1. Discuss the applicability of Rolle's Theorem for the following functions on the indicated intervals:
(i) $f(x)=3+(x-2)^{\frac{2}{3}}$ on $[1,3]$

Solution:

Given function is

$$
\Rightarrow f(x)=3+(x-2)^{\frac{2}{3}} \text { on }[1,3]
$$

Let us check the differentiability of the function $f(x)$.
Now we have to find the derivative of $f(x)$,

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(3+(x-2)^{\frac{2}{3}}\right) \\
& \Rightarrow f^{\prime}(x)=\frac{d(3)}{d x}+\frac{d\left((x-2)^{\frac{2}{3}}\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=0+\frac{2}{3}(x-2)^{\frac{2}{3}-1} \\
& \Rightarrow f^{\prime}(x)=\frac{2}{3}(x-2)^{-\frac{1}{3}} \\
& \Rightarrow f^{\prime}(x)=\frac{2}{3(x-2)^{\frac{1}{3}}}
\end{aligned}
$$

Now we have to check differentiability at the value of $x=2$

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 2} f^{\prime}(x)=\lim _{x \rightarrow 2} \frac{2}{3(x-2)^{\frac{1}{3}}} \\
& \Rightarrow \lim _{x \rightarrow 2} f^{\prime}(x)=\frac{2}{3(2-2)^{\frac{1}{3}}} \\
& \Rightarrow \lim _{x \rightarrow 2} f^{\prime}(x)=\frac{2}{3(0)}
\end{aligned}
$$

$\Rightarrow \lim _{x \rightarrow 2} f^{\prime}(x)=$ undefined
$\therefore \mathrm{f}$ is not differentiable at $\mathrm{x}=2$, so it is not differentiable in the closed interval $(1,3)$.

So, Rolle's theorem is not applicable for the function f on the interval $[1,3]$.
(ii) $f(x)=[x]$ for $-1 \leq x \leq 1$, where $[x]$ denotes the greatest integer not exceeding x

Solution:

Given function is $f(x)=[x],-1 \leq x \leq 1$ where $[x]$ denotes the greatest integer not exceeding x .

Let us check the continuity of the function f .
Here in the interval $x \in[-1,1]$, the function has to be Right continuous at $x=1$ and left continuous at $x=1$.

$$
\begin{align*}
& \Rightarrow \lim _{x \rightarrow 1+} f(x)=\lim _{x \rightarrow 1+}[x] \\
& \Rightarrow \lim _{x \rightarrow 1+} f(x)=\lim _{x \rightarrow 1+h}[x] \text { Where } h>0 . \\
& \Rightarrow \lim _{x \rightarrow 1+} f(x)=\lim _{h \rightarrow 0} 1 \\
& \Rightarrow \lim _{x \rightarrow 1+} f(x)=1 \tag{1}\\
& \Rightarrow \lim _{x \rightarrow 1-} f(x)=\lim _{x \rightarrow 1-}[x] \\
& \Rightarrow \lim _{x \rightarrow 1-} f(x)=\lim _{x \rightarrow 1-h}[x], \text { where } h>0 \\
& \Rightarrow \lim _{x \rightarrow 1-} f(x)=\lim _{h \rightarrow 0} 0 \\
& \Rightarrow \lim _{x \rightarrow 1-} f(x)=0 \tag{2}
\end{align*}
$$

From (1) and (2), we can see that the limits are not the same so, the function is not continuous in the interval $[-1,1]$.
\therefore Rolle's Theorem is not applicable for the function f in the interval $[-1,1]$.
(iii) $f(x)=\sin \frac{1}{x}$ for $-1 \leq x \leq 1$

Solution:

Given function is $f(x)=\sin \left(\frac{1}{x}\right)$ for $-1 \leq x \leq 1$
Let us check the continuity of the function ' f ' at the value of $x=0$. We cannot directly find the value of limit at $x=0$, as the function is not valid at $x=0$. So, we take the limit on either sides or $x=0$, and we check whether they are equal or not.

So consider RHL:
$\Rightarrow \lim _{x \rightarrow 0+} f(x)=\lim _{x \rightarrow 0+} \sin \left(\frac{1}{x}\right)$
We assume that the $\operatorname{limith}_{\mathrm{h} \rightarrow 0} \sin \left(\frac{1}{\mathrm{~h}}\right)=\mathrm{k}, \mathrm{k} \in[-1,1]$.
$\lim _{x \rightarrow 0+} f(x)=\lim _{x \rightarrow 0+h} \sin \left(\frac{1}{x}\right)$, where $h>0$
$\Rightarrow \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} \sin \left(\frac{1}{h+0}\right)$
$\Rightarrow \lim _{x \rightarrow 0+} f(x)=\lim _{h \rightarrow 0} \sin \left(\frac{1}{h}\right)$
$\Rightarrow \lim _{\mathrm{x} \rightarrow 0^{+}} \mathrm{f}(\mathrm{x})=\mathrm{k}$
Now consider LHL:
$\Rightarrow \lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0-} \sin \left(\frac{1}{x}\right)$
$\lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0-h} \sin \left(\frac{1}{x}\right)$, where $h>0$
$\Rightarrow \lim _{x \rightarrow 0-} f(x)=\lim _{h \rightarrow 0} \sin \left(\frac{1}{0-h}\right)$
$\Rightarrow \lim _{x \rightarrow 0-} f(x)=\lim _{h \rightarrow 0} \sin \left(\frac{1}{-h}\right)$

$$
\begin{align*}
& \Rightarrow \lim _{x \rightarrow 0-} f(x)=\lim _{h \rightarrow 0}-\sin \left(\frac{1}{h}\right) \\
& \Rightarrow \lim _{x \rightarrow 0-} f(x)=-\lim _{h \rightarrow 0} \sin \left(\frac{1}{h}\right) \\
& \Rightarrow \lim _{x \rightarrow 0-} f(x)=-k \tag{2}
\end{align*}
$$

From (1) and (2), we can see that the Right hand and left - hand limits are not equal, so the function ' f ' is not continuous at $\mathrm{x}=0$.
\therefore Rolle's Theorem is not applicable to the function ' f ' in the interval $[-1,1]$.
(iv) $f(x)=2 x^{2}-5 x+3$ on $[1,3]$

Solution:

Given function is $f(x)=2 x^{2}-5 x+3$ on $[1,3]$
Since given function f is a polynomial. So, it is continuous and differentiable everywhere.
Now, we find the values of function at the extreme values.
$\Rightarrow f(1)=2(1)^{2}-5(1)+3$
$\Rightarrow f(1)=2-5+3$
$\Rightarrow \mathrm{f}(1)=0$...... (1)
$\Rightarrow f(3)=2(3)^{2}-5(3)+3$
$\Rightarrow f(3)=2(9)-15+3$
$\Rightarrow \mathrm{f}(3)=18-12$
$\Rightarrow \mathrm{f}(3)=6 \ldots .$. (2)
From (1) and (2), we can say that, $f(1) \neq f(3)$
\therefore Rolle's Theorem is not applicable for the function f in interval $[1,3]$.
(v) $f(x)=x^{2 / 3}$ on $[-1,1]$

Solution:

Given function is $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\overline{3}}$ on $[-1,1]$
Now we have to find the derivative of the given function:
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}\left(\mathrm{x}^{\frac{2}{3}}\right)}{\mathrm{dx}}$

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{2}{3} x^{\frac{2}{3}-1} \\
& \Rightarrow f^{\prime}(x)=\frac{2}{3} x^{-\frac{1}{3}} \\
& \Rightarrow f^{\prime}(x)=\frac{2}{3 x^{\frac{1}{3}}}
\end{aligned}
$$

Now we have to check the differentiability of the function at $x=0$.

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0} \frac{2}{3 x^{\frac{1}{3}}} \\
& \Rightarrow \lim _{x \rightarrow 0} f^{\prime}(x)=\frac{2}{3(0)^{\frac{1}{3}}} \\
& \Rightarrow \lim _{x \rightarrow 0} f^{\prime}(x)=\text { undefined }
\end{aligned}
$$

Since the limit for the derivative is undefined at $x=0$, we can say that f is not differentiable at $x=0$.
\therefore Rolle's Theorem is not applicable to the function ' f ' on $[-1,1]$.
(vi) $f(x)=\left\{\begin{array}{c}-4 x+5,0 \leq x \leq 1 \\ 2 x-3,1<x \leq 2\end{array}\right.$

Solution:

Given function is $f(x)=\left\{\begin{array}{c}-4 x+5,0 \leq x \leq 1 \\ 2 x-3,1<x \leq 2\end{array}\right.$
Now we have to check the continuity at $x=1$ as the equation of function changes.

Consider LHL:
$\Rightarrow \lim _{\mathrm{x} \rightarrow 1-} \mathrm{f}(\mathrm{x})=\lim _{\mathrm{x} \rightarrow 1-}-4 \mathrm{x}+5$
$\Rightarrow \lim _{x \rightarrow 1-} f(x)=-4(1)+5$
$\Rightarrow \lim _{x \rightarrow 1-} f(x)=1$
Now consider RHL:
$\Rightarrow \lim _{x \rightarrow 1+} f(x)=\lim _{x \rightarrow 1+} 2 x-3$
$\lim _{x \rightarrow 1+} f(x)=2(0)-3$
$\lim _{x \rightarrow 1^{+}} f(x)=-1$
From (1) and (2), we can see that the values of both side limits are not equal.
So, the function ' f ' is not continuous at $x=1$.
\therefore Rolle's Theorem is not applicable to the function ' f ' in the interval $[0,2]$.
2. Verify the Rolle's Theorem for each of the following functions on the indicated intervals:
(i) $f(x)=x^{2}-8 x+12$ on $[2,6]$

Solution:

Given function is $f(x)=x^{2}-8 x+12$ on $[2,6]$
Since, given function f is a polynomial it is continuous and differentiable everywhere i.e., on R.
Let us find the values at extremes:
$\Rightarrow f(2)=2^{2}-8(2)+12$
$\Rightarrow f(2)=4-16+12$
$\Rightarrow f(2)=0$
$\Rightarrow f(6)=6^{2}-8(6)+12$
$\Rightarrow f(6)=36-48+12$
$\Rightarrow f(6)=0$
$\therefore f(2)=f(6)$, Rolle's theorem applicable for function f on $[2,6]$.
Now we have to find the derivative of $f(x)$

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{d\left(x^{2}-8 x+12\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=\frac{d\left(x^{2}\right)}{d x}-\frac{d(8 x)}{d x}+\frac{d(12)}{d x}
\end{aligned}
$$

$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}-8+0$
$\Rightarrow f^{\prime}(x)=2 x-8$
We have $f^{\prime}(c)=0 \in[2,6]$, from the above definition
$\Rightarrow f^{\prime}(c)=0$
$\Rightarrow 2 \mathrm{c}-8=0$
$\Rightarrow 2 c=8$
$\Rightarrow \mathrm{c}=\frac{8}{2}$
$\Rightarrow C=4 \in[2,6]$
\therefore Rolle's Theorem is verified.
(ii) $f(x)=x^{2}-4 x+3$ on $[1,3]$

Solution:

Given function is $f(x)=x^{2}-4 x+3$ on $[1,3]$
Since, given function f is a polynomial it is continuous and differentiable everywhere i.e., on R. Let us find the values at extremes:
$\Rightarrow f(1)=1^{2}-4(1)+3$
$\Rightarrow f(1)=1-4+3$
$\Rightarrow f(1)=0$
$\Rightarrow f(3)=3^{2}-4(3)+3$
$\Rightarrow f(3)=9-12+3$
$\Rightarrow f(3)=0$
$\therefore \mathrm{f}(1)=\mathrm{f}(3)$, Rolle's theorem applicable for function ' f ' on $[1,3]$.
Let's find the derivative of $f(x)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}\left(\mathrm{x}^{2}-4 \mathrm{x}+3\right)}{\mathrm{dx}}$
$\Rightarrow f^{\prime}(x)=\frac{d\left(x^{2}\right)}{d x}-\frac{d(4 x)}{d x}+\frac{d(3)}{d x}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}-4+0$
$\Rightarrow f^{\prime}(x)=2 x-4$

We have $f^{\prime}(c)=0, c \in(1,3)$, from the definition of Rolle's Theorem.
$\Rightarrow f^{\prime}(\mathrm{c})=0$
$\Rightarrow 2 c-4=0$
$\Rightarrow 2 \mathrm{c}=4$
$\Rightarrow c=4 / 2$
$\Rightarrow C=2 \in(1,3)$
\therefore Rolle's Theorem is verified.
(iii) $f(x)=(x-1)(x-2)^{2}$ on [1, 2]

Solution:

Given function is $f(x)=(x-1)(x-2)^{2}$ on [1, 2]
Since, given function f is a polynomial it is continuous and differentiable everywhere that is on R.
Let us find the values at extremes:
$\Rightarrow \mathrm{f}(1)=(1-1)(1-2)^{2}$
$\Rightarrow \mathrm{f}(1)=0(1)^{2}$
$\Rightarrow f(1)=0$
$\Rightarrow f(2)=(2-1)(2-2)^{2}$
$\Rightarrow f(2)=0^{2}$
$\Rightarrow f(2)=0$
$\therefore f(1)=f(2)$, Rolle's Theorem applicable for function ' f ' on [1, 2].
Let's find the derivative of $f(x)$
$\Rightarrow f^{\prime}(x)=\frac{d\left((x-1)(x-2)^{2}\right)}{d x}$
Differentiating by using product rule, we get

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=(x-2)^{2} \times \frac{d(x-1)}{d x}+(x-1) \times \frac{d\left((x-2)^{2}\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=\left((x-2)^{2} \times 1\right)+((x-1) \times 2 \times(x-2)) \\
& \Rightarrow f^{\prime}(x)=x^{2}-4 x+4+2\left(x^{2}-3 x+2\right) \\
& \Rightarrow f^{\prime}(x)=3 x^{2}-10 x+8
\end{aligned}
$$

We have $f^{\prime}(c)=0 c \in(1,2)$, from the definition of Rolle's Theorem.
$\Rightarrow f^{\prime}(\mathrm{c})=0$
$\Rightarrow 3 c^{2}-10 c+8=0$
$\Rightarrow \mathrm{C}=\frac{10 \pm \sqrt{(-10)^{2}-(4 \times 3 \times 8)}}{2 \times 3}$
$\Rightarrow C=\frac{10 \pm \sqrt{100-96}}{6}$
$\Rightarrow \mathrm{C}=\frac{10 \pm 2}{6}$
$\Rightarrow c=\frac{12}{6}$ or $c=\frac{8}{6}$
$\Rightarrow c=\frac{4}{3} \in(1,2)$ (neglecting the value 2)
\therefore Rolle's Theorem is verified.
(iv) $f(x)=x(x-1)^{2}$ on $[0,1]$

Solution:

Given function is $f(x)=x(x-1)^{2}$ on $[0,1]$
Since, given function f is a polynomial it is continuous and differentiable everywhere that is, on R.
Let us find the values at extremes
$\Rightarrow \mathrm{f}(0)=0(0-1)^{2}$
$\Rightarrow f(0)=0$
$\Rightarrow \mathrm{f}(1)=1(1-1)^{2}$
$\Rightarrow f(1)=0^{2}$
$\Rightarrow f(1)=0$
$\therefore \mathrm{f}(0)=\mathrm{f}(1)$, Rolle's theorem applicable for function ' f ' on $[0,1]$.
Let's find the derivative of $f(x)$

$$
\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}\left(\mathrm{x}(\mathrm{x}-1)^{2}\right)}{\mathrm{dx}}
$$

Differentiating using product rule:

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=(x-1)^{2} \times \frac{d(x)}{d x}+x \frac{d\left((x-1)^{2}\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=\left((x-1)^{2} \times 1\right)+(x \times 2 \times(x-1))
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=(x-1)^{2}+2\left(x^{2}-x\right) \\
& \Rightarrow f^{\prime}(x)=x^{2}-2 x+1+2 x^{2}-2 x \\
& \Rightarrow f^{\prime}(x)=3 x^{2}-4 x+1
\end{aligned}
$$

We have $f^{\prime}(c)=0 c \in(0,1)$, from the definition given above.

$$
\begin{aligned}
& \Rightarrow f^{\prime}(c)=0 \\
& \Rightarrow 3 c^{2}-4 c+1=0 \\
& \Rightarrow c=\frac{4 \pm \sqrt{(-4)^{2}-(4 \times 3 \times 1)}}{2 \times 3} \\
& \Rightarrow c=\frac{4 \pm \sqrt{16-12}}{6} \\
& \Rightarrow c=\frac{4 \pm \sqrt{4}}{6} \\
& \Rightarrow c=\frac{6}{6} \text { or } c=\frac{2}{6} \\
& \Rightarrow c=\frac{1}{3} \in(0,1)
\end{aligned}
$$

\therefore Rolle's Theorem is verified.
(v) $f(x)=\left(x^{2}-1\right)(x-2)$ on $[-1,2]$

Solution:

Given function is $f(x)=\left(x^{2}-1\right)(x-2)$ on $[-1,2]$
Since, given function f is a polynomial it is continuous and differentiable everywhere that is on R.
Let us find the values at extremes:
$\Rightarrow \mathrm{f}(-1)=\left((-1)^{2}-1\right)(-1-2)$
$\Rightarrow f(-1)=(1-1)(-3)$
$\Rightarrow \mathrm{f}(-1)=(0)(-3)$
$\Rightarrow f(-1)=0$
$\Rightarrow f(2)=\left(2^{2}-1\right)(2-2)$
$\Rightarrow f(2)=(4-1)(0)$
$\Rightarrow f(2)=0$
$\therefore \mathrm{f}(-1)=\mathrm{f}(2)$, Rolle's theorem applicable for function f on $[-1,2$.
Let's find the derivative of $f(x)$

$$
\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}\left(\left(\mathrm{x}^{2}-1\right)(\mathrm{x}-2)\right)}{\mathrm{dx}}
$$

Differentiating using product rule,

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=(x-2) \times \frac{d\left(x^{2}-1\right)}{d x}+\left(x^{2}-1\right) \frac{d(x-2)}{d x} \\
& \Rightarrow f^{\prime}(x)=((x-2) \times 2 x)+\left(\left(x^{2}-1\right) \times 1\right) \\
& \Rightarrow f^{\prime}(x)=2 x^{2}-4 x+x^{2}-1 \\
& f^{\prime}(x)=3 x^{2}-4 x-1
\end{aligned}
$$

We have $f^{\prime}(c)=0 c \in(-1,2)$, from the definition of Rolle's Theorem
$f^{\prime}(c)=0$
$3 c^{2}-4 c-1=0$
$c=4 \pm V\left[(-4)^{2}-(4 \times 3 \times-1)\right] /(2 \times 3) \quad$ [Using the Quadratic Formula]
$\mathrm{c}=4 \pm \mathrm{v}[16+12] / 6$
$\mathrm{c}=(4 \pm \mathrm{V} 28) / 6$
$\mathrm{c}=(4 \pm 2 \mathrm{~V} 7) / 6$
$\mathrm{c}=(2 \pm \mathrm{V} 7) / 3=1.5 \pm \mathrm{V} 7 / 3$
$\mathrm{c}=1.5+\mathrm{V} 7 / 3$ or $1.5-\mathrm{V} 7 / 3$
So,
$\mathrm{c}=1.5-\mathrm{V} 7 / 3$ since $\mathrm{c} \in(-1,2)$
\therefore Rolle's Theorem is verified.
(vi) $f(x)=x(x-4)^{2}$ on $[0,4]$

Solution:

Given function is $f(x)=x(x-4)^{2}$ on $[0,4]$
Since, given function f is a polynomial it is continuous and differentiable everywhere i.e., on R.
Let us find the values at extremes:
$\Rightarrow \mathrm{f}(0)=0(0-4)^{2}$
$\Rightarrow f(0)=0$
$\Rightarrow f(4)=4(4-4)^{2}$
$\Rightarrow \mathrm{f}(4)=4(0)^{2}$
$\Rightarrow f(4)=0$
$\therefore \mathrm{f}(0)=\mathrm{f}(4)$, Rolle's theorem applicable for function ' f ' on $[0,4]$.
Let's find the derivative of $f(x)$:
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}\left(\mathrm{x}(\mathrm{x}-4)^{2}\right)}{\mathrm{dx}}$
Differentiating using product rule
$\Rightarrow f^{\prime}(x)=(x-4)^{2} \times \frac{d(x)}{d x}+x \frac{d\left((x-4)^{2}\right)}{d x}$
$\Rightarrow f^{\prime}(x)=\left((x-4)^{2} \times 1\right)+(x \times 2 \times(x-4))$
$\Rightarrow f^{\prime}(x)=(x-4)^{2}+2\left(x^{2}-4 x\right)$
$\Rightarrow f^{\prime}(x)=x^{2}-8 x+16+2 x^{2}-8 x$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}-16 \mathrm{x}+16$
We have $f^{\prime}(c)=0 c \in(0,4)$, from the definition of Rolle's Theorem.
$\Rightarrow f^{\prime}(\mathrm{c})=0$
$\Rightarrow 3 c^{2}-16 c+16=0$
$\Rightarrow c=\frac{16 \pm \sqrt{(-16)^{2}-(4 \times 3 \times 16)}}{2 \times 3}$
$\Rightarrow \mathrm{c}=\frac{16 \pm \sqrt{256-192}}{6}$
$\Rightarrow c=\frac{16 \pm \sqrt{64}}{6}$
$\Rightarrow c=\frac{8}{6}$ or $c=\frac{24}{6}$
$\Rightarrow{ }^{c}=\frac{8}{6} \in(0,4)$
\therefore Rolle's Theorem is verified.
(vii) $f(x)=x(x-2)^{2}$ on $[0,2]$

Solution:

Given function is $f(x)=x(x-2)^{2}$ on $[0,2]$

Since, given function f is a polynomial it is continuous and differentiable everywhere that is on R.
Let us find the values at extremes:
$\Rightarrow \mathrm{f}(0)=0(0-2)^{2}$
$\Rightarrow f(0)=0$
$\Rightarrow f(2)=2(2-2)^{2}$
$\Rightarrow \mathrm{f}(2)=2(0)^{2}$
$\Rightarrow f(2)=0$
$f(0)=f(2)$, Rolle's theorem applicable for function f on $[0,2]$.
Let's find the derivative of $f(x)$

$$
\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}\left(\mathrm{x}(\mathrm{x}-2)^{2}\right)}{\mathrm{dx}}
$$

Differentiating using UV rule,

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=(x-2)^{2} \times \frac{d(x)}{d x}+x \frac{d\left((x-2)^{2}\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=\left((x-2)^{2} \times 1\right)+(x \times 2 \times(x-2)) \\
& \Rightarrow f^{\prime}(x)=(x-2)^{2}+2\left(x^{2}-2 x\right) \\
& \Rightarrow f^{\prime}(x)=x^{2}-4 x+4+2 x^{2}-4 x \\
& \Rightarrow f^{\prime}(x)=3 x^{2}-8 x+4
\end{aligned}
$$

We have $f^{\prime}(c)=0 c \in(0,1)$, from the definition of Rolle's Theorem.

$$
\begin{aligned}
& \Rightarrow f^{\prime}(c)=0 \\
& \Rightarrow 3 c^{2}-8 c+4=0 \\
& \Rightarrow c=\frac{8 \pm \sqrt{(-8)^{2}-(4 \times 3 \times 4)}}{2 \times 3} \\
& \Rightarrow c=\frac{8 \pm \sqrt{64-49}}{6} \\
& \Rightarrow c=\frac{8 \pm \sqrt{16}}{6} \\
& c=12 / 6 \text { or } 4 / 6 \\
& c=2 \text { or } 2 / 3
\end{aligned}
$$

So,
$c=2 / 3$ since $c \in(0,2)$
\therefore Rolle's Theorem is verified.
(viii) $f(x)=x^{2}+5 x+6$ on $[-3,-2]$

Solution:

Given function is $f(x)=x^{2}+5 x+6$ on $[-3,-2]$
Since, given function f is a polynomial it is continuous and differentiable everywhere i.e., on R. Let us find the values at extremes:
$\Rightarrow f(-3)=(-3)^{2}+5(-3)+6$
$\Rightarrow f(-3)=9-15+6$
$\Rightarrow f(-3)=0$
$\Rightarrow f(-2)=(-2)^{2}+5(-2)+6$
$\Rightarrow f(-2)=4-10+6$
$\Rightarrow f(-2)=0$
$\therefore \mathrm{f}(-3)=\mathrm{f}(-2)$, Rolle's theorem applicable for function f on $[-3,-2]$.
Let's find the derivative of $\mathrm{f}(\mathrm{x})$:

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{d\left(x^{2}+5 x+6\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=\frac{d\left(x^{2}\right)}{d x}+\frac{d(5 x)}{d x}+\frac{d(6)}{d x} \\
& \Rightarrow f^{\prime}(x)=2 x+5+0 \\
& \Rightarrow f^{\prime}(x)=2 x+5
\end{aligned}
$$

We have $f^{\prime}(c)=0 c \in(-3,-2)$, from the definition of Rolle's Theorem
$\Rightarrow f^{\prime}(\mathrm{c})=0$
$\Rightarrow 2 c+5=0$
$\Rightarrow 2 \mathrm{c}=-5$
$\Rightarrow \mathrm{c}=-\frac{5}{2}$
$\Rightarrow C=-2.5 \in(-3,-2)$
\therefore Rolle's Theorem is verified.
3. Verify the Rolle's Theorem for each of the following functions on the indicated

intervals:

(i) $f(x)=\cos 2(x-\pi / 4)$ on $[0, \pi / 2]$

Solution:

Given function is $f(x)=\cos 2\left(x-\frac{\pi}{4}\right)$ on $\left[0, \frac{\pi}{2}\right]$
We know that cosine function is continuous and differentiable on R .
Let's find the values of the function at an extreme,
$\Rightarrow f(0)=\cos 2\left(0-\frac{\pi}{4}\right)$
$\Rightarrow f(0)=\cos 2\left(-\frac{\pi}{4}\right)$
$\Rightarrow f(0)=\cos \left(-\frac{\pi}{2}\right)$
We know that $\cos (-x)=\cos x$
$\Rightarrow f(0)=0$
$\Rightarrow f\left(\frac{\pi}{2}\right)=\cos 2\left(\frac{\pi}{2}-\frac{\pi}{4}\right)$
$\Rightarrow f\left(\frac{\pi}{2}\right)=\cos 2\left(\frac{\pi}{4}\right)$
$\Rightarrow f\left(\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)$
$\Rightarrow f\left(\frac{\pi}{2}\right)=0$
We get ${ }^{f(0)}=f\left(\frac{\pi}{2}\right)$, so there exist $a^{c \in\left(0, \frac{\pi}{2}\right)}$ such that $f^{\prime}(c)=0$.
Let's find the derivative of $f(x)$
$\Rightarrow f^{\prime}(x)=\frac{d\left(\cos 2\left(x-\frac{\pi}{4}\right)\right)}{d x}$
$\Rightarrow f^{\prime}(x)=-\sin \left(2\left(x-\frac{\pi}{4}\right)\right) \frac{d\left(2\left(x-\frac{\pi}{4}\right)\right)}{d x}$
$\Rightarrow f^{\prime}(x)=-2 \sin 2\left(x-\frac{\pi}{4}\right)$
We have $f^{\prime}(c)=0$,
$\Rightarrow-2 \sin 2\left(c-\frac{\pi}{4}\right)=0$
$\Rightarrow c-\frac{\pi}{4}=0$
$\Rightarrow c=\frac{\pi}{4} \in\left(0, \frac{\pi}{2}\right)$
\therefore Rolle's Theorem is verified.
(ii) $f(x)=\sin 2 x$ on $[0, \pi / 2]$

Solution:

Given function is $f(x)=\sin 2 x$ on $\left[0, \frac{\pi}{2}\right]$
We know that sine function is continuous and differentiable on R. Let's find the values of function at extreme,
$\Rightarrow f(0)=\sin 2(0)$
$\Rightarrow f(0)=\sin 0$
$\Rightarrow \mathrm{f}(0)=0$
$\Rightarrow f\left(\frac{\pi}{2}\right)=\sin 2\left(\frac{\pi}{2}\right)$
$\Rightarrow f\left(\frac{\pi}{2}\right)=\sin (\pi)$
$\Rightarrow \mathrm{f}\left(\frac{\pi}{2}\right)=0$
We have ${ }^{f(0)}=f\left(\frac{\pi}{2}\right)$, so there exist a ${ }^{c \in\left(0, \frac{\pi}{2}\right)}$ such that $f^{\prime}(c)=0$.
Let's find the derivative of $f(x)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}(\sin 2 \mathrm{x})}{\mathrm{dx}}$
$\Rightarrow f^{\prime}(x)=\cos 2 x \frac{d(2 x)}{d x}$
$\Rightarrow f^{\prime}(x)=2 \cos 2 x$
We have $f^{\prime}(c)=0$,
$\Rightarrow 2 \cos 2 \mathrm{C}=0$
$\Rightarrow 2 \mathrm{c}=\frac{\pi}{2}$
$\Rightarrow \mathrm{c}=\frac{\pi}{4} \in\left(0, \frac{\pi}{2}\right)$
\therefore Rolle's Theorem is verified.
(iii) $f(x)=\cos 2 x$ on $[-\pi / 4, \pi / 4]$

Solution:

Given function is $\cos 2 x$ on $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
We know that cosine function is continuous and differentiable on R. Let's find the values of the function at an extreme,
$\Rightarrow f\left(-\frac{\pi}{4}\right)=\cos 2\left(-\frac{\pi}{4}\right)$
$\Rightarrow f(0)=\cos \left(-\frac{\pi}{2}\right)$
We know that $\cos (-x)=\cos x$
$\Rightarrow \mathrm{f}(0)=0$
$\Rightarrow f\left(\frac{\pi}{4}\right)=\cos 2\left(\frac{\pi}{4}\right)$
$\Rightarrow f\left(\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)$
$\Rightarrow f\left(\frac{\pi}{2}\right)=0$

Let's find the derivative of $f(x)$
$\Rightarrow f^{\prime}(x)=\frac{d(\cos 2 x)}{d x}$
$\Rightarrow f^{\prime}(x)=-\sin 2 x \frac{d(2 x)}{d x}$
$\Rightarrow f^{\prime}(x)=-2 \sin 2 x$
We have $f^{\prime}(c)=0$,
$\Rightarrow-2 \sin 2 \mathrm{c}=0$
$\sin 2 c=0$
$\Rightarrow 2 c=0$
So,
$c=0$ as $c \in(-\pi / 4, \pi / 4)$
\therefore Rolle's Theorem is verified.
(iv) $f(x)=e^{x} \sin x$ on $[0, \pi]$

Solution:

Given function is $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}$ on $[0, \pi]$

We know that exponential and sine functions are continuous and differentiable on R.
Let's find the values of the function at an extreme,

$$
\begin{aligned}
& \Rightarrow f(0)=e^{0} \sin (0) \\
& \Rightarrow f(0)=1 \times 0 \\
& \Rightarrow f(0)=0 \\
& \Rightarrow f(\pi)=e^{\pi} \sin (\pi) \\
& \Rightarrow f(\pi)=e^{\pi} \times 0 \\
& \Rightarrow f(\pi)=0
\end{aligned}
$$

We have ${ }^{\mathrm{f}}(0)=\mathrm{f}(\pi)$, so there exist $\mathrm{a}^{\mathrm{c} \in(0, \pi)}$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$.
Let's find the derivative of $f(x)$

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{d\left(e^{x} \sin x\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=\sin x \frac{d\left(e^{x}\right)}{d x}+e^{x} \frac{d(\sin x)}{d x} \\
& \Rightarrow f^{\prime}(x)=e^{x}(\sin x+\cos x)
\end{aligned}
$$

We have $f^{\prime}(c)=0$,

$$
\begin{aligned}
& \Rightarrow e^{c}(\sin c+\cos c)=0 \\
& \Rightarrow \sin c+\cos c=0 \\
& \Rightarrow \frac{1}{\sqrt{2}} \sin c+\frac{1}{\sqrt{2}} \cos c=0 \\
& \Rightarrow \sin \left(\frac{\pi}{4}\right) \sin c+\cos \left(\frac{\pi}{4}\right) \cos c=0 \\
& \Rightarrow \cos \left(c-\frac{\pi}{4}\right)=0 \\
& \Rightarrow c-\frac{\pi}{4}=\frac{\pi}{2} \\
& \Rightarrow c=\frac{3 \pi}{4} \in(0, \pi)
\end{aligned}
$$

\therefore Rolle's Theorem is verified.
(v) $f(x)=e^{x} \cos x$ on $[-\pi / 2, \pi / 2]$

Solution:

Given function is $f(x)=e^{x} \cos x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
We know that exponential and cosine functions are continuous and differentiable on R. Let's find the values of the function at an extreme,

$$
\begin{aligned}
& \Rightarrow \mathrm{f}\left(-\frac{\pi}{2}\right)=\mathrm{e}^{-\frac{\pi}{2}} \cos \left(-\frac{\pi}{2}\right) \\
& \Rightarrow \mathrm{f}\left(-\frac{\pi}{2}\right)=\mathrm{e}^{-\frac{\pi}{2}} \times 0 \\
& \Rightarrow \mathrm{f}\left(-\frac{\pi}{2}\right)=0 \\
& \Rightarrow \mathrm{f}\left(\frac{\pi}{2}\right)=\mathrm{e}^{\frac{\pi}{2}} \cos \left(\frac{\pi}{2}\right) \\
& \Rightarrow \mathrm{f}(\pi)=\mathrm{e}^{\frac{\pi}{2}} \times 0 \\
& \Rightarrow \mathrm{f}(\pi)=0
\end{aligned}
$$

Let's find the derivative of $f(x)$
$\Rightarrow f^{\prime}(x)=\frac{d\left(e^{x} \cos x\right)}{d x}$
$\Rightarrow f^{\prime}(x)=\cos x \frac{d\left(e^{x}\right)}{d x}+e^{x} \frac{d(\cos x)}{d x}$
$\Rightarrow f^{\prime}(x)=e^{x}(-\sin x+\cos x)$
We have $f^{\prime}(c)=0$,
$\Rightarrow e^{c}(-\sin c+\cos c)=0$
$\Rightarrow-\sin \mathrm{c}+\cos \mathrm{C}=0$
$\Rightarrow \frac{-1}{\sqrt{2}} \sin c+\frac{1}{\sqrt{2}} \cos c=0$
$\Rightarrow-\sin \left(\frac{\pi}{4}\right) \sin c+\cos \left(\frac{\pi}{4}\right) \cos c=0$
$\Rightarrow \cos \left(c+\frac{\pi}{4}\right)=0$
$\Rightarrow c+\frac{\pi}{4}=\frac{\pi}{2}$
$\Rightarrow c=\frac{\pi}{4} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
\therefore Rolle's Theorem is verified.
(vi) $f(x)=\cos 2 x$ on $[0, \pi]$

Solution:

Given function is $f(x)=\cos 2 x$ on $[0, \pi]$
We know that cosine function is continuous and differentiable on R. Let's find the values of function at extreme,
$\Rightarrow \mathrm{f}(0)=\cos 2(0)$
$\Rightarrow f(0)=\cos (0)$
$\Rightarrow \mathrm{f}(0)=1$
$\Rightarrow \mathrm{f}(\pi)=\cos 2\left({ }^{\pi}\right)$
$\Rightarrow f(\pi)=\cos (2 \pi)$
$\Rightarrow \mathrm{f}(\pi)=1$
We have $f(0)=f(\pi)$, so there exist a c belongs to $(0, \pi)$ such that $f^{\prime}(c)=0$.
Let's find the derivative of $f(x)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}(\cos 2 \mathrm{x})}{\mathrm{dx}}$
$\Rightarrow f^{\prime}(x)=-\sin 2 x \frac{d(2 x)}{d x}$
$\Rightarrow f^{\prime}(x)=-2 \sin 2 x$
We have $f^{\prime}(c)=0$,
$\Rightarrow-2 \sin 2 c=0$
$\sin 2 c=0$
So, $2 c=0$ or π
$\mathrm{c}=0$ or $\pi / 2$

But,
$c=\pi / 2$ as $c \in(0, \pi)$
Hence, Rolle's Theorem is verified.
(vii) $f(x)=\frac{\sin x}{\mathrm{e}^{\mathrm{x}}}$ on $0 \leq \mathrm{x} \leq \pi$

Solution:

Given function is $f(x)=\frac{\sin x}{e^{x}}$ on $[0, \pi]$
This can be written as
$\Rightarrow f(x)=e^{-x} \sin x$ on $[0, \pi]$
We know that exponential and sine functions are continuous and differentiable on R. Let's find the values of the function at an extreme,
$\Rightarrow \mathrm{f}(0)=\mathrm{e}^{-0} \sin (0)$
$\Rightarrow \mathrm{f}(0)=1 \times 0$
$\Rightarrow \mathrm{f}(0)=0$
$\Rightarrow \mathrm{f}(\pi)=\mathrm{e}^{-\pi} \sin (\pi)$
$\Rightarrow f(\pi)=e^{-\pi} \times 0$
$\Rightarrow \mathrm{f}(\pi)=0$
We have $f(0)=f(\pi)$, so there exist a c belongs to $(0, \pi)$ such that $f^{\prime}(c)=0$.
Let's find the derivative of $f(x)$

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{d\left(e^{-x} \sin x\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=\sin x \frac{d\left(e^{-x}\right)}{d x}+e^{-x} \frac{d(\sin x)}{d x} \\
& \Rightarrow f^{\prime}(x)=\sin x\left(-e^{-x}\right)+e^{-x}(\cos x)
\end{aligned}
$$

$\Rightarrow f^{\prime}(x)=e^{-x}(-\sin x+\cos x)$
We have $f^{\prime}(c)=0$,
$\Rightarrow e^{-c}(-\sin c+\cos c)=0$
$\Rightarrow-\sin \mathrm{c}+\cos \mathrm{C}=0$
$\Rightarrow-\frac{1}{\sqrt{2}} \sin c+\frac{1}{\sqrt{2}} \cos c=0$
$\Rightarrow-\sin \left(\frac{\pi}{4}\right) \sin c+\cos \left(\frac{\pi}{4}\right) \cos c=0$
$\Rightarrow \cos \left(c+\frac{\pi}{4}\right)=0$
$\Rightarrow c+\frac{\pi}{4}=\frac{\pi}{2}$
$\Rightarrow c=\frac{\pi}{4} \epsilon(0, \pi)$
\therefore Rolle's Theorem is verified.
(viii) $f(x)=\sin 3 x$ on $[0, \pi]$

Solution:

Given function is $f(x)=\sin 3 x$ on $[0, \pi]$
We know that sine function is continuous and differentiable on R. Let's find the values of function at extreme,
$\Rightarrow f(0)=\sin 3(0)$
$\Rightarrow f(0)=\sin 0$
$\Rightarrow \mathrm{f}(0)=0$
$\Rightarrow f(\pi)=\sin 3(\pi)$
$\Rightarrow f(\pi)=\sin (3 \pi)$
$\Rightarrow \mathrm{f}(\pi)=0$
We have $f(0)=f(\pi)$, so there exist a c belongs to $(0, \pi)$ such that $f^{\prime}(c)=0$.
Let's find the derivative of $f(x)$
$\Rightarrow f^{\prime}(x)=\frac{d(\sin 3 x)}{d x}$
$\Rightarrow f^{\prime}(x)=\cos 3 x \frac{d(3 x)}{d x}$
$\Rightarrow f^{\prime}(x)=3 \cos 3 x$
We have $f^{\prime}(c)=0$,
$\Rightarrow 3 \cos 3 \mathrm{c}=0$
$\Rightarrow 3 \mathrm{c}=\frac{\pi}{2}$
$\Rightarrow c=\frac{\pi}{6} \epsilon(0, \pi)$
\therefore Rolle's Theorem is verified.
(ix) $f(x)=e^{1-x^{2}}$ on $[-1,1]$

Solution:

Given function is $f(x)=e^{1-x^{2}}$ on $[-1,1]$
We know that exponential function is continuous and differentiable over R.
Let's find the value of function f at extremes,

$$
\begin{aligned}
& \Rightarrow f(-1)=e^{1-(-1)^{2}} \\
& \Rightarrow f(-1)=e^{1-1} \\
& \Rightarrow f(-1)=e^{0} \\
& \Rightarrow f(-1)=1 \\
& \Rightarrow f(1)=e^{1-1^{2}} \\
& \Rightarrow f(1)=e^{1-1} \\
& \Rightarrow f(1)=e^{0} \\
& \Rightarrow f(1)=1
\end{aligned}
$$

We got $f(-1)=f(1)$ so, there exists a $\mathrm{c} \in(-1,1)$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$.
Let's find the derivative of the function f :

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{d\left(e^{1-x^{2}}\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=e^{1-x^{2}} \frac{d\left(1-x^{2}\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=e^{1-x^{2}}(-2 x)
\end{aligned}
$$

We have $\mathrm{f}^{\prime}(\mathrm{c})=0$
$\Rightarrow \mathrm{e}^{1-\mathrm{c}^{2}}(-2 \mathrm{c})=0$
$\Rightarrow 2 \mathrm{c}=0$
$\Rightarrow \mathrm{c}=0 \in[-1,1]$
\therefore Rolle's Theorem is verified.
$(x) f(x)=\log \left(x^{2}+2\right)-\log 3$ on $[-1,1]$

Solution:

Given function is $f(x)=\log \left(x^{2}+2\right)-\log 3$ on $[-1,1]$
We know that logarithmic function is continuous and differentiable in its own domain.
We check the values of the function at the extreme,
$\Rightarrow \mathrm{f}(-1)=\log \left((-1)^{2}+2\right)-\log 3$
$\Rightarrow \mathrm{f}(-1)=\log (1+2)-\log 3$
$\Rightarrow \mathrm{f}(-1)=\log 3-\log 3$
$\Rightarrow f(-1)=0$
$\Rightarrow f(1)=\log \left(1^{2}+2\right)-\log 3$
$\Rightarrow f(1)=\log (1+2)-\log 3$
$\Rightarrow f(1)=\log 3-\log 3$
$\Rightarrow f(1)=0$
We have got $\mathrm{f}(-1)=\mathrm{f}(1)$. So, there exists a c such that $\mathrm{c} \in(-1,1)$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$.
Let's find the derivative of the function f,

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{d\left(\log \left(x^{2}+2\right)-\log 3\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=\frac{1}{x^{2}+2} \frac{d\left(x^{2}+2\right)}{d x}-0 \\
& \Rightarrow f^{\prime}(x)=\frac{2 x}{x^{2}+2}
\end{aligned}
$$

We have $\mathrm{f}^{\prime}(\mathrm{c})=0$
$\Rightarrow \frac{2 \mathrm{c}}{\mathrm{c}^{2}+2}=0$
$\Rightarrow 2 \mathrm{c}=0$
$\Rightarrow \mathrm{C}=0 \in(-1,1)$
\therefore Rolle's Theorem is verified.
(xi) $f(x)=\sin x+\cos x$ on $[0, \pi / 2]$

Solution:

Given function is $f(x)=\sin x+\cos x$ on $\left[0, \frac{\pi}{2}\right]$
We know that sine and cosine functions are continuous and differentiable on R. Let's the value of function f at extremes:
$\Rightarrow f(0)=\sin (0)+\cos (0)$
$\Rightarrow f(0)=0+1$
$\Rightarrow f(0)=1$
$\Rightarrow f\left(\frac{\pi}{2}\right)=\sin \left(\frac{\pi}{2}\right)+\cos \left(\frac{\pi}{2}\right)$
$\Rightarrow f\left(\frac{\pi}{2}\right)=1+0$
$\Rightarrow f\left(\frac{\pi}{2}\right)=1$
We have ${ }^{f}(0)=f\left(\frac{\pi}{2}\right)$. So, there exists a $c \in\left(0, \frac{\pi}{2}\right)$ such that $f^{\prime}(c)=0$.
Let's find the derivative of the function f .
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}(\sin \mathrm{x}+\cos \mathrm{x})}{\mathrm{dx}}$
$\Rightarrow f^{\prime}(x)=\cos x-\sin x$

We have $f^{\prime}(c)=0$
$\Rightarrow \operatorname{Cos} \mathrm{c}-\sin \mathrm{c}=0$
$\Rightarrow \frac{1}{\sqrt{2}} \cos c-\frac{1}{\sqrt{2}} \sin \mathrm{c}=0$
$\Rightarrow \sin \left(\frac{\pi}{4}\right) \operatorname{cosc}-\cos \left(\frac{\pi}{4}\right) \sin c=0$
$\Rightarrow \sin \left(\frac{\pi}{4}-c\right)=0$
$\Rightarrow \frac{\pi}{4}-\mathrm{c}=0$
$\Rightarrow \mathrm{c}=\frac{\pi}{4} \in\left(0, \frac{\pi}{2}\right)$
\therefore Rolle's Theorem is verified.
(xii) $f(x)=2 \sin x+\sin 2 x$ on $[0, \pi]$

Solution:

Given function is $f(x)=2 \sin x+\sin 2 x$ on $[0, \pi]$
We know that sine function continuous and differentiable over R.
Let's check the values of function f at the extremes
$\Rightarrow f(0)=2 \sin (0)+\sin 2(0)$
$\Rightarrow f(0)=2(0)+0$
$\Rightarrow \mathrm{f}(0)=0$
$\Rightarrow f(\pi)=2 \sin (\pi)+\sin 2(\pi)$
$\Rightarrow f(\pi)=2(0)+0$
$\Rightarrow f(\pi)=0$
We have $f(0)=f(\pi)$, so there exist a c belongs to $(0, \pi)$ such that $f^{\prime}(c)=0$.
Let's find the derivative of function f.

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{d(2 \sin x+\sin 2 x)}{d x} \\
& \Rightarrow f^{\prime}(x)=2 \cos x+\cos 2 x \frac{d(2 x)}{d x} \\
& \Rightarrow f^{\prime}(x)=2 \cos x+2 \cos 2 x \\
& \Rightarrow f^{\prime}(x)=2 \cos x+2\left(2 \cos ^{2} x-1\right)
\end{aligned}
$$

$\Rightarrow f^{\prime}(x)=4 \cos ^{2} x+2 \cos x-2$
We have $f^{\prime}(c)=0$,
$\Rightarrow 4 \cos ^{2} \mathrm{c}+2 \cos \mathrm{c}-2=0$
$\Rightarrow 2 \cos ^{2} \mathrm{c}+\cos \mathrm{c}-1=0$
$\Rightarrow 2 \cos ^{2} \mathrm{c}+2 \cos \mathrm{c}-\cos \mathrm{c}-1=0$
$\Rightarrow 2 \cos c(\cos c+1)-1(\cos c+1)=0$
$\Rightarrow(2 \cos c-1)(\cos c+1)=0$
$\Rightarrow \cos c=\frac{1}{2}$ or $\cos c=-1$
$\Rightarrow c=\frac{\pi}{3} \epsilon(0, \pi)$
\therefore Rolle's Theorem is verified.

$$
\text { (xiii) } f(x)=\frac{x}{2}-\sin \frac{\pi x}{6} \text { on }[-1,0]
$$

Solution:

Given function is $f(x)=\frac{x}{2}-\sin \left(\frac{\pi x}{6}\right)$ on $[-1,0]$
We know that sine function is continuous and differentiable over R.
Now we have to check the values of ' f ' at an extreme

$$
\begin{aligned}
& \Rightarrow f(-1)=\frac{-1}{2}-\sin \left(\frac{\pi(-1)}{6}\right) \\
& \Rightarrow f(-1)=-\frac{1}{2}-\sin \left(\frac{-\pi}{6}\right) \\
& \Rightarrow f(-1)=-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& \Rightarrow f(-1)=0 \\
& \Rightarrow f(0)=\frac{0}{2}-\sin \left(\frac{\pi(0)}{6}\right) \\
& \Rightarrow f(0)=0-\sin (0) \\
& \Rightarrow f(0)=0-0
\end{aligned}
$$

$\Rightarrow f(0)=0$
We have got $f(-1)=f(0)$. So, there exists a $c \in(-1,0)$ such that $f^{\prime}(c)=0$.
Now we have to find the derivative of the function ' f '

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{d\left(\frac{x}{2}-\sin \left(\frac{\pi x}{6}\right)\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=\frac{1}{2}-\cos \left(\frac{\pi x}{6}\right) \frac{d\left(\frac{\pi x}{6}\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=\frac{1}{2}-\frac{\pi}{6} \cos \left(\frac{\pi x}{6}\right)
\end{aligned}
$$

We have $f^{\prime}(c)=0$
$\Rightarrow \frac{1}{2}-\frac{\pi}{6} \cos \left(\frac{\pi c}{6}\right)=0$
$\Rightarrow \frac{\pi}{6} \cos \left(\frac{\pi c}{6}\right)=\frac{1}{2}$
$\Rightarrow \cos \left(\frac{\pi c}{6}\right)=\frac{1}{2} \times \frac{6}{\pi}$
$\Rightarrow \cos \left(\frac{\pi c}{6}\right)=\frac{3}{\pi}$
$\Rightarrow \frac{\pi c}{6}=\cos ^{-1}\left(\frac{3}{\pi}\right)$
$\Rightarrow \mathrm{C}=\frac{6}{\pi} \cos ^{-1}\left(\frac{3}{\pi}\right)$
Cosine is positive between $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$, for our convenience we take the interval to be $-\frac{\pi}{2} \leq \theta \leq 0$, since the values of the cosine repeats.

We know that $\frac{3}{\pi}$ value is nearly equal to 1 . So, the value of the c nearly equal to 0.

So, we can clearly say that $c \in(-1,0)$.
\therefore Rolle's Theorem is verified.
(xiv). $f(x)=\frac{6 x}{\pi}-4 \sin ^{2} x$ on $\left[0, \frac{\pi}{6}\right]$

Solution:

Given function is $f(x)=\frac{6 x}{\pi}-4 \sin ^{2} x$ on $\left[0, \frac{\pi}{6}\right]$
We know that sine function is continuous and differentiable over R.
Now we have to check the values of function ' \mathbf{f} ' at the extremes,

$$
\begin{aligned}
& \Rightarrow \mathrm{f}(0)=\frac{6(0)}{\pi}-4 \sin ^{2}(0) \\
& \Rightarrow \mathrm{f}(0)=0-4(0) \\
& \Rightarrow \mathrm{f}(0)=0 \\
& \Rightarrow \mathrm{f}\left(\frac{\pi}{6}\right)=\frac{6\left(\frac{\pi}{6}\right)}{\pi}-4 \sin ^{2}\left(\frac{\pi}{6}\right) \\
& \Rightarrow \mathrm{f}\left(\frac{\pi}{6}\right)=\frac{\pi}{\pi}-4\left(\frac{1}{2}\right)^{2} \\
& \Rightarrow \mathrm{f}\left(\frac{\pi}{6}\right)=1-4\left(\frac{1}{4}\right) \\
& \Rightarrow \mathrm{f}\left(\frac{\pi}{6}\right)=1-1 \\
& \Rightarrow \mathrm{f}\left(\frac{\pi}{6}\right)=0 .
\end{aligned}
$$

We have ${ }^{\mathrm{f}(0)}=\mathrm{f}\left(\frac{\pi}{6}\right)$. So, there exists a $\mathrm{c} \epsilon\left(0, \frac{\pi}{6}\right)$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$.
We have to find the derivative of function 'f.'

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{d\left(\frac{6 x}{\pi}-4 \sin ^{2} x\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=\frac{6}{\pi}-4 \times 2 \sin x \times \frac{d(\sin x)}{d x} \\
& \Rightarrow f^{\prime}(x)=\frac{6}{\pi}-8 \sin x(\cos x)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{6}{\pi}-4(2 \sin x \cos x) \\
& \Rightarrow f^{\prime}(x)=\frac{6}{\pi}-4 \sin 2 x
\end{aligned}
$$

We have $f^{\prime}(c)=0$
$\Rightarrow \frac{6}{\pi}-4 \sin 2 \mathrm{c}=0$
$\Rightarrow 4 \sin 2 c=\frac{6}{\pi}$
$\Rightarrow \sin 2 c=\frac{6}{4 \pi}$
We know $\frac{6}{4 \pi}<\frac{1}{2}$
$\Rightarrow \sin 2 c<\frac{1}{2}$
$\Rightarrow 2 c<\sin ^{-1}\left(\frac{1}{2}\right)$
$\Rightarrow 2 c<\frac{\pi}{6}$
$\Rightarrow c<\frac{\pi}{12} \in\left(0, \frac{\pi}{6}\right)$
\therefore Rolle's Theorem is verified.
$(x v) f(x)=4^{\sin x}$ on $[0, \pi]$

Solution:

Given function is $f(x)=4^{\sin x}$ on $[0, \pi]$
We that sine function is continuous and differentiable over R.
Now we have to check the values of function ' f ' at extremes
$\Rightarrow f(0)=4^{\sin (0)}$
$\Rightarrow f(0)=4^{0}$
$\Rightarrow \mathrm{f}(0)=1$
$\Rightarrow f(\pi)=4^{\sin \pi}$
$\Rightarrow f(\pi)=4^{0}$
$\Rightarrow f(\pi)=1$
We have $f(0)=f(\pi)$. So, there exists a $c \in(0, \pi)$ such that $f^{\prime}(c)=0$.
Now we have to find the derivative of ' f '

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{d\left(4^{\sin x}\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=4^{\sin x} \log 4 \frac{d(\sin x)}{d x} \\
& \Rightarrow f^{\prime}(x)=4^{\sin x} \log 4 \cos x
\end{aligned}
$$

We have $\mathrm{f}^{\prime}(\mathrm{c})=0$
$\Rightarrow 4^{\text {sinc }} \log 4 \operatorname{cosc}=0$
$\Rightarrow \operatorname{Cos} \mathrm{c}=0$
$\Rightarrow c=\frac{\pi}{2} \epsilon(0, \pi)$
\therefore Rolle's Theorem is verified.
$(x v i) f(x)=x^{2}-5 x+4$ on $[0, \pi / 6]$

Solution:

Given function is $f(x)=x^{2}-5 x+4$ on $[1,4]$
Since, given function f is a polynomial it is continuous and differentiable everywhere i.e., on R .
Let us find the values at extremes
$\Rightarrow f(1)=1^{2}-5(1)+4$
$\Rightarrow f(1)=1-5+4$
$\Rightarrow f(1)=0$
$\Rightarrow f(4)=4^{2}-5(4)+4$
$\Rightarrow f(4)=16-20+4$
$\Rightarrow f(4)=0$
We have $f(1)=f(4)$. So, there exists a $c \in(1,4)$ such that $f^{\prime}(c)=0$.

Let's find the derivative of $f(x)$:
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}\left(\mathrm{x}^{2}-5 \mathrm{x}+4\right)}{\mathrm{dx}}$
$\Rightarrow f^{\prime}(x)=\frac{d\left(x^{2}\right)}{d x}-\frac{d(5 x)}{d x}+\frac{d(4)}{d x}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}-5+0$
$\Rightarrow f^{\prime}(x)=2 x-5$
We have $f^{\prime}(c)=0$
$\Rightarrow f^{\prime}(c)=0$
$\Rightarrow 2 \mathrm{c}-5=0$
$\Rightarrow 2 c=5$
$\Rightarrow \mathrm{c}=\frac{5}{2}$
$\Rightarrow C=2.5 \in(1,4)$
\therefore Rolle's Theorem is verified.
(xvii) $f(x)=\sin ^{4} x+\cos ^{4} x$ on $[0, \pi / 2]$

Solution:

Given function is $f(x)=\sin ^{4} x+\cos ^{4} x$ on $\left[0, \frac{\pi}{2}\right]$
We know that sine and cosine functions are continuous and differentiable functions over R.

Now we have to find the value of function ' f ' at extremes

$$
\begin{aligned}
& \Rightarrow f(0)=\sin ^{4}(0)+\cos ^{4}(0) \\
& \Rightarrow f(0)=(0)^{4}+(1)^{4} \\
& \Rightarrow f(0)=0+1 \\
& \Rightarrow f(0)=1
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow f\left(\frac{\pi}{2}\right)=\sin ^{4}\left(\frac{\pi}{2}\right)+\cos ^{4}\left(\frac{\pi}{2}\right) \\
& \Rightarrow f\left(\frac{\pi}{2}\right)=1^{4}+0^{4} \\
& \Rightarrow f\left(\frac{\pi}{2}\right)=1+0 \\
& \Rightarrow f\left(\frac{\pi}{2}\right)=1
\end{aligned}
$$

We have ${ }^{\mathrm{f}}(0)=\mathrm{f}\left(\frac{\pi}{2}\right)$. So, there exists a c $\epsilon^{\left(0, \frac{\pi}{2}\right)}$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$.
Now we have to find the derivative of the function ' f '.

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{d\left(\sin ^{4} x+\cos ^{4} x\right)}{d x} \\
& \Rightarrow f^{\prime}(x)=4 \sin ^{3} x \frac{d(\sin x)}{d x}+4 \cos ^{3} x \frac{d(\cos x)}{d x} \\
& \Rightarrow f^{\prime}(x)=4 \sin ^{3} x \cos x-4 \cos ^{3} x \sin x \\
& \Rightarrow f^{\prime}(x)=4 \sin x \cos x\left(\sin ^{2} x-\cos ^{2} x\right) \\
& \Rightarrow f^{\prime}(x)=2(2 \sin x \cos x)(-\cos 2 x) \\
& \Rightarrow f^{\prime}(x)=-2(\sin 2 x)(\cos 2 x) \\
& \Rightarrow f^{\prime}(x)=-\sin 4 x
\end{aligned}
$$

We have $f^{\prime}(c)=0$

$$
\begin{aligned}
& \Rightarrow-\sin 4 c=0 \\
& \Rightarrow \sin 4 c=0 \\
& \Rightarrow 4 c=0 \text { or } \pi \\
& \Rightarrow c=\frac{\pi}{4} \in\left(0, \frac{\pi}{2}\right)
\end{aligned}
$$

\therefore Rolle's Theorem is verified.
$(x v i i i) f(x)=\sin x-\sin 2 x$ on $[0, \pi]$

Solution:

Given function is $f(x)=\sin x-\sin 2 x$ on $[0, \pi]$
We know that sine function is continuous and differentiable over R.
Now we have to check the values of the function ' f ' at the extremes.
$\Rightarrow f(0)=\sin (0)-\sin 2(0)$
$\Rightarrow f(0)=0-\sin (0)$
$\Rightarrow f(0)=0$
$\Rightarrow f(\pi)=\sin (\pi)-\sin 2(\pi)$
$\Rightarrow \mathrm{f}(\pi)=0-\sin (2 \pi)$
$\Rightarrow f(\pi)=0$
We have $f(0)=f(\pi)$. So, there exists a $c \in(0, \pi)$ such that $f^{\prime}(c)=0$.
Now we have to find the derivative of the function ' f '

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{d(\sin x-\sin 2 x)}{d x} \\
& \Rightarrow f^{\prime}(x)=\cos x-\cos 2 x \frac{d(2 x)}{d x} \\
& \Rightarrow f^{\prime}(x)=\cos x-2 \cos 2 x \\
& \Rightarrow f^{\prime}(x)=\cos x-2\left(2 \cos ^{2} x-1\right) \\
& \Rightarrow f^{\prime}(x)=\cos x-4 \cos ^{2} x+2 \\
& \text { We have } f^{\prime}(c)=0 \\
& \Rightarrow \cos c-4 \cos ^{2} c+2=0 \\
& \Rightarrow \cos c=\frac{-1 \pm \sqrt{(1)^{2}-(4 x-4 \times 2)}}{2 x-4} \\
& \Rightarrow \cos c=\frac{-1 \pm \sqrt{1+33}}{-8} \\
& \Rightarrow c=\cos ^{-1}\left(\frac{-1 \pm \sqrt{33}}{-8}\right)
\end{aligned}
$$

We can see that $\mathrm{c} \in(0, \pi)$
\therefore Rolle's Theorem is verified.
4. Using Rolle's Theorem, find points on the curve $y=16-x^{2}, x \in[-1,1]$, where tangent is parallel to x - axis.

Solution:

Given function is $y=16-x^{2}, x \in[-1,1]$
We know that polynomial function is continuous and differentiable over R.
Let us check the values of ' y ' at extremes
$\Rightarrow \mathrm{y}(-1)=16-(-1)^{2}$
$\Rightarrow y(-1)=16-1$
$\Rightarrow y(-1)=15$
$\Rightarrow \mathrm{y}(1)=16-(1)^{2}$
$\Rightarrow y(1)=16-1$
$\Rightarrow y(1)=15$
We have $y(-1)=y(1)$. So, there exists a $c \in(-1,1)$ such that $f^{\prime}(c)=0$.
We know that for a curve g, the value of the slope of the tangent at a point r is given by $g^{\prime}(r)$.
Now we have to find the derivative of curve y
$\Rightarrow \mathrm{y}^{t}=\frac{\mathrm{d}\left(16-\mathrm{x}^{2}\right)}{\mathrm{dx}}$
$\Rightarrow y^{\prime}=-2 x$
We have $y^{\prime}(\mathrm{c})=0$
$\Rightarrow-2 \mathrm{c}=0$
$\Rightarrow \mathrm{c}=0 \in(-1,1)$
Value of y at $x=1$ is
$\Rightarrow y=16-0^{2}$
$\Rightarrow y=16$
\therefore The point at which the curve y has a tangent parallel to x - axis (since the slope of x axis is 0) is $(0,16)$.

1. Verify Lagrange's mean value theorem for the following functions on the indicated intervals. In each case find a point ' c ' in the indicated interval as stated by the Lagrange's mean value theorem:
(i) $f(x)=x^{2}-1$ on $[2,3]$

Solution:

Given $f(x)=x^{2}-1$ on $[2,3]$
We know that every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, $\mathrm{f}(\mathrm{x})$ is a polynomial function. So it is continuous in $[2,3]$ and differentiable in $(2,3)$. So both the necessary conditions of Lagrange's mean value theorem is satisfied.

Therefore, there exist a point $\mathrm{c} \in(2,3)$ such that:

$$
f^{\prime}(c)=\frac{f(3)-f(2)}{3-2}
$$

$\Rightarrow f^{\prime}(c)=\frac{f(3)-f(2)}{1}$
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-1$
Differentiating with respect to x
$f^{\prime}(x)=2 x$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:
$f^{\prime}(c)=2 c$
For $f(3)$, put the value of $x=3$ in $f(x)$:
$f(3)=(3)^{2}-1$
$=9-1$
$=8$
For $f(2)$, put the value of $x=2$ in $f(x)$:

$$
\begin{aligned}
& f(2)=(2)^{2}-1 \\
& =4-1 \\
& =3 \\
& \therefore f^{\prime}(c)=f(3)-f(2) \\
& \Rightarrow 2 c=8-3 \\
& \Rightarrow 2 c=5 \\
& \Rightarrow c=\frac{5}{2} \in(2,3)
\end{aligned}
$$

Hence, Lagrange's mean value theorem is verified.
(ii) $f(x)=x^{3}-2 x^{2}-x+3$ on $[0,1]$

Solution:

Given $f(x)=x^{3}-2 x^{2}-x+3$ on $[0,1]$
Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, $f(x)$ is a polynomial function. So it is continuous in $[0,1]$ and differentiable in $(0,1)$. So both the necessary conditions of Lagrange's mean value theorem is satisfied.
Therefore, there exist a point $c \in(0,1)$ such that:

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(1)-f(0)}{1-0} \\
& \Rightarrow f^{\prime}(c)=\frac{f(1)-f(0)}{1}
\end{aligned}
$$

$f(x)=x^{3}-2 x^{2}-x+3$
Differentiating with respect to x
$f^{\prime}(x)=3 x^{2}-2(2 x)-1$
$=3 x^{2}-4 x-1$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$
$f^{\prime}(c)=3 c^{2}-4 c-1$
For $f(1)$, put the value of $x=1$ in $f(x)$
$f(1)=(1)^{3}-2(1)^{2}-(1)+3$
$=1-2-1+3$
$=1$
For $f(0)$, put the value of $x=0$ in $f(x)$
$f(0)=(0)^{3}-2(0)^{2}-(0)+3$
$=0-0-0+3$
$=3$
$\therefore f^{\prime}(c)=f(1)-f(0)$
$\Rightarrow 3 c^{2}-4 c-1=1-3$
$\Rightarrow 3 c^{2}-4 \mathrm{c}=1+1-3$
$\Rightarrow 3 c^{2}-4 c=-1$
$\Rightarrow 3 c^{2}-4 c+1=0$
$\Rightarrow 3 c^{2}-3 c-c+1=0$
$\Rightarrow 3 c(c-1)-1(c-1)=0$
$\Rightarrow(3 c-1)(c-1)=0$
$\Rightarrow c=\frac{1}{3}, 1$
$\Rightarrow c=\frac{1}{3} \in(0,1)$
Hence, Lagrange's mean value theorem is verified.
(iii) $f(x)=x(x-1)$ on $[1,2]$

Solution:

Given $f(x)=x(x-1)$ on [1, 2]
$=x^{2}-x$
Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, $f(x)$ is a polynomial function. So it is continuous in [1, 2] and differentiable in (1, 2). So both the necessary conditions of Lagrange's mean value theorem is satisfied.
Therefore, there exist a point $c \in(1,2)$ such that:

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(2)-f(1)}{2-1} \\
& \Rightarrow f^{\prime}(c)=\frac{f(2)-f(1)}{1}
\end{aligned}
$$

$f(x)=x^{2}-x$

Differentiating with respect to x
$f^{\prime}(x)=2 x-1$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:
$f^{\prime}(c)=2 c-1$
For $f(2)$, put the value of $x=2$ in $f(x)$
$f(2)=(2)^{2}-2$
$=4-2$
$=2$
For $f(1)$, put the value of $x=1$ in $f(x)$:
$f(1)=(1)^{2}-1$
$=1-1$
$=0$
$\therefore \mathrm{f}^{\prime}(\mathrm{c})=\mathrm{f}(2)-\mathrm{f}(1)$
$\Rightarrow 2 c-1=2-0$
$\Rightarrow 2 \mathrm{c}=2+1$
$\Rightarrow 2 \mathrm{c}=3$
$\Rightarrow C=\frac{3}{2} \in(1,2)$
Hence, Lagrange's mean value theorem is verified.
(iv) $f(x)=x^{2}-3 x+2$ on $[-1,2]$

Solution:

Given $f(x)=x^{2}-3 x+2$ on $[-1,2]$
Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, $f(x)$ is a polynomial function. So it is continuous in $[-1,2]$ and differentiable in ($-1,2$). So both the necessary conditions of Lagrange's mean value theorem is satisfied.
Therefore, there exist a point $\mathrm{c} \in(-1,2)$ such that:
$f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)}$
$\Rightarrow f^{\prime}(c)=\frac{f(2)-f(-1)}{2+1}$
$\Rightarrow f^{\prime}(c)=\frac{f(2)-f(-1)}{3}$
$f(x)=x^{2}-3 x+2$
Differentiating with respect to x
$f^{\prime}(x)=2 x-3$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:
$f^{\prime}(c)=2 c-3$
For $f(2)$, put the value of $x=2$ in $f(x)$
$f(2)=(2)^{2}-3(2)+2$
$=4-6+2$
$=0$
For $f(-1)$, put the value of $x=-1$ in $f(x)$:
$f(-1)=(-1)^{2}-3(-1)+2$
$=1+3+2$
$=6$
$f^{\prime}(c)=\frac{f(2)-f(-1)}{3}$
$\Rightarrow 2 c-3=\frac{0-6}{3}$
$\Rightarrow 2 c=\frac{-6}{3}+3$
$\Rightarrow 2 c=-2+3$
$\Rightarrow 2 c=1$
$\Rightarrow c=1 / 2 \in(-1,2)$
Hence, Lagrange's mean value theorem is verified.
(v) $f(x)=2 x^{2}-3 x+1$ on $[1,3]$

Solution:

Given $f(x)=2 x^{2}-3 x+1$ on $[1,3]$
Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, $f(x)$ is a polynomial function. So it is continuous in [1, 3] and differentiable in $(1,3)$. So both the necessary conditions of Lagrange's mean value theorem is satisfied.
Therefore, there exist a point $c \in(1,3)$ such that:

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(3)-f(1)}{3-1} \\
& \Rightarrow f^{\prime}(c)=\frac{f(3)-f(1)}{2}
\end{aligned}
$$

$f(x)=2 x^{2}-3 x+1$
Differentiating with respect to x
$f^{\prime}(x)=2(2 x)-3$
$=4 x-3$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:
$f^{\prime}(c)=4 c-3$
For $f(3)$, put the value of $x=3$ in $f(x)$:
$f(3)=2(3)^{2}-3(3)+1$
= $2(9)-9+1$
$=18-8=10$
For $f(1)$, put the value of $x=1$ in $f(x)$:
$f(1)=2(1)^{2}-3(1)+1$
$=2(1)-3+1$
$=2-2=0$
$f^{\prime}(c)=\frac{f(3)-f(1)}{2}$
$\Rightarrow 4 c-3=\frac{10-0}{2}$
$\Rightarrow 4 c=\frac{10}{2}+3$
$\Rightarrow 4 c=5+3$
$\Rightarrow 4 \mathrm{c}=8$
$\Rightarrow c=\frac{8}{4}=2 \in(1,3)$
Hence, Lagrange's mean value theorem is verified.
(vi) $f(x)=x^{2}-2 x+4$ on $[1,5]$

Solution:

Given $f(x)=x^{2}-2 x+4$ on $[1,5]$
Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, $f(x)$ is a polynomial function. So it is continuous in $[1,5]$ and differentiable in $(1,5)$. So both the necessary conditions of Lagrange's mean value theorem is satisfied.
Therefore, there exist a point $c \in(1,5)$ such that:
$f^{\prime}(c)=\frac{f(5)-f(1)}{5-1}$
$\Rightarrow f^{\prime}(\mathrm{c})=\frac{\mathrm{f}(5)-\mathrm{f}(1)}{4}$
$f(x)=x^{2}-2 x+4$
Differentiating with respect to x :
$\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}-2$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:
$f^{\prime}(c)=2 c-2$
For $f(5)$, put the value of $x=5$ in $f(x)$:
$f(5)=(5)^{2}-2(5)+4$
$=25-10+4$
$=19$
For $f(1)$, put the value of $x=1$ in $f(x)$
$f(1)=(1)^{2}-2(1)+4$
$=1-2+4$
$=3$
$f^{\prime}(c)=\frac{f(5)-f(1)}{4}$
$\Rightarrow 2 c-2=\frac{19-3}{4}$
$\Rightarrow 2 c=\frac{16}{4}+2$
$\Rightarrow 2 c=4+2$
$\Rightarrow 2 \mathrm{c}=6$
$\Rightarrow c=\frac{6}{2}=3 \in(1,5)$
Hence, Lagrange's mean value theorem is verified.
(vii) $f(x)=2 x-x^{2}$ on $[0,1]$

Solution:

Given $f(x)=2 x-x^{2}$ on $[0,1]$
Every polynomial function is continuous everywhere on ($-\infty, \infty$) and differentiable for all arguments. Here, $f(x)$ is a polynomial function. So it is continuous in $[0,1]$ and differentiable in (0,1). So both the necessary conditions of Lagrange's mean value theorem is satisfied.
Therefore, there exist a point $c \in(0,1)$ such that:
$f^{\prime}(\mathrm{c})=\frac{f(1)-f(0)}{1-0}$
$\Rightarrow f^{\prime}(\mathrm{c})=\mathrm{f}(1)-\mathrm{f}(0)$
$f(x)=2 x-x^{2}$
Differentiating with respect to x :
$f^{\prime}(x)=2-2 x$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:
$f^{\prime}(c)=2-2 c$
For $f(1)$, put the value of $x=1$ in $f(x)$:
$f(1)=2(1)-(1)^{2}$
$=2-1$
$=1$
For $f(0)$, put the value of $x=0$ in $f(x)$:
$f(0)=2(0)-(0)^{2}$
$=0-0$
$=0$
$f^{\prime}(c)=f(1)-f(0)$
$\Rightarrow 2-2 \mathrm{c}=1-0$
$\Rightarrow-2 c=1-2$
$\Rightarrow-2 c=-1$
$\Rightarrow c=\frac{-1}{-2}=\frac{1}{2} \in(0,1)$
Hence, Lagrange's mean value theorem is verified.
(viii) $f(x)=(x-1)(x-2)(x-3)$

Solution:

Given $f(x)=(x-1)(x-2)(x-3)$ on $[0,4]$
$=\left(x^{2}-x-2 x+2\right)(x-3)$
$=\left(x^{2}-3 x+2\right)(x-3)$
$=x^{3}-3 x^{2}+2 x-3 x^{2}+9 x-6$
$=x^{3}-6 x^{2}+11 x-6$ on $[0,4]$
Every polynomial function is continuous everywhere on ($-\infty, \infty$) and differentiable for all arguments. Here, $f(x)$ is a polynomial function. So it is continuous in [0,4] and differentiable in $(0,4)$. So both the necessary conditions of Lagrange's mean value theorem is satisfied.
Therefore, there exist a point $c \in(0,4)$ such that:

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(4)-f(0)}{4-0} \\
& \Rightarrow f^{\prime}(c)=\frac{f(4)-f(0)}{4} \\
& f(x)=x^{3}-6 x^{2}+11 x-6
\end{aligned}
$$

Differentiating with respect to x :
$f^{\prime}(x)=3 x^{2}-6(2 x)+11$
$=3 x^{2}-12 x+11$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:
$f^{\prime}(c)=3 c^{2}-12 c+11$
For $f(4)$, put the value of $x=4$ in $f(x)$:
$f(4)=(4)^{3}-6(4)^{2}+11(4)-6$
$=64-96+44-6$
$=6$
For $f(0)$, put the value of $x=0$ in $f(x)$:
$f(0)=(0)^{3}-6(0)^{2}+11(0)-6$
$=0-0+0-6$
$=-6$
$f^{\prime}(c)=\frac{f(4)-f(0)}{4}$
$3 c^{2}-12 c+11=[6-(-6)] / 4$
$3 c^{2}-12 c+11=12 / 4$
$3 c^{2}-12 c+11=3$
$3 c^{2}-12 c+8=0$

We know that for quadratic equation, $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\Rightarrow c=\frac{-(-12) \pm \sqrt{(-12)^{2}-4 \times 3 \times 8}}{2 \times 3}$
$\Rightarrow c=\frac{12 \pm \sqrt{144-96}}{6}$
$\Rightarrow \mathrm{c}=\frac{12 \pm \sqrt{48}}{6}$
$\Rightarrow \mathrm{c}=\frac{12 \pm 4 \sqrt{3}}{6}$
$\Rightarrow c=\frac{12}{6} \pm \frac{4 \sqrt{3}}{6}$
$\Rightarrow c=2 \pm \frac{2 \sqrt{3}}{3}$
$\Rightarrow \mathrm{c}=2+\frac{2 \sqrt{3}}{3}, 2-\frac{2 \sqrt{3}}{3} \in \mathrm{c}$
Hence, Lagrange's mean value theorem is verified.
(ix). $f(x)=\sqrt{25-x^{2}}$ on $[-3,4]$

Solution:

Given
$f(x)=\sqrt{25-x^{2}}$ on $[-3,4]$
Here, $\sqrt{25-x^{2}}>0$
$\Rightarrow 25-x^{2}>0$
$\Rightarrow x^{2}<25$
$\Rightarrow-5<x<5$
$\Rightarrow \sqrt{25-x^{2}}$ has unique values for all $x \in(-5,5)$
$\therefore \mathrm{f}(\mathrm{x})$ is continuous in $[-3,4]$
$f(x)=\left(25-x^{2}\right)^{\frac{1}{2}}$
Differentiating with respect to x :
$f^{\prime}(x)=\frac{1}{2}\left(25-x^{2}\right)^{\left(\frac{1}{2}-1\right)} \frac{d\left(25-x^{2}\right)}{d x}$
$\Rightarrow f^{\prime}(x)=\frac{1}{2}\left(25-x^{2}\right)^{-\frac{1}{2}}(-2 x)$
$\Rightarrow f^{\prime}(x)=\frac{-2 x}{2\left(25-x^{2}\right)^{\frac{1}{2}}}$
$\Rightarrow f^{\prime}(x)=\frac{-2 x}{2\left(25-x^{2}\right)^{\frac{1}{2}}}$
$\Rightarrow f^{\prime}(x)=\frac{-x}{\sqrt{25-x^{2}}}$
Here also,
$\sqrt{25-x^{2}}>0$
$\Rightarrow-5<x<5$
$\therefore \mathrm{f}(\mathrm{x})$ is differentiable in $(-3,4)$
So both the necessary conditions of Lagrange's mean value theorem is satisfied. Therefore, there exist a point $\mathrm{c} \in(-3,4)$ such that:
$f^{\prime}(c)=\frac{f(4)-f(-3)}{4-(-3)}$
$\Rightarrow f^{\prime}(c)=\frac{f(4)-f(-3)}{4+3}$
$\Rightarrow f^{\prime}(c)=\frac{f(4)-f(-3)}{7}$
$f(x)=\left(25-x^{2}\right)^{\frac{1}{2}}$
On differentiating with respect to x :
$f^{\prime}(x)=\frac{-x}{\sqrt{25-x^{2}}}$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:
$f^{\prime}(c)=\frac{-c}{\sqrt{25-c^{2}}}$
For $f(4)$, put the value of $x=4$ in $f(x)$:
$f(4)=\left(25-4^{2}\right)^{\frac{1}{2}}$
$\Rightarrow f(4)=(25-16)^{\frac{1}{2}}$
$\Rightarrow f(4)=(9)^{\frac{1}{2}}$
$\Rightarrow f(4)=3$
For $f(-3)$, put the value of $x=-3$ in $f(x)$:
$f(-3)=\left(25-(-3)^{2}\right)^{\frac{1}{2}}$
$\Rightarrow f(-3)=(25-9)^{\frac{1}{2}}$
$\Rightarrow f(-3)=(16)^{\frac{1}{2}}$
$\Rightarrow f(-3)=4$
$f^{\prime}(c)=\frac{f(4)-f(-3)}{7}$

$$
\begin{aligned}
& \Rightarrow \frac{-c}{\sqrt{25-c^{2}}}=\frac{3-4}{7} \\
& \Rightarrow \frac{-c}{\sqrt{25-c^{2}}}=\frac{-1}{7} \\
& \Rightarrow-7 c=-\sqrt{25-c^{2}}
\end{aligned}
$$

Squaring on both sides:
$\Rightarrow(-7 c)^{2}=\left(-\sqrt{25-c^{2}}\right)^{2}$
$\Rightarrow 49 \mathrm{c}^{2}=25-\mathrm{c}^{2}$
$\Rightarrow 50 c^{2}=25$
$\Rightarrow c^{2}=\frac{25}{50}$
$\Rightarrow c^{2}=\frac{1}{2}$
$\Rightarrow c= \pm \frac{1}{\sqrt{2}} \in(-3,4)$
Hence, Lagrange's mean value theorem is verified.
$(x) f(x)=\tan ^{-1} x$ on $[0,1]$

Solution:

Given $f(x)=\tan ^{-1} x$ on $[0,1]$
$\operatorname{Tan}^{-1} \mathrm{x}$ has unique value for all x between 0 and 1 .
$\therefore f(x)$ is continuous in $[0,1]$
$f(x)=\tan ^{-1} x$
Differentiating with respect to x :
$f^{\prime}(x)=\frac{1}{1+x^{2}}$
x^{2} always has value greater than 0 .
$\Rightarrow 1+x^{2}>0$
$\therefore \mathrm{f}(\mathrm{x})$ is differentiable in $(0,1)$

So both the necessary conditions of Lagrange's mean value theorem is satisfied.
Therefore, there exist a point $\mathrm{c} \in(0,1)$ such that:

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(1)-f(0)}{1-0} \\
& \Rightarrow f^{\prime}(c)=f(1)-f(0)
\end{aligned}
$$

$$
f(x)=\tan ^{-1} x
$$

Differentiating with respect to x :

$$
f^{\prime}(x)=\frac{1}{1+x^{2}}
$$

For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:

$$
f^{\prime}(c)=\frac{1}{1+c^{2}}
$$

For $f(1)$, put the value of $x=1$ in $f(x)$:

$$
\begin{aligned}
& f(1)=\tan ^{-1} 1 \\
& \Rightarrow f(1)=\frac{\pi}{4}
\end{aligned}
$$

For $f(0)$, put the value of $x=0$ in $f(x)$:

$$
\begin{aligned}
& f(0)=\tan ^{-1} 0 \\
& \Rightarrow f(0)=0
\end{aligned}
$$

$$
f^{\prime}(c)=f(1)-f(0)
$$

$$
\Rightarrow \frac{1}{1+c^{2}}=\frac{\pi}{4}-0
$$

$$
\Rightarrow \frac{1}{1+c^{2}}=\frac{\pi}{4}
$$

$$
\Rightarrow 4=n\left(1+c^{2}\right)
$$

$$
\Rightarrow 4=n+\pi c^{2}
$$

$$
\Rightarrow-\pi c^{2}=\pi-4
$$

$\Rightarrow c^{2}=\frac{\pi-4}{-п}$
$\Rightarrow c^{2}=\frac{4-\Pi}{\pi}$
$\Rightarrow c=\sqrt{\frac{4}{\pi}-1} \approx 0.52 \in(0,1)$
Hence, Lagrange's mean value theorem is verified.
(xi) $f(x)=x+\frac{1}{x}$ on $[1,3]$

Solution:

Given
$f(x)=x+\frac{1}{x}$ on $[1,3]$
$F(x)$ has unique values for all $x \in(1,3)$
$\therefore \mathrm{f}(\mathrm{x})$ is continuous in $[1,3]$
$f(x)=x+\frac{1}{x}$ on $[1,3]$
Differentiating with respect to x
$f^{\prime}(x)=1+(-1)(x)^{-2}$
$\Rightarrow f^{\prime}(x)=1-\frac{1}{x^{2}}$
$\Rightarrow f^{\prime}(x)=\frac{x^{2}-1}{x^{2}}$
Here, $x^{2} \neq 0$
$\Rightarrow f^{\prime}(x)$ exists for all values except 0
$\therefore \mathrm{f}(\mathrm{x})$ is differentiable in $(1,3)$

So both the necessary conditions of Lagrange's mean value theorem is satisfied. Therefore, there exist a point $c \in(1,3)$ such that:
$f^{\prime}(c)=\frac{f(3)-f(1)}{3-1}$
$\Rightarrow f^{\prime}(c)=\frac{f(3)-f(1)}{2}$
$f(x)=x+\frac{1}{x}$
On differentiating with respect to x :
$f^{\prime}(x)=\frac{x^{2}-1}{x^{2}}$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:
$f^{\prime}(c)=\frac{c^{2}-1}{c^{2}}$
For $f(3)$, put the value of $x=3$ in $f(x)$:
$f(3)=3+\frac{1}{3}$
$\Rightarrow f(3)=\frac{9+1}{3}$
$\Rightarrow f(3)=\frac{10}{3}$
For $f(1)$, put the value of $x=1$ in $f(x)$:
$f(1)=1+\frac{1}{1}$
$\Rightarrow f(1)=2$
$\Rightarrow f^{\prime}(\mathrm{c})=\frac{\mathrm{f}(3)-\mathrm{f}(1)}{2}$
$\Rightarrow \frac{c^{2}-1}{c^{2}}=\frac{\frac{10}{3}-2}{2}$

$$
\begin{aligned}
& \Rightarrow 2\left(c^{2}-1\right)=c^{2}\left(\frac{10}{3}-2\right) \\
& \Rightarrow 2\left(c^{2}-1\right)=c^{2}\left(\frac{10-6}{3}\right) \\
& \Rightarrow 2\left(c^{2}-1\right)=c^{2}\left(\frac{4}{3}\right) \\
& \Rightarrow 6\left(c^{2}-1\right)=4 c^{2} \\
& \Rightarrow 6 c^{2}-6=4 c^{2} \\
& \Rightarrow 6 c^{2}-4 c^{2}=6 \\
& \Rightarrow 2 c^{2}=6 \\
& \Rightarrow c^{2}=\frac{6}{2} \\
& \Rightarrow c^{2}=3 \\
& \Rightarrow c= \pm \sqrt{3} \in(-3,4)
\end{aligned}
$$

Hence, Lagrange's mean value theorem is verified.
$(x i i) f(x)=x(x+4)^{2}$ on $[0,4]$

Solution:

Given $f(x)=x(x+4)^{2}$ on $[0,4]$
$=x\left[(x)^{2}+2(4)(x)+(4)^{2}\right]$
$=x\left(x^{2}+8 x+16\right)$
$=x^{3}+8 x^{2}+16 x$ on $[0,4]$
Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, $f(x)$ is a polynomial function. So it is continuous in [0, 4] and differentiable in $(0,4)$. So both the necessary conditions of Lagrange's mean value theorem is satisfied. Therefore, there exist a point $c \in(0,4)$ such that:

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(4)-f(0)}{4-0} \\
& \Rightarrow f^{\prime}(c)=\frac{f(4)-f(0)}{4}
\end{aligned}
$$

$f(x)=x^{3}+8 x^{2}+16 x$
Differentiating with respect to x :
$f^{\prime}(x)=3 x^{2}+8(2 x)+16$
$=3 x^{2}+16 x+16$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:
$f^{\prime}(c)=3 c^{2}+16 c+16$
For $f(4)$, put the value of $x=4$ in $f(x)$:
$f(4)=(4)^{3}+8(4)^{2}+16(4)$
$=64+128+64$
$=256$
For $f(0)$, put the value of $x=0$ in $f(x)$:
$f(0)=(0)^{3}+8(0)^{2}+16(0)$
$=0+0+0$
$=0$
$f^{\prime}(c)=\frac{f(4)-f(0)}{4}$
$\Rightarrow 3 c^{2}+16 c+16=\frac{256-0}{4}$
$\Rightarrow 3 c^{2}+16 c+16=\frac{256}{4}$
$\Rightarrow 3 c^{2}+16 c+16=64$
$\Rightarrow 3 c^{2}+16 c+16-64=0$
$\Rightarrow 3 \mathrm{c}^{2}+16 \mathrm{c}-48=0$
For quadratic equation, $a x^{2}+b x+c=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\Rightarrow c=\frac{-(16) \pm \sqrt{(16)^{2}-4 \times 3 \times(-48)}}{2 \times 3}$
$\Rightarrow c=\frac{-16 \pm \sqrt{256+576}}{6}$

$$
\begin{aligned}
& \Rightarrow c=\frac{-16 \pm \sqrt{832}}{6} \\
& \Rightarrow c=\frac{-16 \pm 8 \sqrt{13}}{6} \\
& \Rightarrow c=\frac{-16}{6} \pm \frac{8 \sqrt{13}}{6} \\
& \Rightarrow c=\frac{-8}{3} \pm \frac{4 \sqrt{13}}{3} \\
& \Rightarrow c=\frac{-8}{3}+\frac{4 \sqrt{13}}{3}, \frac{-8}{3}-\frac{4 \sqrt{13}}{3} \in c
\end{aligned}
$$

Hence, Lagrange's mean value theorem is verified.
$(x i i) f(x)=\sqrt{x^{2}-4}$ on $[2,4]$

Solution:

Given
$f(x)=\sqrt{x^{2}-4}$ on $[2,4]$
Here,
$\sqrt{x^{2}-4}>0$
$\Rightarrow x^{2}-4>0$
$\Rightarrow x^{2}>4$
$\Rightarrow f(x)$ exists for all values expect $(-2,2)$
$\therefore \mathrm{f}(\mathrm{x})$ is continuous in $[2,4]$
$f(x)=\sqrt{x^{2}-4}$
Differentiating with respect to x :
$f^{\prime}(x)=\frac{1}{2}\left(x^{2}-4\right)^{\left(\frac{1}{2}-1\right)} \frac{d\left(x^{2}-4\right)}{d x}$
$\Rightarrow f^{\prime}(x)=\frac{1}{2}\left(x^{2}-4\right)^{-\frac{1}{2}}$
$\Rightarrow f^{\prime}(x)=\frac{2 x}{2\left(x^{2}-4\right)^{\frac{1}{2}}}$
$\Rightarrow f^{\prime}(x)=\frac{x}{\sqrt{x^{2}-4}}$
Here also, $\sqrt{x^{2}-4}>0$
$\Rightarrow f^{\prime}(x)$ exists for all values of x except $(2,-2)$
$\therefore \mathrm{f}(\mathrm{x})$ is differentiable in $(2,4)$
So both the necessary conditions of Lagrange's mean value theorem is satisfied.

Therefore, there exist a point $c \in(2,4)$ such that:
$f^{\prime}(c)=\frac{f(4)-f(2)}{4-2}$
$\Rightarrow f^{\prime}(c)=\frac{f(4)-f(2)}{2}$
$f(x)=\sqrt{x^{2}-4}$
On differentiating with respect to x :
$f^{\prime}(x)=\frac{x}{\sqrt{x^{2}-4}}$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:
$f^{\prime}(c)=\frac{c}{\sqrt{c^{2}-4}}$
For $f(4)$, put the value of $x=4$ in $f(x)$:
$f(4)=\sqrt{4^{2}-4}$
$\Rightarrow f(4)=(16-4)^{\frac{1}{2}}$
$\Rightarrow f(4)=\sqrt{12}$
$\Rightarrow f(4)=2 \sqrt{3}$
For $f(2)$, put the value of $x=2$ in $f(x)$:
$f(2)=\sqrt{2^{2}-4}$
$\Rightarrow f(2)=(4-4)^{\frac{1}{2}}$
$\Rightarrow f(2)=0$
$\Rightarrow f^{\prime}(c)=\frac{f(4)-f(2)}{2}$
$\Rightarrow \frac{c}{\sqrt{c^{2}-4}}=\frac{2 \sqrt{3}-0}{2}$
$\Rightarrow \frac{c}{\sqrt{c^{2}-4}}=\sqrt{3}$
$\Rightarrow c=(\sqrt{3}) \sqrt{c^{2}-4}$
Squaring both sides:
$\Rightarrow(c)^{2}=\left((\sqrt{3}) \sqrt{c^{2}-4}\right)^{2}$
$\Rightarrow c^{2}=3\left(c^{2}-4\right)$
$\Rightarrow c^{2}=3 c^{2}-12$
$\Rightarrow-2 \mathrm{c}^{2}=-12$
$\Rightarrow c^{2}=\frac{-12}{-2}$
$\Rightarrow c^{2}=6$
$\Rightarrow \mathrm{c}= \pm \sqrt{6}$
$\Rightarrow c=\sqrt{6} \in(2,4)$
Hence, Lagrange's mean value theorem is verified.
(xiv) $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}-1$ on $[0,4]$

Solution:

Given $f(x)=x^{2}+x-1$ on $[0,4]$
Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, $f(x)$ is a polynomial function. So it is continuous in $[0,4]$ and differentiable in $(0,4)$. So both the necessary conditions of Lagrange's mean value theorem is satisfied. Therefore, there exist a point $c \in(0,4)$ such that:

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(4)-f(0)}{4-0} \\
& \Rightarrow f^{\prime}(c)=\frac{f(4)-f(0)}{4}
\end{aligned}
$$

$f(x)=x^{2}+x-1$
Differentiating with respect to x :
$f^{\prime}(x)=2 x+1$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:
$f^{\prime}(c)=2 c+1$
For $f(4)$, put the value of $x=4$ in $f(x)$:
$f(4)=(4)^{2}+4-1$
$=16+4-1$
$=19$
For $f(0)$, put the value of $x=0$ in $f(x)$:
$f(0)=(0)^{2}+0-1$
$=0+0-1$
$=-1$

$$
f^{\prime}(c)=\frac{f(4)-f(0)}{4}
$$

$$
\Rightarrow 2 c+1=\frac{19-(-1)}{4}
$$

$$
\Rightarrow 2 c+1=\frac{20}{4}
$$

$\Rightarrow 2 c+1=5$
$\Rightarrow 2 \mathrm{c}=5-1$
$\Rightarrow 2 \mathrm{c}=4$
$\Rightarrow c=\frac{4}{2}=2 \in(0,4)$
Hence, Lagrange's mean value theorem is verified.
$(x v) f(x)=\sin x-\sin 2 x-x$ on $[0, \pi]$

Solution:

Given $f(x)=\sin x-\sin 2 x-x$ on $[0, \pi]$
$\operatorname{Sin} x$ and $\cos x$ functions are continuous everywhere on ($-\infty, \infty$) and differentiable for all arguments. So both the necessary conditions of Lagrange's mean value theorem is satisfied. Therefore, there exist a point $c \in(0, \pi)$ such that:

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(n)-f(0)}{\pi-0} \\
& \Rightarrow f^{\prime}(c)=\frac{f(\pi)-f(0)}{\pi}
\end{aligned}
$$

$f(x)=\sin x-\sin 2 x-x$
Differentiating with respect to x :

$$
\begin{aligned}
& f(x)=\sin x-\sin 2 x-x \\
& \Rightarrow f^{\prime}(x)=\cos x-\cos 2 x \frac{d(2 x)}{d x}-1 \\
& \Rightarrow f^{\prime}(x)=\cos x-2 \cos 2 x-1
\end{aligned}
$$

For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:
$f^{\prime}(\mathrm{c})=\cos \mathrm{c}-2 \cos 2 \mathrm{c}-1$
For $f(\pi)$, put the value of $x=\pi$ in $f(x)$:

$$
\begin{aligned}
& f(\pi)=\sin \pi-\sin 2 \pi-\pi \\
& =0-0-\pi
\end{aligned}
$$

$=-\pi$
For $f(0)$, put the value of $x=0$ in $f(x)$:

$$
\begin{aligned}
& f(0)=\sin 0-\sin 2(0)-0 \\
& =\sin 0-\sin 0-0 \\
& =0-0-0 \\
& =0 \\
& f^{\prime}(c)=\frac{f(\square)-f(0)}{\Pi} \\
& \Rightarrow \cos c-2 \cos 2 c-1=\frac{-\pi-0}{\Pi} \\
& \Rightarrow \cos c-2 \cos 2 c-1=-1 \\
& \Rightarrow \cos c-2\left(2 \cos ^{2} c-1\right)=-1+1 \\
& \Rightarrow \cos c-4 \cos ^{2} c+2=0 \\
& \Rightarrow 4 \cos ^{2} c-\cos ^{n}-2=0
\end{aligned}
$$

For quadratic equation, $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\Rightarrow \cos c=\frac{-(-1) \pm \sqrt{(-1)^{2}-4 \times 4 \times(-2)}}{2 \times 4}$
$\Rightarrow \cos c=\frac{1 \pm \sqrt{1+32}}{8}$
$\Rightarrow \cos c=\frac{1 \pm \sqrt{33}}{8}$
$\Rightarrow c=\cos ^{-1}\left(\frac{1 \pm \sqrt{33}}{8}\right) \in(0, п)$
Hence, Lagrange's mean value theorem is verified.
(xvi) $f(x)=x^{3}-5 x^{2}-3 x$ on $[1,3]$

Solution:

Given $f(x)=x^{3}-5 x^{2}-3 x$ on $[1,3]$
Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, $f(x)$ is a polynomial function. So it is continuous in $[1,3]$ and differentiable in $(1,3)$. So both the necessary conditions of Lagrange's mean value theorem is satisfied.
Therefore, there exist a point $\mathrm{c} \in(1,3)$ such that:

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(3)-f(1)}{3-1} \\
& \Rightarrow f^{\prime}(c)=\frac{f(3)-f(1)}{2}
\end{aligned}
$$

$f(x)=x^{3}-5 x^{2}-3 x$
Differentiating with respect to x :
$f^{\prime}(x)=3 x^{2}-5(2 x)-3$
$=3 x^{2}-10 x-3$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:
$f^{\prime}(c)=3 c^{2}-10 c-3$
For $f(3)$, put the value of $x=3$ in $f(x)$:
$f(3)=(3)^{3}-5(3)^{2}-3(3)$
$=27-45-9$
$=-27$
For $f(1)$, put the value of $x=1$ in $f(x)$:

$$
\begin{aligned}
& f(1)=(1)^{3}-5(1)^{2}-3(1) \\
& =1-5-3 \\
& =-7
\end{aligned}
$$

$$
f^{\prime}(c)=\frac{f(3)-f(1)}{2}
$$

$$
\Rightarrow 3 c^{2}-10 c-3=\frac{(-27)-(-7)}{2}
$$

$$
\Rightarrow 3 c^{2}-10 c-3=\frac{-27+7}{2}
$$

$$
\Rightarrow 3 c^{2}-10 c-3=\frac{-20}{2}
$$

$\Rightarrow 3 c^{2}-10 c-3=-10$
$\Rightarrow 3 c^{2}-10 c-3+10=0$
$\Rightarrow 3 c^{2}-10 c+7=0$
$\Rightarrow 3 c^{2}-7 c-3 c+7=0$
$\Rightarrow c(3 c-7)-1(3 c-7)=0$
$\Rightarrow(3 c-7)(c-1)=0$
$\Rightarrow c=\frac{7}{3}, 1$
$\Rightarrow c=\frac{7}{3} \in(1,3)$
Hence, Lagrange's mean value theorem is verified.
2. Discuss the applicability of Lagrange's mean value theorem for the function $f(x)=$ $|x|$ on [-1, 1].

Solution:

Given $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ on $[-1,1]$
So $f(x)$ can be defined as $=\left\{\begin{array}{cc}-x, & x<0 \\ x, & x \geq 0\end{array}\right.$
For differentiability at $\mathrm{x}=0$,

$$
\text { LHD }=\lim _{x \rightarrow 0^{-}} \frac{f(0-h)-f(0)}{-h}
$$

$\{$ Since $f(x)=-x, x<0\}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{-}} \frac{-(0-h)-0}{-h} \\
& =\lim _{x \rightarrow 0^{-}} \frac{h-0}{-h}
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0^{-}} \frac{h}{-h}
$$

$$
=-1
$$

$R H D=\lim _{x \rightarrow 0^{+}} \frac{f(0-h)-f(0)}{-h}$
$\{$ Since $f(x)=x, x>0\}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{-}} \frac{(0-h)-0}{-h} \\
& =\lim _{x \rightarrow 0^{-}} \frac{-h-0}{-h} \\
& =\lim _{x \rightarrow 0^{-}} \frac{-h}{-h} \\
& =1
\end{aligned}
$$

LHD \neq RHD
$\Rightarrow \mathrm{f}(\mathrm{x})$ is not differential at $\mathrm{x}=0$
\therefore Lagrange's mean value theorem is not applicable for the function $f(x)=|x|$ on $[-1,1]$.
3. Show that the Lagrange's mean value theorem is not applicable to the function $f(x)$ $=1 / x$ on $[-1,1]$.

Solution:

Given $f(x)=\frac{1}{x}$ on $[-1,1]$
Here, $x \neq 0$
$\Rightarrow f(x)$ exists for all values of x except 0
$\Rightarrow f(x)$ is discontinuous at $x=0$
$\therefore \mathrm{f}(\mathrm{x})$ is not continuous in $[-1,1]$
Hence the Lagrange's mean value theorem is not applicable to the function $f(x)=1 / x$ on [-1, 1]
4. Verify the hypothesis and conclusion of Lagrange's mean value theorem for the function
$\mathrm{f}(\mathrm{x})=\frac{1}{4 \mathrm{x}-1}, 1 \leq \mathrm{x} \leq 4$.

Solution:

Given
$f(x)=\frac{1}{4 x-1}$ on $[1,4]$
Where $4 \mathrm{x}-1>0$
$f^{\prime}(x)$ has unique values for all x except $1 / 4$
$\therefore \mathrm{f}(\mathrm{x})$ is continuous in $[1,4]$
$f(x)=\frac{1}{4 x-1}$
Differentiating with respect to x :
$f^{\prime}(x)=(-1)(4 x-1)^{-2}(4)$
$\Rightarrow f^{\prime}(x)=-\frac{4}{(4 x-1)^{2}}$
Here, $4 \mathrm{x}-1>0$
$f^{\prime}(x)$ has unique values for all x except $1 / 4$
$\therefore \mathrm{f}(\mathrm{x})$ is differentiable in $(1,4)$
So both the necessary conditions of Lagrange's mean value theorem is satisfied. Therefore, there exist a point $c \in(1,4)$ such that:
$f^{\prime}(c)=\frac{f(4)-f(1)}{4-1}$
$\Rightarrow f^{\prime}(c)=\frac{f(4)-f(1)}{3}$
$f(x)=\frac{1}{4 x-1}$
On differentiating with respect to x :
$f^{\prime}(x)=-\frac{4}{(4 x-1)^{2}}$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:

$$
f^{\prime}(c)=-\frac{4}{(4 c-1)^{2}}
$$

For $f(4)$, put the value of $x=4$ in $f(x)$:
$f(4)=\frac{1}{4(4)-1}$
$\Rightarrow f(4)=\frac{1}{16-1}$
$\Rightarrow f(4)=\frac{1}{15}$
For $f(1)$, put the value of $x=1$ in $f(x)$:
$f(1)=\frac{1}{4(1)-1}$
$\Rightarrow f(1)=\frac{1}{4-1}$
$\Rightarrow f(1)=\frac{1}{3}$
$\Rightarrow f^{\prime}(c)=\frac{f(4)-f(1)}{3}$
$\Rightarrow-\frac{4}{(4 c-1)^{2}}=\frac{\frac{1}{15}-\frac{1}{3}}{3}$
$\Rightarrow-3(4)=(4 c-1)^{2}\left(\frac{1}{15}-\frac{1}{3}\right)$
$\Rightarrow-12=(4 c-1)^{2}\left(\frac{3-15}{45}\right)$
$\Rightarrow-12=(4 c-1)^{2}\left(\frac{-12}{45}\right)$
$\Rightarrow-12 \times \frac{45}{-12}=(4 c-1)^{2}$

$$
\begin{aligned}
& \Rightarrow-12 \times \frac{45}{-12}=(4 c-1)^{2} \\
& \Rightarrow(4 c-1)^{2}=45 \\
& \Rightarrow(4 c-1)= \pm \sqrt{45} \\
& \Rightarrow(4 c-1)= \pm 3 \sqrt{5} \\
& \Rightarrow c=\frac{ \pm 3 \sqrt{5}+1}{4} \\
& \Rightarrow c=\frac{3 \sqrt{5}+1}{4} \approx 1.92 \in(1,4)
\end{aligned}
$$

Hence, Lagrange's mean value theorem is verified.
5. Find a point on the parabola $y=(x-4)^{2}$, where the tangent is parallel to the chord joining (4, 0) and (5, 1).

Solution:

Given $f(x)=(x-4)^{2}$ on $[4,5]$
This interval $[a, b]$ is obtained by x - coordinates of the points of the chord.
Every polynomial function is continuous everywhere on ($-\infty, \infty$) and differentiable for all arguments. Here, $f(x)$ is a polynomial function. So it is continuous in [4,5] and differentiable in $(4,5)$. So both the necessary conditions of Lagrange's mean value theorem is satisfied.
Therefore, there exist a point $c \in(4,5)$ such that:
$f^{\prime}(c)=\frac{f(5)-f(4)}{5-4}$
$\Rightarrow f^{\prime}(c)=\frac{f(5)-f(4)}{1}$
$f(x)=(x-4)^{2}$
Differentiating with respect to x :
$f^{\prime}(x)=2(x-4) \frac{d(x-4)}{d x}$
$\Rightarrow f^{\prime}(x)=2(x-4)(1)$
$\Rightarrow f^{\prime}(x)=2(x-4)$
For $f^{\prime}(c)$, put the value of $x=c$ in $f^{\prime}(x)$:
$f^{\prime}(c)=2(c-4)$
For $f(5)$, put the value of $x=5$ in $f(x)$:
$f(5)=(5-4)^{2}$
$=(1)^{2}$
$=1$
For $f(4)$, put the value of $x=4$ in $f(x)$:
$f(4)=(4-4)^{2}$
$=(0)^{2}$
$=0$
$f^{\prime}(c)=f(5)-f(4)$
$\Rightarrow 2(c-4)=1-0$
$\Rightarrow 2 c-8=1$
$\Rightarrow 2 c=1+8$
$\Rightarrow c=\frac{9}{2}=4.5 \in(4,5)$
We know that, the value of c obtained in Lagrange's Mean value Theorem is nothing but the value of x - coordinate of the point of the contact of the tangent to the curve which is parallel to the chord joining the points $(4,0)$ and $(5,1)$.
Now, put this value of x in $f(x)$ to obtain y :
$y=(x-4)^{2}$

$$
\begin{aligned}
& \Rightarrow y=\left(\frac{9}{2}-4\right)^{2} \\
& \Rightarrow y=\left(\frac{9-8}{2}\right)^{2}
\end{aligned}
$$

$$
\Rightarrow y=\left(\frac{1}{2}\right)^{2}
$$

$$
\Rightarrow y=\frac{1}{4}
$$

Hence, the required point is $\left(\frac{9}{2}, \frac{1}{4}\right)$

