition of Rolle's Theorem.

$$\Rightarrow$$
 f'(c) = 0

$$\Rightarrow 3c^2 - 8c + 4 = 0$$

$$\Rightarrow C = \frac{8 \pm \sqrt{(-8)^2 - (4 \times 3 \times 4)}}{2 \times 3}$$

$$\Rightarrow c = \frac{8 \pm \sqrt{64 - 48}}{6}$$

$$\Rightarrow c = \frac{8 \pm \sqrt{16}}{6}$$

$$c = 12/6 \text{ or } 4/6$$

$$c = 2 \text{ or } 2/3$$

$$c = 2/3 \text{ since } c \in (0, 2)$$



∴ Rolle's Theorem is verified.

(viii) 
$$f(x) = x^2 + 5x + 6$$
 on  $[-3, -2]$ 

### **Solution:**

Given function is  $f(x) = x^2 + 5x + 6$  on [-3, -2]

Since, given function f is a polynomial it is continuous and differentiable everywhere i.e., on R. Let us find the values at extremes:

$$\Rightarrow$$
 f (-3) = (-3)<sup>2</sup> + 5(-3) + 6

$$\Rightarrow$$
 f ( - 3) = 9 - 15 + 6

$$\Rightarrow$$
 f (  $-$  3) = 0

$$\Rightarrow$$
 f (-2) = (-2)<sup>2</sup> + 5(-2) + 6

$$\Rightarrow$$
 f (-2) = 4 - 10 + 6

$$\Rightarrow$$
 f  $(-2) = 0$ 

 $\therefore$  f (-3) = f(-2), Rolle's theorem applicable for function f on [-3, -2].

Let's find the derivative of f(x):

$$\Rightarrow f'(x) = \frac{d(x^2 + 5x + 6)}{dx}$$

$$\Rightarrow f'(x) = \frac{d(x^2)}{dx} + \frac{d(5x)}{dx} + \frac{d(6)}{dx}$$

$$\Rightarrow f'(x) = 2x + 5 + 0$$

$$\Rightarrow$$
 f'(x) = 2x + 5

We have f'(c) = 0 c  $\epsilon$  (-3, -2), from the definition of Rolle's Theorem

$$\Rightarrow$$
 f'(c) = 0

$$\Rightarrow$$
 2c + 5 = 0

$$\Rightarrow$$
 2c =  $-5$ 

$$\Rightarrow$$
 c =  $-\frac{5}{2}$ 

$$\Rightarrow$$
 C =  $-2.5 \in (-3, -2)$ 

: Rolle's Theorem is verified.

## 3. Verify the Rolle's Theorem for each of the following functions on the indicated



## intervals:

(i) f (x) = 
$$\cos 2 (x - \pi/4)$$
 on  $[0, \pi/2]$ 

## **Solution:**

Given function is 
$$f(x) = cos2(x - \frac{\pi}{4})$$
 on  $\left[0, \frac{\pi}{2}\right]$ 

We know that cosine function is continuous and differentiable on R.

Let's find the values of the function at an extreme,

$$\Rightarrow f(0) = \cos 2\left(0 - \frac{\pi}{4}\right)$$

$$\underset{\Rightarrow}{\Rightarrow} f(0) \, = \, \cos 2 \left( -\frac{\pi}{4} \right)$$

$$\Rightarrow f(0) = \cos\left(-\frac{\pi}{2}\right)$$

We know that cos(-x) = cos x

$$\Rightarrow f(0) = 0$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \cos 2\left(\frac{\pi}{2} - \frac{\pi}{4}\right)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \cos 2\left(\frac{\pi}{4}\right)$$



$$\Rightarrow f\left(\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 0$$

We get  $f(0) = f(\frac{\pi}{2})$ , so there exist  $a^{c} \in (0, \frac{\pi}{2})$  such that f'(c) = 0.

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d\left(\cos 2\left(x - \frac{\pi}{4}\right)\right)}{dx}$$

$$\Rightarrow f'(x) = -\sin\left(2\left(x - \frac{\pi}{4}\right)\right) \frac{d\left(2\left(x - \frac{\pi}{4}\right)\right)}{dx}$$

$$\Rightarrow f'(x) = -2\sin 2\left(x - \frac{\pi}{4}\right)$$

We have f'(c) = 0,

$$\Rightarrow -2\sin 2\left(c - \frac{\pi}{4}\right) = 0$$

$$\Rightarrow c - \frac{\pi}{4} = 0$$

$$\Rightarrow c = \frac{\pi}{4} \in \left(0, \frac{\pi}{2}\right)$$

: Rolle's Theorem is verified.

(ii) f (x) =  $\sin 2x$  on  $[0, \pi/2]$ 

## **Solution:**

Given function is f (x) =  $\sin 2x$  on  $\left[0, \frac{\pi}{2}\right]$ 

We know that sine function is continuous and differentiable on R. Let's find the values of function at extreme,

$$\Rightarrow$$
 f (0) = sin2 (0)



$$\Rightarrow$$
 f (0) = sin0

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \sin 2\left(\frac{\pi}{2}\right)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \sin(\pi)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 0$$

We have  $f(0) = f(\frac{\pi}{2})$ , so there exist  $a^{c} \in (0, \frac{\pi}{2})$  such that f'(c) = 0.

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(\sin 2x)}{dx}$$

$$\Rightarrow f'(x) = \cos 2x \frac{d(2x)}{dx}$$

$$\Rightarrow$$
 f'(x) = 2cos2x

We have f'(c) = 0,

$$\Rightarrow$$
 2 cos 2c = 0

$$\Rightarrow$$
 2c =  $\frac{\pi}{2}$ 

$$\Rightarrow c = \frac{\pi}{4} \in \left(0, \frac{\pi}{2}\right)$$

: Rolle's Theorem is verified.

(iii) f (x) = cos 2x on 
$$[-\pi/4, \pi/4]$$

### **Solution:**

Given function is  $\cos 2x$  on  $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ 

We know that cosine function is continuous and differentiable on R. Let's find the values of the function at an extreme,



$$\Rightarrow f\left(-\frac{\pi}{4}\right) = \cos 2\left(-\frac{\pi}{4}\right)$$

$$\Rightarrow f(0) = \cos\left(-\frac{\pi}{2}\right)$$

We know that cos(-x) = cos x

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow f\left(\frac{\pi}{4}\right) = \cos 2\left(\frac{\pi}{4}\right)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 0$$

We have  $f\left(-\frac{\pi}{4}\right) = f\left(\frac{\pi}{4}\right)$ , so there exist  $a^{c} \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$  such that f'(c) = 0.

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(\cos 2x)}{dx}$$

$$\Rightarrow f'(x) = -\sin 2x \frac{d(2x)}{dx}$$

$$\Rightarrow$$
 f'(x) = -2sin2x

We have f'(c) = 0,

$$\Rightarrow$$
 - 2sin2c = 0

$$\sin 2c = 0$$

$$\Rightarrow$$
 2c = 0

So,

$$c = 0$$
 as  $c \in (-\pi/4, \pi/4)$ 

∴ Rolle's Theorem is verified.

(iv) f (x) = 
$$e^x \sin x$$
 on [0,  $\pi$ ]

### **Solution:**

Given function is  $f(x) = e^x \sin x$  on  $[0, \pi]$ 



We know that exponential and sine functions are continuous and differentiable on R. Let's find the values of the function at an extreme,

$$\Rightarrow$$
 f (0) =  $e^{0}$ sin (0)

$$\Rightarrow$$
 f (0) = 1×0

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow f(\pi) = e^{\pi} \sin(\pi)$$

$$\Rightarrow f(\pi) = e^{\pi} \times 0$$

$$\rightarrow f(\pi) = 0$$

We have  $f(0) = f(\pi)$ , so there exist  $a^{c \in (0, \pi)}$  such that f'(c) = 0.

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(e^x \sin x)}{dx}$$

$$\Rightarrow f'(x) = \sin x \frac{d(e^x)}{dx} + e^x \frac{d(\sin x)}{dx}$$

$$\Rightarrow$$
 f'(x) = e<sup>x</sup> (sin x + cos x)

We have f'(c) = 0,

$$\Rightarrow$$
 e<sup>c</sup> (sin c + cos c) = 0

$$\Rightarrow$$
 sin c + cos c = 0

$$\Rightarrow \frac{1}{\sqrt{2}} sinc + \frac{1}{\sqrt{2}} cosc = 0$$

$$\Rightarrow \sin\left(\frac{\pi}{4}\right) \operatorname{sinc} + \cos\left(\frac{\pi}{4}\right) \operatorname{cosc} = 0$$

$$\Rightarrow \cos\left(c - \frac{\pi}{4}\right) = 0$$

$$\Rightarrow c - \frac{\pi}{4} = \frac{\pi}{2}$$

$$\Rightarrow c = \frac{3\pi}{4} \in (0, \pi)$$

: Rolle's Theorem is verified.



## (v) f (x) = $e^x \cos x$ on $[-\pi/2, \pi/2]$

## **Solution:**

Given function is 
$$f(x) = e^x \cos x$$
 on  $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$ 

We know that exponential and cosine functions are continuous and differentiable on R. Let's find the values of the function at an extreme,

$$\Rightarrow f\left(-\frac{\pi}{2}\right) = e^{-\frac{\pi}{2}} \cos\left(-\frac{\pi}{2}\right)$$

$$\Rightarrow f\left(-\frac{\pi}{2}\right) = e^{-\frac{\pi}{2}} \times 0$$

$$\Rightarrow f\left(-\frac{\pi}{2}\right) = 0$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = e^{\frac{\pi}{2}} cos\left(\frac{\pi}{2}\right)$$

$$\Rightarrow f(\pi) = e^{\frac{\pi}{2}} \times 0$$

$$\Rightarrow f(\pi) = 0$$

We have 
$$f\left(-\frac{\pi}{2}\right) = f\left(\frac{\pi}{2}\right)$$
, so there exist  $a^{c} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$  such that  $f'(c) = 0$ .

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(e^x \cos x)}{dx}$$

$$\Rightarrow f'(x) = cosx \frac{d(e^x)}{dx} + e^x \frac{d(cosx)}{dx}$$

$$\Rightarrow$$
 f'(x) = e<sup>x</sup> (- sin x + cos x)

We have f'(c) = 0,

$$\Rightarrow$$
 e<sup>c</sup> (- sin c + cos c) = 0

$$\Rightarrow$$
 - sin c + cos c = 0

$$\Rightarrow \frac{-1}{\sqrt{2}} \operatorname{sinc} + \frac{1}{\sqrt{2}} \operatorname{cosc} = 0$$



$$\Rightarrow -\sin\left(\frac{\pi}{4}\right) \operatorname{sinc} + \cos\left(\frac{\pi}{4}\right) \operatorname{cosc} = 0$$

$$\Rightarrow \cos\left(c + \frac{\pi}{4}\right) = 0$$

$$\Rightarrow c + \frac{\pi}{4} = \frac{\pi}{2}$$

$$\Rightarrow C = \frac{\pi}{4} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

: Rolle's Theorem is verified.

(vi) f (x) = 
$$\cos 2x$$
 on  $[0, \pi]$ 

## **Solution:**

Given function is  $f(x) = \cos 2x$  on  $[0, \pi]$ 

We know that cosine function is continuous and differentiable on R. Let's find the values of function at extreme,

$$\Rightarrow$$
 f (0) = cos2(0)

$$\Rightarrow$$
 f (0) = cos(0)

$$\Rightarrow$$
 f (0) = 1

$$\Rightarrow$$
 f ( $\pi$ ) = cos2( $\pi$ )

$$\Rightarrow$$
 f ( $\pi$ ) = cos(2  $\pi$ )

$$\Rightarrow$$
 f ( $\pi$ ) = 1

We have  $f(0) = f(\pi)$ , so there exist a c belongs to  $(0, \pi)$  such that f'(c) = 0.

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(\cos 2x)}{dx}$$

$$\Rightarrow f'(x) = -\sin 2x \frac{d(2x)}{dx}$$

$$\Rightarrow$$
 f'(x) =  $-2\sin 2x$ 

We have f'(c) = 0,

$$\Rightarrow$$
 - 2sin2c = 0

$$\sin 2c = 0$$

So, 
$$2c = 0$$
 or  $\pi$ 

$$c = 0 \text{ or } \pi/2$$



But,

$$c = \pi/2$$
 as  $c \in (0, \pi)$ 

Hence, Rolle's Theorem is verified.

$$\text{(vii)}\, f(x) = \frac{\sin x}{e^x} \text{ on } 0 \le x \le \pi$$

## **Solution:**

Given function is 
$$f(x) = \frac{\sin x}{e^x}$$
 on  $[0, \pi]$ 

This can be written as

$$\Rightarrow$$
 f (x) =  $e^{-x}$  sin x on  $[0, \pi]$ 

We know that exponential and sine functions are continuous and differentiable on R. Let's find the values of the function at an extreme,

$$\Rightarrow$$
 f (0) = e<sup>-0</sup>sin(0)

$$\Rightarrow$$
 f (0) = 1×0

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow f(\pi) = e^{-\pi} \sin(\pi)$$

$$\Rightarrow f(\pi) = e^{-\pi} \times 0$$

$$= f(\pi) = 0$$

We have  $f(0) = f(\pi)$ , so there exist a c belongs to  $(0, \pi)$  such that f'(c) = 0.

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(e^{-x}\sin x)}{dx}$$

$$\Rightarrow f'(x) = sinx \frac{d(e^{-x})}{dx} + e^{-x} \frac{d(sinx)}{dx}$$

$$\Rightarrow$$
 f'(x) = sin x (-e<sup>-x</sup>) + e<sup>-x</sup>(cos x)



$$\Rightarrow$$
 f'(x) = e<sup>-x</sup>(- sin x + cos x)

We have f'(c) = 0,

$$\Rightarrow$$
 e<sup>-c</sup> (- sin c + cos c) = 0

$$\Rightarrow$$
 - sin c + cos c = 0

$$\Rightarrow -\frac{1}{\sqrt{2}} \operatorname{sinc} + \frac{1}{\sqrt{2}} \operatorname{cosc} = 0$$

$$\Rightarrow -\sin\left(\frac{\pi}{4}\right) \operatorname{sinc} + \cos\left(\frac{\pi}{4}\right) \operatorname{cosc} = 0$$

$$\Rightarrow \cos\left(c + \frac{\pi}{4}\right) = 0$$

$$\Rightarrow c + \frac{\pi}{4} = \frac{\pi}{2}$$

$$\Rightarrow c = \frac{\pi}{4} \epsilon(0, \pi)$$

: Rolle's Theorem is verified.

(viii)  $f(x) = \sin 3x$  on  $[0, \pi]$ 

## **Solution:**

Given function is f (x) =  $\sin 3x$  on  $[0, \pi]$ 

We know that sine function is continuous and differentiable on R. Let's find the values of function at extreme,

$$\Rightarrow$$
 f (0) = sin3(0)

$$\Rightarrow$$
 f (0) = sin0

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow$$
 f  $(\pi) = \sin 3(\pi)$ 

$$\Rightarrow$$
 f ( $\pi$ ) = sin(3  $\pi$ )

$$\Rightarrow$$
 f ( $\pi$ ) = 0

We have  $f(0) = f(\pi)$ , so there exist a c belongs to  $(0, \pi)$  such that f'(c) = 0.

Let's find the derivative of f(x)



$$\Rightarrow f'(x) = \frac{d(sin3x)}{dx}$$

$$\Rightarrow f'(x) = cos3x \frac{d(3x)}{dx}$$

$$\Rightarrow$$
 f'(x) = 3cos3x

We have 
$$f'(c) = 0$$
,

$$\Rightarrow$$
 3cos3c = 0

$$\Rightarrow$$
 3c =  $\frac{\pi}{2}$ 

$$\Rightarrow$$
 c =  $\frac{\pi}{6} \in (0, \pi)$ 

: Rolle's Theorem is verified.

(ix) 
$$f(x) = e^{1-x^2}$$
 on  $[-1, 1]$ 

**Solution:** 



Given function is  $f(x) = e^{1-x^2}$  on [-1, 1]

We know that exponential function is continuous and differentiable over R. Let's find the value of function f at extremes,

$$\Rightarrow f(-1) = e^{1-(-1)^2}$$

$$\Rightarrow f(-1) = e^{1-1}$$

$$\Rightarrow$$
 f (-1) =  $e^0$ 

$$\Rightarrow$$
 f (-1) = 1

$$\Rightarrow f(1) = e^{1-1^2}$$

$$\Rightarrow$$
 f(1) = e<sup>1-1</sup>

$$\Rightarrow$$
 f (1) =  $e^0$ 

$$\Rightarrow$$
 f(1) = 1

We got f(-1) = f(1) so, there exists a  $c \in (-1, 1)$  such that f'(c) = 0.

Let's find the derivative of the function f:

$$\Rightarrow f'(x) \, = \, \frac{d\left(e^{\iota - x^2}\right)}{dx}$$

$$\Rightarrow f'(x) = e^{1-x^2} \frac{d(1-x^2)}{dx}$$

$$\Rightarrow f'(x) = e^{1-x^2}(-2x)$$

We have f'(c) = 0

$$\Rightarrow e^{1-c^2}(-2c) = 0$$

$$\Rightarrow$$
 2c = 0

$$\Rightarrow$$
 c = 0  $\in$  [-1, 1]

: Rolle's Theorem is verified.



(x) 
$$f(x) = \log(x^2 + 2) - \log 3$$
 on [-1, 1]

## **Solution:**

Given function is  $f(x) = \log(x^2 + 2) - \log 3$  on [-1, 1]

We know that logarithmic function is continuous and differentiable in its own domain.

We check the values of the function at the extreme,

$$\Rightarrow$$
 f (-1) = log((-1)<sup>2</sup> + 2) - log 3

$$\Rightarrow$$
 f (-1) = log (1 + 2) - log 3

$$\Rightarrow$$
 f (-1) = log 3 - log 3

$$\Rightarrow$$
 f  $(-1) = 0$ 

$$\Rightarrow$$
 f (1) = log (1<sup>2</sup> + 2) - log 3

$$\Rightarrow$$
 f (1) = log (1 + 2) - log 3

$$\Rightarrow$$
 f (1) = log 3 - log 3

$$\Rightarrow$$
 f (1) = 0

We have got f(-1) = f(1). So, there exists a c such that  $c \in (-1, 1)$  such that f'(c) = 0. Let's find the derivative of the function f,

$$\Rightarrow f'(x) = \frac{d(\log(x^2 + 2) - \log 3)}{dx}$$

$$\Rightarrow f'(x) = \frac{1}{x^2 + 2} \frac{d(x^2 + 2)}{dx} - 0$$

$$\Rightarrow f'(x) = \frac{2x}{x^2 + 2}$$

We have f'(c) = 0

$$\Rightarrow \frac{2c}{c^2 + 2} = 0$$

$$\Rightarrow$$
 2c = 0

$$\Rightarrow$$
 c = 0  $\in$  (-1, 1)

: Rolle's Theorem is verified.

(xi) f (x) = 
$$\sin x + \cos x$$
 on [0,  $\pi/2$ ]

## **Solution:**



Given function is  $f(x) = \sin x + \cos x$  on  $\left[0, \frac{\pi}{2}\right]$ 

We know that sine and cosine functions are continuous and differentiable on R. Let's the value of function f at extremes:

$$\Rightarrow$$
 f (0) = sin (0) + cos (0)

$$\Rightarrow$$
 f (0) = 0 + 1

$$\Rightarrow$$
 f (0) = 1

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) + \cos\left(\frac{\pi}{2}\right)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 1 + 0$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 1$$

We have  $f(0) = f(\frac{\pi}{2})$ . So, there exists a  $c \in (0, \frac{\pi}{2})$  such that f'(c) = 0.

Let's find the derivative of the function f.

$$\Rightarrow f'(x) = \frac{d(\sin x + \cos x)}{dx}$$

$$\Rightarrow$$
 f'(x) = cos x - sin x



We have f'(c) = 0

$$\Rightarrow$$
 Cos c - sin c = 0

$$\Rightarrow \frac{1}{\sqrt{2}} \cos c - \frac{1}{\sqrt{2}} \sin c = 0$$

$$\Rightarrow \sin\left(\frac{\pi}{4}\right) \cos c - \cos\left(\frac{\pi}{4}\right) \sin c = 0$$

$$\Rightarrow \sin\left(\frac{\pi}{4} - c\right) = 0$$

$$\Rightarrow \frac{\pi}{4} - c = 0$$

$$\Rightarrow c = \frac{\pi}{4} \in \left(0, \frac{\pi}{2}\right)$$

∴ Rolle's Theorem is verified.

(xii) f (x) = 
$$2 \sin x + \sin 2x$$
 on  $[0, \pi]$ 

#### **Solution:**

Given function is  $f(x) = 2\sin x + \sin 2x$  on  $[0, \pi]$ 

We know that sine function continuous and differentiable over R.

Let's check the values of function f at the extremes

$$\Rightarrow$$
 f (0) = 2sin(0) + sin2(0)

$$\Rightarrow$$
 f (0) = 2(0) + 0

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow$$
 f  $(\pi)$  = 2sin $(\pi)$  + sin $(\pi)$ 

$$\Rightarrow$$
 f ( $\pi$ ) = 2(0) + 0

$$\Rightarrow$$
 f ( $\pi$ ) = 0

We have  $f(0) = f(\pi)$ , so there exist a c belongs to  $(0, \pi)$  such that f'(c) = 0.

Let's find the derivative of function f.

$$\Rightarrow f'(x) = \frac{d(2\sin x + \sin 2x)}{dx}$$

$$\Rightarrow f'(x) = 2\cos x + \cos 2x \frac{d(2x)}{dx}$$

$$\Rightarrow$$
 f'(x) = 2cosx + 2cos2x

$$\Rightarrow f'(x) = 2\cos x + 2(2\cos^2 x - 1)$$



$$\Rightarrow$$
 f'(x) = 4 cos<sup>2</sup>x + 2 cos x - 2

We have f'(c) = 0,

$$\Rightarrow$$
 4cos<sup>2</sup>c + 2 cos c - 2 = 0

$$\Rightarrow$$
 2cos<sup>2</sup>c + cos c - 1 = 0

$$\Rightarrow$$
 2cos<sup>2</sup>c + 2 cos c - cos c - 1 = 0

$$\Rightarrow$$
 2 cos c (cos c + 1) – 1 (cos c + 1) = 0

$$\Rightarrow$$
 (2cos c - 1) (cos c + 1) = 0

$$\Rightarrow$$
 cosc =  $\frac{1}{2}$  or cosc =  $-1$ 

$$\Rightarrow$$
 c =  $\frac{\pi}{3} \epsilon(0, \pi)$ 

: Rolle's Theorem is verified.

(xiii) 
$$f(x) = \frac{x}{2} - \sin \frac{\pi x}{6}$$
 on  $[-1, 0]$ 

## **Solution:**

Given function is 
$$f(x) = \frac{x}{2} - \sin(\frac{\pi x}{6})$$
 on  $[-1, 0]$ 

We know that sine function is continuous and differentiable over R.

Now we have to check the values of 'f' at an extreme

$$\Rightarrow f(-1) = \frac{-1}{2} - \sin\left(\frac{\pi(-1)}{6}\right)$$

$$\Rightarrow f(-1) = -\frac{1}{2} - \sin\left(\frac{-\pi}{6}\right)$$

$$\Rightarrow f(-1) = -\frac{1}{2} - \left(-\frac{1}{2}\right)$$

$$\Rightarrow$$
 f ( $-1$ ) = 0

$$\Rightarrow f(0) = \frac{0}{2} - \sin\left(\frac{\pi(0)}{6}\right)$$

$$\Rightarrow f(0) = 0 - \sin(0)$$

$$\Rightarrow$$
 f (0) = 0 - 0



$$\Rightarrow$$
 f (0) = 0

We have got f(-1) = f(0). So, there exists a  $c \in (-1, 0)$  such that f'(c) = 0.

Now we have to find the derivative of the function 'f'

$$\Rightarrow f'(x) = \frac{d\left(\frac{x}{2} - \sin\left(\frac{\pi x}{6}\right)\right)}{dx}$$

$$\Rightarrow f'(x) = \frac{1}{2} - \cos\left(\frac{\pi x}{6}\right) \frac{d\left(\frac{\pi x}{6}\right)}{dx}$$

$$\Rightarrow f'(x) = \frac{1}{2} - \frac{\pi}{6} \cos\left(\frac{\pi x}{6}\right)$$

We have f'(c) = 0

$$\Rightarrow \frac{1}{2} - \frac{\pi}{6} \cos\left(\frac{\pi c}{6}\right) = 0$$

$$\Rightarrow \frac{\pi}{6} \cos \left( \frac{\pi c}{6} \right) = \frac{1}{2}$$

$$\Rightarrow \cos\left(\frac{\pi c}{6}\right) = \frac{1}{2} \times \frac{6}{\pi}$$

$$\Rightarrow \cos\left(\frac{\pi c}{6}\right) = \frac{3}{\pi}$$

$$\Rightarrow \frac{\pi c}{6} = \cos^{-1}\left(\frac{3}{\pi}\right)$$

$$\Rightarrow c = \frac{6}{\pi} \cos^{-1} \left( \frac{3}{\pi} \right)$$

Cosine is positive between  $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ , for our convenience we take the interval to be  $-\frac{\pi}{2} \le \theta \le 0$ , since the values of the cosine repeats.

We know that  $\frac{3}{\pi}$  value is nearly equal to 1. So, the value of the c nearly equal to 0.

So, we can clearly say that  $c \in (-1, 0)$ .

: Rolle's Theorem is verified.



(xiv). 
$$f(x) = \frac{6x}{\pi} - 4 \sin^2 x$$
 on  $[0, \frac{\pi}{6}]$ 

## **Solution:**

Given function is 
$$f(x) = \frac{6x}{\pi} - 4\sin^2 x$$
 on  $\left[0, \frac{\pi}{6}\right]$ 

We know that sine function is continuous and differentiable over R.

Now we have to check the values of function 'f' at the extremes,

$$\Rightarrow f(0) = \frac{6(0)}{\pi} - 4\sin^2(0)$$

$$\Rightarrow$$
 f (0) = 0 - 4(0)

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow f\left(\frac{\pi}{6}\right) = \frac{6\left(\frac{\pi}{6}\right)}{\pi} - 4\sin^2\left(\frac{\pi}{6}\right)$$

$$\Rightarrow f\left(\frac{\pi}{6}\right) = \frac{\pi}{\pi} - 4\left(\frac{1}{2}\right)^2$$

$$\Rightarrow f\left(\frac{\pi}{6}\right) = 1 - 4\left(\frac{1}{4}\right)$$

$$\Rightarrow f\left(\frac{\pi}{6}\right) = 1 - 1$$

$$\Rightarrow f\left(\frac{\pi}{6}\right) = 0$$

We have  $f(0) = f(\frac{\pi}{6})$ . So, there exists a  $c \in (0, \frac{\pi}{6})$  such that f'(c) = 0.

We have to find the derivative of function 'f.'

$$\Rightarrow f'(x) = \frac{d(\frac{6x}{\pi} - 4\sin^2 x)}{dx}$$

$$\Rightarrow f'(x) = \frac{6}{\pi} - 4 \times 2\sin x \times \frac{d(\sin x)}{dx}$$

$$\Rightarrow f'(x) = \frac{6}{\pi} - 8sinx(cosx)$$



$$\Rightarrow f'(x) = \frac{6}{\pi} - 4(2sinxcosx)$$

$$\Rightarrow$$
 f'(x) =  $\frac{6}{\pi}$  - 4sin2x

We have f'(c) = 0

$$\Rightarrow \frac{6}{\pi} - 4\sin 2c = 0$$

$$\Rightarrow$$
 4sin2c =  $\frac{6}{\pi}$ 

$$\Rightarrow \sin 2c = \frac{6}{4\pi}$$

We know  $\frac{6}{4\pi} < \frac{1}{2}$ 

$$\Rightarrow \sin 2c < \frac{1}{2}$$

$$\Rightarrow 2c < \sin^{-1}\left(\frac{1}{2}\right)$$

$$\Rightarrow 2c < \frac{\pi}{6}$$

$$\Rightarrow c < \frac{\pi}{12} \in \left(0, \frac{\pi}{6}\right)$$

: Rolle's Theorem is verified.

$$(xv) f (x) = 4^{\sin x} on [0, \pi]$$

## **Solution:**

Given function is  $f(x) = 4^{sinx}$  on  $[0, \pi]$ 

We that sine function is continuous and differentiable over R.

Now we have to check the values of function 'f' at extremes

$$\Rightarrow$$
 f (0) =  $4^{\sin(0)}$ 

$$\Rightarrow$$
 f (0) =  $4^0$ 

$$\Rightarrow$$
 f (0) = 1



$$\Rightarrow$$
 f ( $\pi$ ) =  $4^{\sin \pi}$ 

$$\Rightarrow$$
 f ( $\pi$ ) =  $4^0$ 

$$\Rightarrow$$
 f ( $\pi$ ) = 1

We have  $f(0) = f(\pi)$ . So, there exists a  $c \in (0, \pi)$  such that f'(c) = 0.

Now we have to find the derivative of 'f'

$$\Rightarrow f'(x) = \frac{d(4^{sinx})}{dx}$$

$$\Rightarrow f'(x) = 4^{\sin x} \log 4 \frac{d(\sin x)}{dx}$$

$$\Rightarrow f'(x) = 4^{\sin x} \log 4 \cos x$$

We have f'(c) = 0

$$\Rightarrow 4^{sinc}log4cosc = 0$$

$$\Rightarrow$$
 Cos c = 0

$$\Rightarrow$$
 c =  $\frac{\pi}{2} \epsilon(0, \pi)$ 

: Rolle's Theorem is verified.

(xvi) f (x) = 
$$x^2 - 5x + 4$$
 on  $[0, \pi/6]$ 

### **Solution:**

Given function is  $f(x) = x^2 - 5x + 4$  on [1, 4]

Since, given function f is a polynomial it is continuous and differentiable everywhere i.e., on R.

Let us find the values at extremes

$$\Rightarrow$$
 f (1) = 1<sup>2</sup> - 5(1) + 4

$$\Rightarrow$$
 f(1) = 1 – 5 + 4

$$\Rightarrow$$
 f (1) = 0

$$\Rightarrow$$
 f (4) =  $4^2 - 5(4) + 4$ 

$$\Rightarrow$$
 f (4) = 16 – 20 + 4

$$\Rightarrow$$
 f (4) = 0

We have f(1) = f(4). So, there exists a  $c \in (1, 4)$  such that f'(c) = 0.



Let's find the derivative of f(x):

$$\Rightarrow f'(x) = \frac{d(x^2 - 5x + 4)}{dx}$$

$$\Rightarrow f'(x) = \frac{d(x^2)}{dx} - \frac{d(5x)}{dx} + \frac{d(4)}{dx}$$

$$\Rightarrow f'(x) = 2x - 5 + 0$$

$$\Rightarrow$$
 f'(x) = 2x - 5

We have f'(c) = 0

$$\Rightarrow$$
 f'(c) = 0

$$\Rightarrow$$
 2c - 5 = 0

$$\Rightarrow$$
 2c = 5

$$\Rightarrow$$
 c =  $\frac{5}{2}$ 

$$\Rightarrow$$
 C = 2.5  $\in$  (1, 4)

: Rolle's Theorem is verified.

(xvii)  $f(x) = \sin^4 x + \cos^4 x$  on  $[0, \pi/2]$ 

## **Solution:**

Given function is f (x) =  $\sin^4 x + \cos^4 x$  on  $\left[0, \frac{\pi}{2}\right]$ 

We know that sine and cosine functions are continuous and differentiable functions over R.

Now we have to find the value of function 'f' at extremes

$$\Rightarrow$$
 f (0) =  $\sin^4$  (0) +  $\cos^4$  (0)

$$\Rightarrow$$
 f (0) = (0)<sup>4</sup> + (1)<sup>4</sup>

$$\Rightarrow$$
 f (0) = 0 + 1

$$\Rightarrow$$
 f (0) = 1



$$\Rightarrow f\left(\frac{\pi}{2}\right) = \sin^4\left(\frac{\pi}{2}\right) + \cos^4\left(\frac{\pi}{2}\right)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 1^4 + 0^4$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 1 + 0$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 1$$

We have  $f(0) = f(\frac{\pi}{2})$ . So, there exists a  $c \in (0, \frac{\pi}{2})$  such that f'(c) = 0.

Now we have to find the derivative of the function 'f'.

$$\Rightarrow f'(x) = \frac{d(\sin^4 x + \cos^4 x)}{dx}$$

$$\Rightarrow f'(x) = 4\sin^3 x \frac{d(\sin x)}{dx} + 4\cos^3 x \frac{d(\cos x)}{dx}$$

$$\Rightarrow$$
 f'(x) = 4sin<sup>3</sup>xcosx-4cos<sup>3</sup>xsinx

$$\Rightarrow$$
 f'(x) = 4 sin x cos x (sin<sup>2</sup>x - cos<sup>2</sup>x)

$$\Rightarrow$$
 f'(x) = 2(2 sin x cos x) (- cos 2x)

$$\Rightarrow$$
 f'(x) = -2(sin 2x) (cos 2x)

$$\Rightarrow$$
 f'(x) = - sin 4x

We have 
$$f'(c) = 0$$

$$\Rightarrow$$
 - sin4c = 0

$$\Rightarrow$$
 sin4c = 0

$$\Rightarrow$$
 4c = 0 or  $\pi$ 

$$\Rightarrow c = \frac{\pi}{4} \in \left(0, \frac{\pi}{2}\right)$$

: Rolle's Theorem is verified.

(xviii)  $f(x) = \sin x - \sin 2x$  on  $[0, \pi]$ 



## **Solution:**

Given function is  $f(x) = \sin x - \sin 2x$  on  $[0, \pi]$ 

We know that sine function is continuous and differentiable over R.

Now we have to check the values of the function 'f' at the extremes.

$$\Rightarrow$$
 f (0) = sin (0)-sin 2(0)

$$\Rightarrow$$
 f (0) = 0 - sin (0)

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow$$
 f  $(\pi) = \sin(\pi) - \sin(2\pi)$ 

$$\Rightarrow$$
 f  $(\pi) = 0 - \sin(2\pi)$ 

$$\Rightarrow$$
 f ( $\pi$ ) = 0

We have  $f(0) = f(\pi)$ . So, there exists a  $c \in (0, \pi)$  such that f'(c) = 0.

Now we have to find the derivative of the function 'f'

$$\Rightarrow f'(x) = \frac{d(\sin x - \sin 2x)}{dx}$$

$$\Rightarrow f'(x) = \cos x - \cos 2x \frac{d(2x)}{dx}$$

$$\Rightarrow f'(x) = \cos x - 2\cos 2x$$

$$\Rightarrow$$
 f'(x) = cos x - 2(2cos<sup>2</sup>x - 1)

$$\Rightarrow$$
 f'(x) = cos x - 4cos<sup>2</sup>x + 2

We have f'(c) = 0

$$\Rightarrow$$
 Cos c – 4cos<sup>2</sup>c + 2 = 0

$$\Rightarrow \cos c = \frac{-1 \pm \sqrt{(1)^2 - (4 \times - 4 \times 2)}}{2 \times -4}$$

$$\Rightarrow \cos c = \frac{-1 \pm \sqrt{1+33}}{-8}$$

$$\Rightarrow c = \cos^{-1}(\frac{-1\pm\sqrt{33}}{-8})$$

We can see that  $c \in (0, \pi)$ 

- : Rolle's Theorem is verified.
- 4. Using Rolle's Theorem, find points on the curve  $y = 16 x^2$ ,  $x \in [-1, 1]$ , where tangent is parallel to x axis.



## **Solution:**

Given function is 
$$y = 16 - x^2$$
,  $x \in [-1, 1]$ 

We know that polynomial function is continuous and differentiable over R.

Let us check the values of 'y' at extremes

$$\Rightarrow$$
 y (-1) = 16 - (-1)<sup>2</sup>

$$\Rightarrow$$
 y (-1) = 16 - 1

$$\Rightarrow$$
 y (-1) = 15

$$\Rightarrow$$
 y (1) = 16 - (1)<sup>2</sup>

$$\Rightarrow$$
 y (1) = 16 - 1

$$\Rightarrow$$
 y (1) = 15

We have y(-1) = y(1). So, there exists a  $c \in (-1, 1)$  such that f'(c) = 0.

We know that for a curve g, the value of the slope of the tangent at a point r is given by g'(r).

Now we have to find the derivative of curve y

$$\Rightarrow y' = \frac{d(16-x^2)}{dx}$$

$$\Rightarrow$$
 y' =  $-2x$ 

We have 
$$y'(c) = 0$$

$$\Rightarrow$$
 - 2c = 0

$$\Rightarrow$$
 c = 0  $\in$  (-1, 1)

Value of y at x = 1 is

$$\Rightarrow$$
 y =  $16 - 0^2$ 

 $\therefore$  The point at which the curve y has a tangent parallel to x – axis (since the slope of x – axis is 0) is (0, 16).