EXERCISE 17.1

1. Prove that the function $f(x)=\log _{e} x$ is increasing on $(0, \infty)$.

Solution:

Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in(0, \infty)$
We have, $x_{1}<x_{2}$
$\Rightarrow \log _{\mathrm{e}} \mathrm{x}_{1}<\log _{\mathrm{e}} \mathrm{x}_{2}$
$\Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$
So, $f(x)$ is increasing in ($0, \infty$)
2. Prove that the function $f(x)=\log _{a} x$ is increasing on $(0, \infty)$ if $a>1$ and decreasing on $(0, \infty)$, if $0<a<1$.

Solution:

Case I

When $\mathrm{a}>1$
Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in(0, \infty)$
We have, $\mathrm{x}_{1}<\mathrm{x}_{2}$
$\Rightarrow \log _{\mathrm{e}} \mathrm{x}_{1}<\log _{\mathrm{e}} \mathrm{x}_{2}$
$\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)<\mathrm{f}\left(\mathrm{x}_{2}\right)$
So, $f(x)$ is increasing in $(0, \infty)$
Case II
When $0<a<1$
$f(x)=\log _{a} x=\frac{\log x}{\log a}$
When $\mathrm{a}<1 \Rightarrow \log \mathrm{a}<0$
Let $x_{1}<x_{2}$
$\Rightarrow \log x_{1}<\log x_{2}$

$$
\begin{aligned}
& \Rightarrow \frac{\log \mathrm{x}_{1}}{\log \mathrm{a}}>\frac{\log \mathrm{x}_{2}}{\log \mathrm{a}}[\because \log \mathrm{a}<0] \\
& \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)>\mathrm{f}\left(\mathrm{x}_{2}\right)
\end{aligned}
$$

So, $f(x)$ is decreasing in $(0, \infty)$
3. Prove that $f(x)=a x+b$, where a, b are constants and $a>0$ is an increasing function on R.

Solution:

Given,
$f(x)=a x+b, a>0$
Let $x_{1}, x_{2} \in R$ and $x_{1}>x_{2}$
$\Rightarrow a x_{1}>a x_{2}$ for some $a>0$
$\Rightarrow a x_{1}+b>a x_{2}+b$ for some b
$\Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$
Hence, $x_{1}>x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$
So, $f(x)$ is increasing function of R
4. Prove that $f(x)=a x+b$, where a, b are constants and $a<0$ is a decreasing function on R.

Solution:

Given,
$\mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{b}, \mathrm{a}<0$
Let $x_{1}, x_{2} \in R$ and $x_{1}>x_{2}$
$\Rightarrow \mathrm{ax}_{1}<\mathrm{ax}_{2}$ for some $\mathrm{a}>0$
$\Rightarrow a x_{1}+b<a x_{2}+b$ for some b
$\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)<\mathrm{f}\left(\mathrm{x}_{2}\right)$
Hence, $x_{1}>x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$
So, $f(x)$ is decreasing function of R

1. Find the intervals in which the following functions are increasing or decreasing.
(i) $\mathrm{f}(\mathrm{x})=10-6 \mathrm{x}-2 \mathrm{x}^{2}$

Solution:

$$
\text { Given } f(x)=10-6 x-2 x^{2}
$$

By differentiating above equation we get,

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(10-6 x-2 x^{2}\right) \\
& \Rightarrow f^{\prime}(x)=-6-4 x
\end{aligned}
$$

For $f(x)$ to be increasing, we must have

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)>0 \\
& \Rightarrow-6-4 x>0 \\
& \Rightarrow-4 x>6 \\
& \Rightarrow^{x}<-\frac{6}{4} \\
& \Rightarrow x<-\frac{3}{2} \\
& \Rightarrow^{x \in\left(-\infty,-\frac{3}{2}\right)}
\end{aligned}
$$

Thus $f(x)$ is increasing on the interval $\left(-\infty,-\frac{3}{2}\right)$
Again, for $\mathrm{f}(\mathrm{x})$ to be increasing, we must have
$f^{\prime}(x)<0$
$\Rightarrow-6-4 x<0$
$\Rightarrow-4 x<6$
$\Rightarrow x>-\frac{6}{4}$
$\Rightarrow x>-\frac{3}{2}$
$\Rightarrow x \in\left(-\frac{3}{2}, \infty\right)$
Thus $f(x)$ is decreasing on interval $x \in\left(-\frac{3}{2}, \infty\right)$
(ii) $f(x)=x^{2}+2 x-5$

Solution:

Given $f(x)=x^{2}+2 x-5$
Now by differentiating the given equation we get,
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(x^{2}+2 x-5\right)$
$\Rightarrow f^{\prime}(x)=2 x+2$
For $f(x)$ to be increasing, we must have
$\Rightarrow f^{\prime}(\mathrm{x})>0$
$\Rightarrow 2 x+2>0$
$\Rightarrow 2 x<-2$
$\Rightarrow \mathrm{x}<-\frac{2}{2}$
$\Rightarrow x<-1$
$\Rightarrow x \in(-\infty,-1)$
Thus $f(x)$ is increasing on interval $(-\infty,-1)$
Again, for $f(x)$ to be increasing, we must have
$\mathrm{f}^{\prime}(\mathrm{x})<0$
$\Rightarrow 2 x+2<0$
$\Rightarrow 2 x>-2$
$\Rightarrow x>-\frac{2}{2}$
$\Rightarrow x>-1$
$\Rightarrow x \in(-1, \infty)$
Thus $f(x)$ is decreasing on interval $x \in(-1, \infty)$
(iii) $f(x)=6-9 x-x^{2}$

Solution:

Given $f(x)=6-9 x-x^{2}$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(6-9 x-x^{2}\right)$
$\Rightarrow f^{\prime}(x)=-9-2 x$
For $f(x)$ to be increasing, we must have
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
$\Rightarrow-9-2 x>0$
$\Rightarrow-2 x>9$
$\Rightarrow \mathrm{x}<-\frac{9}{2}$
$\Rightarrow \mathrm{x}<-\frac{9}{2}$
$\Rightarrow x \in\left(-\infty,-\frac{9}{2}\right)$
Thus $f(x)$ is increasing on interval $\left(-\infty,-\frac{9}{2}\right)$
Again, for $f(x)$ to be decreasing, we must have
$\mathrm{f}^{\prime}(\mathrm{x})<0$
$\Rightarrow-9-2 x<0$
$\Rightarrow-2 x<9$
$\Rightarrow x>-\frac{9}{2}$
$\Rightarrow x \in\left(-\frac{9}{2}, \infty\right)$
Thus $f(x)$ is decreasing on interval $x \in\left(-\frac{9}{2}, \infty\right)$
(iv) $f(x)=2 x^{3}-12 x^{2}+18 x+15$

Solution:

$$
\begin{aligned}
& \text { Given } \mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}-12 \mathrm{x}^{2}+18 \mathrm{x}+15 \\
& \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(2 \mathrm{x}^{3}-12 \mathrm{x}^{2}+18 \mathrm{x}+15\right) \\
& \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=6 \mathrm{x}^{2}-24 \mathrm{x}+18
\end{aligned}
$$

For $f(x)$ we have to find critical point, we must have

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=0 \\
& \Rightarrow 6 x^{2}-24 x+18=0 \\
& \Rightarrow 6\left(x^{2}-4 x+3\right)=0 \\
& \Rightarrow 6\left(x^{2}-3 x-x+3\right)=0 \\
& \Rightarrow 6(x-3)(x-1)=0 \\
& \Rightarrow(x-3)(x-1)=0 \\
& \Rightarrow x=3,1
\end{aligned}
$$

Clearly, $f^{\prime}(x)>0$ if $x<1$ and $x>3$ and $f^{\prime}(x)<0$ if $1<x<3$
Thus, $f(x)$ increases on $(-\infty, 1) \cup(3, \infty)$ and $f(x)$ is decreasing on interval $x \in(1$, 3)
(v) $f(x)=5+36 x+3 x^{2}-2 x^{3}$

Solution:

Given $f(x)=5+36 x+3 x^{2}-2 x^{3}$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(5+36 x+3 x^{2}-2 x^{3}\right)$
$\Rightarrow f^{\prime}(x)=36+6 x-6 x^{2}$
For $f(x)$ now we have to find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow 36+6 x-6 x^{2}=0$
$\Rightarrow 6\left(-x^{2}+x+6\right)=0$
$\Rightarrow 6\left(-x^{2}+3 x-2 x+6\right)=0$
$\Rightarrow-x^{2}+3 x-2 x+6=0$
$\Rightarrow x^{2}-3 x+2 x-6=0$
$\Rightarrow(x-3)(x+2)=0$
$\Rightarrow x=3,-2$
Clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $-2<\mathrm{x}<3$ and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\mathrm{x}<-2$ and $\mathrm{x}>3$
Thus, $f(x)$ increases on $x \in(-2,3)$ and $f(x)$ is decreasing on interval $(-\infty,-2) \cup(3, \infty)$
(vi) $f(x)=8+36 x+3 x^{2}-2 x^{3}$

Solution:

Given $f(x)=8+36 x+3 x^{2}-2 x^{3}$
Now differentiating with respect to x
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(8+36 x+3 x^{2}-2 x^{3}\right)$
$\Rightarrow f^{\prime}(x)=36+6 x-6 x^{2}$
For $f(x)$ we have to find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow 36+6 x-6 x^{2}=0$
$\Rightarrow 6\left(-x^{2}+x+6\right)=0$
$\Rightarrow 6\left(-x^{2}+3 x-2 x+6\right)=0$
$\Rightarrow-x^{2}+3 x-2 x+6=0$
$\Rightarrow x^{2}-3 x+2 x-6=0$
$\Rightarrow(x-3)(x+2)=0$
$\Rightarrow x=3,-2$
Clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $-2<\mathrm{x}<3$ and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\mathrm{x}<-2$ and $\mathrm{x}>3$
Thus, $f(x)$ increases on $x \in(-2,3)$ and $f(x)$ is decreasing on interval $(-\infty, 2) \cup(3, \infty)$
(vii) $f(x)=5 x^{3}-15 x^{2}-120 x+3$

Solution:

Given $\mathrm{f}(\mathrm{x})=5 \mathrm{x}^{3}-15 \mathrm{x}^{2}-120 \mathrm{x}+3$
Now by differentiating above equation with respect x , we get
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(5 x^{3}-15 x^{2}-120 x+3\right)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=15 \mathrm{x}^{2}-30 \mathrm{x}-120$
For $f(x)$ we have to find critical point, we must have
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow 15 x^{2}-30 x-120=0$
$\Rightarrow 15\left(x^{2}-2 x-8\right)=0$
$\Rightarrow 15\left(x^{2}-4 x+2 x-8\right)=0$
$\Rightarrow x^{2}-4 x+2 x-8=0$
$\Rightarrow(x-4)(x+2)=0$
$\Rightarrow x=4,-2$
Clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}<-2$ and $\mathrm{x}>4$ and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $-2<\mathrm{x}<4$
Thus, $f(x)$ increases on $(-\infty,-2) \cup(4, \infty)$ and $f(x)$ is decreasing on interval $x \in(-2,4)$
(viii) $f(x)=x^{3}-6 x^{2}-36 x+2$

Solution:

Given $f(x)=x^{3}-6 x^{2}-36 x+2$
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{3}-6 \mathrm{x}^{2}-36 \mathrm{x}+2\right)$
$\Rightarrow f^{\prime}(x)=3 x^{2}-12 x-36$
For $f(x)$ we have to find critical point, we must have
$\Rightarrow f^{\prime}(\mathrm{x})=0$
$\Rightarrow 3 x^{2}-12 x-36=0$
$\Rightarrow 3\left(x^{2}-4 x-12\right)=0$
$\Rightarrow 3\left(x^{2}-6 x+2 x-12\right)=0$
$\Rightarrow x^{2}-6 x+2 x-12=0$
$\Rightarrow(x-6)(x+2)=0$
$\Rightarrow x=6,-2$
Clearly, $f^{\prime}(x)>0$ if $x<-2$ and $x>6$ and $f^{\prime}(x)<0$ if $-2<x<6$
Thus, $f(x)$ increases on $(-\infty,-2) \cup(6, \infty)$ and $f(x)$ is decreasing on interval $x \in(-2,6)$
(ix) $f(x)=2 x^{3}-15 x^{2}+36 x+1$

Solution:

Given $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}-15 \mathrm{x}^{2}+36 \mathrm{x}+1$

Now by differentiating above equation with respect x, we get
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(2 \mathrm{x}^{3}-15 \mathrm{x}^{2}+36 \mathrm{x}+1\right)$
$\Rightarrow f^{\prime}(x)=6 x^{2}-30 x+36$
For $f(x)$ we have to find critical point, we must have
$\Rightarrow f^{\prime}(\mathrm{x})=0$
$\Rightarrow 6 x^{2}-30 x+36=0$
$\Rightarrow 6\left(x^{2}-5 x+6\right)=0$
$\Rightarrow 6\left(x^{2}-3 x-2 x+6\right)=0$
$\Rightarrow x^{2}-3 x-2 x+6=0$
$\Rightarrow(x-3)(x-2)=0$
$\Rightarrow x=3,2$
Clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}<2$ and $\mathrm{x}>3$ and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $2<\mathrm{x}<3$
Thus, $f(x)$ increases on $(-\infty, 2) \cup(3, \infty)$ and $f(x)$ is decreasing on interval $x \in(2,3)$
(x) $f(x)=2 x^{3}+9 x^{2}+12 x+20$

Solution:

Given $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}+9 \mathrm{x}^{2}+12 \mathrm{x}+20$
Differentiating above equation we get
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(2 \mathrm{x}^{3}+9 \mathrm{x}^{2}+12 \mathrm{x}+20\right)$
$\Rightarrow f^{\prime}(x)=6 x^{2}+18 x+12$
For $f(x)$ we have to find critical point, we must have
$\Rightarrow f^{\prime}(\mathrm{x})=0$
$\Rightarrow 6 x^{2}+18 x+12=0$
$\Rightarrow 6\left(x^{2}+3 x+2\right)=0$
$\Rightarrow 6\left(x^{2}+2 x+x+2\right)=0$
$\Rightarrow x^{2}+2 x+x+2=0$
$\Rightarrow(x+2)(x+1)=0$
$\Rightarrow x=-1,-2$
Clearly, $f^{\prime}(x)>0$ if $-2<x<-1$ and $f^{\prime}(x)<0$ if $x<-1$ and $x>-2$
Thus, $f(x)$ increases on $x \in(-2,-1)$ and $f(x)$ is decreasing on interval $(-\infty,-2) \cup(-2, \infty)$
2. Determine the values of x for which the function $f(x)=x^{2}-6 x+9$ is increasing or decreasing. Also, find the coordinates of the point on the curve $y=x^{2}-6 x+9$ where the normal is parallel to the line $y=x+5$.

Solution:

Given $f(x)=x^{2}-6 x+9$
$\Rightarrow f^{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}-6 \mathrm{x}+9\right)$
$\Rightarrow f^{\prime}(x)=2 x-6$
$\Rightarrow f^{\prime}(x)=2(x-3)$
For $f(x)$ let us find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow 2(x-3)=0$
$\Rightarrow(x-3)=0$
$\Rightarrow x=3$
Clearly, $f^{\prime}(x)>0$ if $x>3$ and $f^{\prime}(x)<0$ if $x<3$
Thus, $f(x)$ increases on $(3, \infty)$ and $f(x)$ is decreasing on interval $x \in(-\infty, 3)$
Now, let us find coordinates of point
Equation of curve is $f(x)=x^{2}-6 x+9$
Slope of this curve is given by

$$
\begin{aligned}
& \Rightarrow m_{1}=\frac{d y}{d x} \\
& \Rightarrow m_{1}=\frac{d}{d x}\left(x^{2}-6 x+9\right) \\
& \Rightarrow m_{1}=2 x-6
\end{aligned}
$$

Equation of line is $y=x+5$
Slope of this curve is given by

$$
\begin{aligned}
& \Rightarrow \mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}} \\
& \Rightarrow \mathrm{~m}_{2}=\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x}+5) \\
& \Rightarrow \mathrm{m}_{2}=1
\end{aligned}
$$

Since slope of curve is parallel to line
Therefore, they follow the relation
$\Rightarrow \frac{-1}{\mathrm{~m}_{1}}=\mathrm{m}_{2}$
$\Rightarrow \frac{-1}{2 x-6}=1$
$\Rightarrow 2 x-6=-1$
$\Rightarrow x=\frac{5}{2}$
Thus putting the value of x in equation of curve, we get

$$
\begin{aligned}
& \Rightarrow \mathrm{y}=\mathrm{x}^{2}-6 \mathrm{x}+9 \\
& \Rightarrow \mathrm{y}=\left(\frac{5}{2}\right)^{2}-6\left(\frac{5}{2}\right)+9 \\
& \Rightarrow \mathrm{y}=\frac{25}{4}-15+9 \\
& \Rightarrow \mathrm{y}=\frac{25}{4}-6 \\
& \Rightarrow \mathrm{y}=\frac{1}{4}
\end{aligned}
$$

Thus the required coordinates is $\left(\frac{5}{2}, \frac{1}{4}\right)$
3. Find the intervals in which $f(x)=\sin x-\cos x$, where $0<x<2 \pi$ is increasing or decreasing.

Solution:

Given $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}-\cos \mathrm{x}$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}(\sin x-\cos x)$
$\Rightarrow f^{\prime}(x)=\cos x+\sin x$
For $f(x)$ let us find critical point, we must have
$\Rightarrow f^{\prime}(\mathrm{x})=0$
$\Rightarrow \cos \mathrm{x}+\sin \mathrm{x}=0$
$\Rightarrow \operatorname{Tan}(\mathrm{x})=-1$
$\Rightarrow \mathrm{x}=\frac{3 \pi}{4}, \frac{7 \pi}{4}$
Here these points divide the angle range from 0 to 2π since we have x as angle

Clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $0<\mathrm{x}<\frac{3 \pi}{4}$ and $\frac{7 \pi}{4}<\mathrm{x}<2 \pi$ and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\frac{3 \pi}{4}<\mathrm{x}<\frac{7 \pi}{4}$
Thus, $f(x)$ increases on $\left(0, \frac{3 \pi}{4}\right) \cup\left(\frac{7 \pi}{4}, 2 \pi\right)$ and $f(x)$ is decreasing on interval $\left(\frac{3 \pi}{4}, \frac{7 \pi}{4}\right)$
4. Show that $f(x)=e^{2 x}$ is increasing on R.

Solution:

Given $f(x)=e^{2 x}$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(e^{2 x}\right)$
$\Rightarrow f^{\prime}(x)=2 e^{2 x}$
For $f(x)$ to be increasing, we must have
$\Rightarrow f^{\prime}(x)>0$
$\Rightarrow 2 e^{2 x}>0$
$\Rightarrow e^{2 x}>0$
Since, the value of e lies between 2 and 3
So, whatever be the power of e (that is x in domain R) will be greater than zero.
Thus $f(x)$ is increasing on interval R
5. Show that $f(x)=e^{1 / x}, x \neq 0$ is a decreasing function for all $x \neq 0$.

Solution:

Given $f(x)=e^{\frac{1}{x}}$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(e^{\frac{1}{x}}\right)$
$\Rightarrow f^{\prime}(x)=e^{\frac{1}{x}} \cdot\left(\frac{-1}{x^{2}}\right)$
$\Rightarrow f^{\prime}(x)=-\frac{e^{\frac{1}{x}}}{x^{2}}$
As given $x \in R, x \neq 0$
$\Rightarrow \frac{1}{\mathrm{x}^{2}}>0$ and $\mathrm{e}^{\frac{1}{\mathrm{x}}}>0$

Their ratio is also greater than 0
$\Rightarrow \frac{\frac{1}{\frac{1}{x}}}{x^{2}}>0$
$\Rightarrow-\frac{e^{\frac{1}{x}}}{x^{2}}<0$; as by applying negative sign change in comparison sign
$\Rightarrow f^{\prime}(\mathrm{x})<0$
Hence, condition for $\mathrm{f}(\mathrm{x})$ to be decreasing
Thus $f(x)$ is decreasing for all $x \neq 0$
6. Show that $f(x)=\log _{a} x, 0<a<1$ is a decreasing function for all $x>0$.

Solution:

Given $\mathrm{f}(\mathrm{x})=\log _{\mathrm{a}} \mathrm{x}, 0<\mathrm{a}<1$
$\Rightarrow f(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\log _{\mathrm{a}} \mathrm{x}\right)$
$\Rightarrow f(x)=\frac{1}{x \log a}$
As given $0<a<1$
$\Rightarrow \log (\mathrm{a})<0$ and for $\mathrm{x}>0$
$\Rightarrow \frac{1}{\mathrm{x}}>0$
Therefore $f^{\prime}(x)$ is
$\Rightarrow \frac{1}{\mathrm{x} \log \mathrm{a}}<0$
$\Rightarrow f^{\prime}(\mathrm{x})<0$
Hence, condition for $\mathrm{f}(\mathrm{x})$ to be decreasing
Thus $f(x)$ is decreasing for all $x>0$
7. Show that $f(x)=\sin x$ is increasing on $(0, \pi / 2)$ and decreasing on $(\pi / 2, \pi)$ and neither

increasing nor decreasing in $(0, \pi)$.

Solution:

Given $f(x)=\sin x$
$\Rightarrow f(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(\sin \mathrm{x})$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\cos \mathrm{x}$
Taking different region from 0 to 2π
Let $\mathrm{X} \in\left(0, \frac{\pi}{2}\right)$
$\Rightarrow \operatorname{Cos}(\mathrm{x})>0$
$\Rightarrow f^{\prime}(\mathrm{x})>0$
Thus $f(x)$ is increasing in $\left(0, \frac{\pi}{2}\right)$
Let $x \in\left(\frac{\pi}{2}, \pi\right)$
$\Rightarrow \operatorname{Cos}(\mathrm{x})<0$
$\Rightarrow f^{\prime}(\mathrm{x})<0$
Thus $f(x)$ is decreasing in $\left(\frac{\pi}{2}, \pi\right)$
Therefore, from above condition we find that
$\Rightarrow f(x)$ is increasing in $\left(0, \frac{\pi}{2}\right)$ and decreasing in $\left(\frac{\pi}{2}, \pi\right)$
Hence, condition for $f(x)$ neither increasing nor decreasing in $(0, \pi)$
8. Show that $f(x)=\log \sin x$ is increasing on $(0, \pi / 2)$ and decreasing on $(\pi / 2, \pi)$.

Solution:
Given $\mathrm{f}(\mathrm{x})=\log \sin \mathrm{x}$
$\Rightarrow f^{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(\log \sin \mathrm{x})$
$\Rightarrow f^{\prime}(x)=\frac{1}{\sin x} \times \cos x$
$\Rightarrow f^{\prime}(x)=\cot (x)$
Taking different region from 0 to π
Let $x \in\left(0, \frac{\pi}{2}\right)$
$\Rightarrow \operatorname{Cot}(\mathrm{x})>0$
$\Rightarrow f^{\prime}(\mathrm{x})>0$
Thus $f(x)$ is increasing in $\left(0, \frac{\pi}{2}\right)$
Let $\mathrm{x} \in\left(\frac{\pi}{2}, \pi\right)$
$\Rightarrow \operatorname{Cot}(x)<0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})<0$
Thus $f(x)$ is decreasing in $\left(\frac{\pi}{2}, \pi\right)$
Hence proved
9. Show that $f(x)=x-\sin x$ is increasing for all $x \in R$.

Solution:

Given $f(x)=x-\sin x$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}(x-\sin x)$
$\Rightarrow f^{\prime}(x)=1-\cos x$
Now, as given $x \in R$
$\Rightarrow-1<\cos x<1$
$\Rightarrow-1>\cos x>0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
Hence, condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval $x \in R$
10. Show that $f(x)=x^{3}-15 x^{2}+75 x-50$ is an increasing function for all $x \in R$.

Solution:

Given $f(x)=x^{3}-15 x^{2}+75 x-50$
$\Rightarrow f(x)=\frac{d}{d x}\left(x^{3}-15 x^{2}+75 x-50\right)$
$\Rightarrow f^{\prime}(x)=3 x^{2}-30 x+75$
$\Rightarrow f^{\prime}(x)=3\left(x^{2}-10 x+25\right)$
$\Rightarrow f^{\prime}(x)=3(x-5)^{2}$
Now, as given $x \in R$
$\Rightarrow(x-5)^{2}>0$
$\Rightarrow 3(x-5)^{2}>0$
$\Rightarrow f^{\prime}(x)>0$
Hence, condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval $x \in R$
11. Show that $f(x)=\cos ^{2} x$ is a decreasing function on $(0, \pi / 2)$.

Solution:

Given $f(x)=\cos ^{2} x$
$\Rightarrow f(x)=\frac{d}{d x}\left(\cos ^{2} x\right)$
$\Rightarrow f^{\prime}(x)=2 \cos x(-\sin x)$
$\Rightarrow f^{\prime}(x)=-2 \sin (x) \cos (x)$
$\Rightarrow f^{\prime}(\mathrm{x})=-\sin 2 \mathrm{x}$
Now, as given x belongs to $(0, \pi / 2)$.
$\Rightarrow 2 x \in(0, \pi)$
$\Rightarrow \operatorname{Sin}(2 x)>0$
$\Rightarrow-\operatorname{Sin}(2 x)<0$
$\Rightarrow f^{\prime}(\mathrm{x})<0$
Hence, condition for $f(x)$ to be decreasing
Thus $f(x)$ is decreasing on interval ($0, \pi / 2$).
Hence proved
12. Show that $f(x)=\sin x$ is an increasing function on $(-\pi / 2, \pi / 2)$.

Solution:

Given $f(x)=\sin x$
$\Rightarrow f^{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(\sin \mathrm{x})$
$\Rightarrow f^{\prime}(x)=\cos x$
Now, as given $x \in(-\pi / 2, \pi / 2)$.
That is $4^{\text {th }}$ quadrant, where
$\Rightarrow \operatorname{Cos} x>0$
$\Rightarrow f^{\prime}(x)>0$
Hence, condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval ($-\pi / 2, \pi / 2$).
13. Show that $f(x)=\cos x$ is a decreasing function on $(0, \pi)$, increasing in $(-\pi, 0)$ and neither increasing nor decreasing in $(-\pi, \pi)$.

Solution:

Given $f(x)=\cos x$
$\Rightarrow f(x)=\frac{d}{d x}(\cos x)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=-\sin \mathrm{x}$
Taking different region from 0 to 2π
Let $x \in(0, \pi)$.
$\Rightarrow \operatorname{Sin}(x)>0$
$\Rightarrow-\sin x<0$
$\Rightarrow f^{\prime}(\mathrm{x})<0$
Thus $f(x)$ is decreasing in $(0, \pi)$
Let $x \in(-\pi, o)$.
$\Rightarrow \operatorname{Sin}(x)<0$
$\Rightarrow-\sin x>0$
$\Rightarrow f^{\prime}(x)>0$
Thus $f(x)$ is increasing in $(-\pi, 0)$.
Therefore, from above condition we find that
$\Rightarrow f(x)$ is decreasing in $(0, \pi)$ and increasing in $(-\pi, 0)$.
Hence, condition for $f(x)$ neither increasing nor decreasing in $(-\pi, \pi)$
14. Show that $f(x)=\tan x$ is an increasing function on $(-\pi / 2, \pi / 2)$.

Solution:

Given $f(x)=\tan x$
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(\tan \mathrm{x})$
$\Rightarrow f^{\prime}(x)=\sec ^{2} x$

Now, as given
$x \in(-\pi / 2, \pi / 2)$.
That is $4^{\text {th }}$ quadrant, where
$\Rightarrow \sec ^{2} x>0$
$\Rightarrow f^{\prime}(x)>0$
Hence, Condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval $(-\pi / 2, \pi / 2)$.
15. Show that $f(x)=\tan ^{-1}(\sin x+\cos x)$ is a decreasing function on the interval $(\pi / 4, \pi$ /2).

Solution:

Given $f(x)=\tan ^{-1}(\sin x+\cos x)$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(\tan ^{-1}(\sin x+\cos x)\right)$
$\Rightarrow f^{\prime}(x)=\frac{1}{1+(\sin x+\cos x)^{2}} \times(\cos x-\sin x)$
$\Rightarrow f^{\prime}(x)=\frac{(\cos x-\sin x)}{1+\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x}$
$\Rightarrow f^{\prime}(x)=\frac{\cos x-\sin x}{2(1+\sin x \cos x)}$
Now, as given
$\mathrm{x} \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
$\Rightarrow \operatorname{Cos} x-\sin x<0$; as here cosine values are smaller than sine values for same angle
$\Rightarrow \frac{\cos x-\sin x}{2(1+\sin x \cos x)}<0$
$\Rightarrow f^{\prime}(x)<0$
Hence, Condition for $f(x)$ to be decreasing
Thus $f(x)$ is decreasing on interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
16. Show that the function $f(x)=\sin (2 x+\pi / 4)$ is decreasing on $(3 \pi / 8,5 \pi / 8)$.

Solution:

Given, $\mathrm{f}(\mathrm{x})=\sin \left(2 \mathrm{x}+\frac{\pi}{4}\right)$

$$
\begin{aligned}
& \Rightarrow \mathrm{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left\{\sin \left(2 \mathrm{x}+\frac{\pi}{4}\right)\right\} \\
& \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\cos \left(2 \mathrm{x}+\frac{\pi}{4}\right) \times 2 \\
& \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=2 \cos \left(2 \mathrm{x}+\frac{\pi}{4}\right)
\end{aligned}
$$

Now, as given $x \in\left(\frac{3 \pi}{8}, \frac{5 \pi}{8}\right)$

$$
\begin{aligned}
& \Rightarrow \frac{3 \pi}{8}<x<\frac{5 \pi}{8} \\
& \Rightarrow \frac{3 \pi}{4}<2 x<\frac{5 \pi}{4} \\
& \Rightarrow \pi<2 x+\frac{\pi}{4}<\frac{3 \pi}{2}
\end{aligned}
$$

As here ${ }^{2 x}+\frac{\pi}{4}$ lies in $3^{\text {rd }}$ quadrant
$\Rightarrow \cos \left(2 x+\frac{\pi}{4}\right)<0$
$\Rightarrow 2 \cos \left(2 x+\frac{\pi}{4}\right)<0$
$\Rightarrow f^{\prime}(\mathrm{x})<0$
Hence, condition for $\mathrm{f}(\mathrm{x})$ to be decreasing
Thus $f(x)$ is decreasing on the interval $(3 \pi / 8,5 \pi / 8)$.
17. Show that the function $f(x)=\cot ^{-1}(\sin x+\cos x)$ is decreasing on $(0, \pi / 4)$ and increasing on ($\pi / 4, \pi / 2$).

Solution:

Given $f(x)=\cot ^{-1}(\sin x+\cos x)$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left\{\cot ^{-1}(\sin x+\cos x)\right\}$
$\Rightarrow f^{\prime}(x)=\frac{1}{1+(\sin x+\cos x)^{2}} \times(\cos x-\sin x)$
$\Rightarrow f^{\prime}(x)=\frac{(\cos x-\sin x)}{1+\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x}$
$\Rightarrow f^{\prime}(x)=\frac{\cos x-\sin x}{2(1+\sin x \cos x)}$
Now, as given $\mathrm{x} \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
$\Rightarrow \operatorname{Cos} x-\sin x<0$; as here cosine values are smaller than sine values for same angle
$\Rightarrow \frac{\cos x-\sin x}{2(1+\sin x \cos x)}<0$
$\Rightarrow f^{\prime}(x)<0$
Hence, condition for $f(x)$ to be decreasing
Thus $f(x)$ is decreasing on interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
18. Show that $f(x)=(x-1) e^{x}+1$ is an increasing function for all $x>0$.

Solution:

Given $f(x)=(x-1) e^{x}+1$
Now differentiating the given equation with respect to x, we get
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left((x-1) e^{x}+1\right)$
$\Rightarrow f^{\prime}(x)=e^{x}+(x-1) e^{x}$
$\Rightarrow f^{\prime}(x)=e^{x}(1+x-1)$
$\Rightarrow f^{\prime}(x)=x e^{x}$
As given $x>0$
$\Rightarrow \mathrm{e}^{\mathrm{x}}>0$
$\Rightarrow x \mathrm{e}^{\mathrm{x}}>0$
$\Rightarrow f^{\prime}(x)>0$

Hence, condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval $x>0$
19. Show that the function $x^{2}-x+1$ is neither increasing nor decreasing on (0,1).

Solution:

Given $f(x)=x^{2}-x+1$
Now by differentiating the given equation with respect to x, we get
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}-\mathrm{x}+1\right)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}-1$
Taking different region from $(0,1)$
Let $\mathrm{x} \in(0,1 / 2)$
$\Rightarrow 2 x-1<0$
$\Rightarrow f^{\prime}(x)<0$
Thus $f(x)$ is decreasing in ($0,1 / 2$)
Let $x \in(1 / 2,1)$
$\Rightarrow 2 x-1>0$
$\Rightarrow f^{\prime}(x)>0$
Thus $f(x)$ is increasing in $(1 / 2,1)$
Therefore, from above condition we find that
$\Rightarrow f(x)$ is decreasing in ($0,1 / 2$) and increasing in ($1 / 2,1$)
Hence, condition for $f(x)$ neither increasing nor decreasing in $(0,1)$
20. Show that $f(x)=x^{9}+4 x^{7}+11$ is an increasing function for all $x \in R$.

Solution:

Given $f(x)=x^{9}+4 x^{7}+11$
Now by differentiating above equation with respect to x, we get
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{9}+4 \mathrm{x}^{7}+11\right)$
$\Rightarrow f^{\prime}(x)=9 x^{8}+28 x^{6}$
$\Rightarrow f^{\prime}(x)=x^{6}\left(9 x^{2}+28\right)$
As given $x \in R$
$\Rightarrow x^{6}>0$ and $9 x^{2}+28>0$
$\Rightarrow x^{6}\left(9 x^{2}+28\right)>0$
$\Rightarrow f^{\prime}(x)>0$
Hence, condition for $f(x)$ to be increasing

RD Sharma Solutions for Class 12 Maths Chapter 17

The Learning App
Thus $f(x)$ is increasing on interval $x \in R$

