

EXERCISE 17.1

PAGE NO: 17.10

1. Prove that the function $f(x) = \log_e x$ is increasing on $(0, \infty)$.

Solution:

Let $x_1, x_2 \in (0, \infty)$ We have, $x_1 < x_2$ $\Rightarrow \log_e x_1 < \log_e x_2$ $\Rightarrow f(x_1) < f(x_2)$ So, f(x) is increasing in $(0, \infty)$

2. Prove that the function $f(x) = \log_a x$ is increasing on $(0, \infty)$ if a > 1 and decreasing on $(0, \infty)$, if 0 < a < 1.

Solution:

Case I

When a > 1

Let $x_1, x_2 \in (0, \infty)$

We have, x1<x2

 $\Rightarrow \log_e x_1 < \log_e x_2$

 \Rightarrow f (x₁) < f (x₂)

So, f(x) is increasing in $(0, \infty)$

Case II

When 0 < a < 1

 $f(x) = \log_a x = \frac{\log x}{\log a}$

When a < 1 \Rightarrow log a < 0

Let $x_1 < x_2$

 $\Rightarrow \log x_1 < \log x_2$

$$\Rightarrow \frac{\log x_1}{\log a} > \frac{\log x_2}{\log a} [\because \log a < 0]$$

 \Rightarrow f (x₁) > f (x₂)

So, f(x) is decreasing in $(0, \infty)$

3. Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R.

Solution:

Given, f (x) = ax + b, a > 0 Let $x_1, x_2 \in R$ and $x_1 > x_2$ $\Rightarrow ax_1 > ax_2$ for some a > 0 $\Rightarrow ax_1 + b > ax_2 + b$ for some b $\Rightarrow f (x_1) > f(x_2)$ Hence, $x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$ So, f(x) is increasing function of R

4. Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R.

Solution:

Given, f (x) = ax + b, a < 0 Let $x_1, x_2 \in R$ and $x_1 > x_2$ $\Rightarrow ax_1 < ax_2$ for some a > 0 $\Rightarrow ax_1 + b < ax_2 + b$ for some b $\Rightarrow f (x_1) < f(x_2)$ Hence, $x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$ So, f(x) is decreasing function of R

EXERCISE 17.2

PAGE NO: 17.33

1. Find the intervals in which the following functions are increasing or decreasing.

(i) f (x) = $10 - 6x - 2x^2$

Solution:

Given f (x) = $10 - 6x - 2x^2$

By differentiating above equation we get,

$$\Rightarrow f'(x) = \frac{d}{dx}(10 - 6x - 2x^2)$$

 \Rightarrow f'(x) = -6 - 4x

For f(x) to be increasing, we must have

 $\Rightarrow f'(x) > 0$ $\Rightarrow -6 - 4x > 0$ $\Rightarrow -4x > 6$ $\Rightarrow x < -\frac{6}{4}$ $\Rightarrow x < -\frac{3}{2}$ $\Rightarrow x \in (-\infty, -\frac{3}{2})$

Thus f(x) is increasing on the interval $\left(-\infty, -\frac{3}{2}\right)$

Again, for f(x) to be increasing, we must have

f'(x) < 0 ⇒ -6-4x < 0 ⇒ -4x < 6 ⇒ $x > -\frac{6}{4}$

$$\Rightarrow X > -\frac{3}{2}$$
$$\Rightarrow X \in (-\frac{3}{2}, \infty)$$

Thus f(x) is decreasing on interval $x \in (-\frac{3}{2}, \infty)$

(ii) f (x) =
$$x^2 + 2x - 5$$

Solution:

Given f (x) = $x^2 + 2x - 5$

Now by differentiating the given equation we get,

$$\Rightarrow f'(x) = \frac{d}{dx}(x^2 + 2x - 5)$$

 \Rightarrow f'(x) = 2x + 2

For f(x) to be increasing, we must have

- \Rightarrow f'(x) > 0
- $\Rightarrow 2x + 2 > 0$

$$\Rightarrow x < -\frac{2}{2}$$

 \Rightarrow x < -1

$$\Rightarrow x \in (-\infty, -1)$$

Thus f(x) is increasing on interval $(-\infty, -1)$

Again, for f(x) to be increasing, we must have

f'(x) < 0

 $\Rightarrow 2x + 2 < 0$

$$\Rightarrow 2x > -2$$

$$\Rightarrow x > -\frac{2}{2}$$

Thus f(x) is decreasing on interval $x \in (-1, \infty)$

(iii) f (x) = $6 - 9x - x^2$

Solution:

Given f (x) = $6 - 9x - x^2$ $\Rightarrow f'(x) = \frac{d}{dx}(6 - 9x - x^2)$

 \Rightarrow f'(x) = -9 - 2x

For f(x) to be increasing, we must have

 $\Rightarrow f'(x) > 0$ $\Rightarrow -9 - 2x > 0$ $\Rightarrow -2x > 9$ $\Rightarrow x < -\frac{9}{2}$ $\Rightarrow x < -\frac{9}{2}$ $\Rightarrow x < (-\infty, -\frac{9}{2})$

Thus f(x) is increasing on interval $\left(-\infty, -\frac{9}{2}\right)$ Again, for f(x) to be decreasing, we must have

- f'(x) < 0 $\Rightarrow -9 2x < 0$
- ⇒–2x<9

$$\Rightarrow X > -\frac{9}{2}$$
$$\Rightarrow X \in (-\frac{9}{2}, \infty)$$

Thus f(x) is decreasing on interval $x \in (-\frac{9}{2}, \infty)$

(iv) $f(x) = 2x^3 - 12x^2 + 18x + 15$

Solution:

Given f (x) =
$$2x^3 - 12x^2 + 18x + 15$$

$$\Rightarrow f'(x) = \frac{d}{dx}(2x^3 - 12x^2 + 18x + 15)$$

$$\Rightarrow f'(x) = 6x^2 - 24x + 18$$

For f(x) we have to find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow 6x^{2} - 24x + 18 = 0$$

$$\Rightarrow 6(x^{2} - 4x + 3) = 0$$

$$\Rightarrow 6(x^{2} - 3x - x + 3) = 0$$

$$\Rightarrow 6(x - 3) (x - 1) = 0$$

$$\Rightarrow (x - 3) (x - 1) = 0$$

$$\Rightarrow x = 3, 1$$

Clearly, f'(x) > 0 if x < 1 and x > 3 and f'(x) < 0 if 1 < x < 3

Thus, f(x) increases on $(-\infty, 1) \cup (3, \infty)$ and f(x) is decreasing on interval $x \in (1, 3)$

(v) f (x) = $5 + 36x + 3x^2 - 2x^3$

Solution:

Given f (x) = 5 + $36x + 3x^2 - 2x^3$

 $\Rightarrow \mathbf{f}(\mathbf{x}) = \frac{d}{d\mathbf{x}} (5 + 36\mathbf{x} + 3\mathbf{x}^2 - 2\mathbf{x}^3)$ ⇒ f'(x) = 36 + 6x - 6x² For f(x) now we have to find critical point, we must have ⇒ f'(x) = 0 ⇒ 36 + 6x - 6x² = 0 ⇒ 6(-x² + x + 6) = 0 ⇒ 6(-x² + 3x - 2x + 6) = 0 ⇒ -x² + 3x - 2x + 6 = 0 ⇒ x² - 3x + 2x - 6 = 0 ⇒ (x - 3) (x + 2) = 0 ⇒ x = 3, -2 Clearly, f'(x) > 0 if -2 < x < 3 and f'(x) < 0 if x < -2 and x > 3 Thus, f(x) increases on x ∈ (-2, 3) and f(x) is decreasing on interval (-∞, -2) ∪ (3, ∞)

(vi) f (x) = $8 + 36x + 3x^2 - 2x^3$

Solution:

Given f (x) = 8 + 36x + 3x² - 2x³ Now differentiating with respect to x $\Rightarrow f'(x) = \frac{d}{dx}(8 + 36x + 3x^2 - 2x^3)$ $\Rightarrow f'(x) = 36 + 6x - 6x^2$ For f(x) we have to find critical point, we must have $\Rightarrow f'(x) = 0$ $\Rightarrow 36 + 6x - 6x^2 = 0$ $\Rightarrow 6(-x^2 + x + 6) = 0$ $\Rightarrow 6(-x^2 + 3x - 2x + 6) = 0$ $\Rightarrow -x^2 + 3x - 2x + 6 = 0$ $\Rightarrow x^2 - 3x + 2x - 6 = 0$ $\Rightarrow (x - 3) (x + 2) = 0$ $\Rightarrow x = 3, -2$ Clearly, f'(x) > 0 if -2 < x < 3 and f'(x) < 0 if x < -2 and x > 3
Thus, f(x) increases on x $\in (-2, 3)$ and f(x) is decreasing on interval $(-\infty, 2) \cup (3, \infty)$

(vii) $f(x) = 5x^3 - 15x^2 - 120x + 3$

Solution:

Given $f(x) = 5x^3 - 15x^2 - 120x + 3$ Now by differentiating above equation with respect x, we get $\Rightarrow f'(x) = \frac{d}{dx}(5x^3 - 15x^2 - 120x + 3)$ $\Rightarrow f'(x) = 15x^2 - 30x - 120$ For f(x) we have to find critical point, we must have $\Rightarrow f'(x) = 0$ $\Rightarrow 15x^2 - 30x - 120 = 0$ $\Rightarrow 15(x^2 - 2x - 8) = 0$ $\Rightarrow 15(x^2 - 4x + 2x - 8) = 0$ $\Rightarrow x^2 - 4x + 2x - 8 = 0$ $\Rightarrow (x - 4) (x + 2) = 0$ $\Rightarrow x = 4, -2$ Clearly, f'(x) > 0 if x < -2 and x > 4 and f'(x) < 0 if -2 < x < 4Thus, f(x) increases on $(-\infty, -2) \cup (4, \infty)$ and f(x) is decreasing on interval $x \in (-2, 4)$

(viii)
$$f(x) = x^3 - 6x^2 - 36x + 2$$

Solution:

Given $f(x) = x^3 - 6x^2 - 36x + 2$ $\Rightarrow f'(x) = \frac{d}{dx}(x^3 - 6x^2 - 36x + 2)$ $\Rightarrow f'(x) = 3x^2 - 12x - 36$ For f(x) we have to find critical point, we must have $\Rightarrow f'(x) = 0$ $\Rightarrow 3x^2 - 12x - 36 = 0$ $\Rightarrow 3(x^2 - 4x - 12) = 0$ $\Rightarrow 3(x^2 - 6x + 2x - 12) = 0$ $\Rightarrow x^2 - 6x + 2x - 12 = 0$ $\Rightarrow (x - 6) (x + 2) = 0$ $\Rightarrow x = 6, -2$ Clearly, f'(x) > 0 if x < -2 and x > 6 and f'(x) < 0 if -2 < x < 6Thus, f(x) increases on $(-\infty, -2) \cup (6, \infty)$ and f(x) is decreasing on interval $x \in (-2, 6)$

(ix) $f(x) = 2x^3 - 15x^2 + 36x + 1$

Solution:

Given f (x) = $2x^3 - 15x^2 + 36x + 1$

Now by differentiating above equation with respect x, we get

 $\Rightarrow f'(x) = \frac{d}{dx}(2x^3 - 15x^2 + 36x + 1)$ ⇒ f'(x) = 6x² - 30x + 36 For f(x) we have to find critical point, we must have ⇒ f'(x) = 0 ⇒ 6x² - 30x + 36 = 0 ⇒ 6(x² - 5x + 6) = 0 ⇒ 6(x² - 3x - 2x + 6) = 0 ⇒ x² - 3x - 2x + 6 = 0 ⇒ (x - 3) (x - 2) = 0 ⇒ x = 3, 2 Clearly, f'(x) > 0 if x < 2 and x > 3 and f'(x) < 0 if 2 < x < 3 Thus, f(x) increases on (-∞, 2) ∪ (3, ∞) and f(x) is decreasing on interval x ∈ (2, 3)

(x) f (x) = $2x^3 + 9x^2 + 12x + 20$

Solution:

Given f (x) = $2x^3 + 9x^2 + 12x + 20$ Differentiating above equation we get $\Rightarrow f'(x) = \frac{d}{dx}(2x^3 + 9x^2 + 12x + 20)$ $\Rightarrow f'(x) = 6x^2 + 18x + 12$ For f(x) we have to find critical point, we must have $\Rightarrow f'(x) = 0$ $\Rightarrow 6x^2 + 18x + 12 = 0$ $\Rightarrow 6x^2 + 18x + 12 = 0$ $\Rightarrow 6(x^2 + 2x + x + 2) = 0$ $\Rightarrow 6(x^2 + 2x + x + 2) = 0$ $\Rightarrow x^2 + 2x + x + 2 = 0$ $\Rightarrow (x + 2) (x + 1) = 0$ $\Rightarrow x = -1, -2$ Clearly, f'(x) > 0 if -2 < x < -1 and f'(x) < 0 if x < -1 and x > -2 Thus, f(x) increases on x $\in (-2, -1)$ and f(x) is decreasing on interval $(-\infty, -2) \cup (-2, \infty)$

2. Determine the values of x for which the function $f(x) = x^2 - 6x + 9$ is increasing or decreasing. Also, find the coordinates of the point on the curve $y = x^2 - 6x + 9$ where the normal is parallel to the line y = x + 5.

Solution:

Given $f(x) = x^2 - 6x + 9$ $\Rightarrow f'(x) = \frac{d}{dx}(x^2 - 6x + 9)$ \Rightarrow f'(x) = 2x - 6 \Rightarrow f'(x) = 2(x - 3) For f(x) let us find critical point, we must have \Rightarrow f'(x) = 0 $\Rightarrow 2(x-3) = 0$ \Rightarrow (x - 3) = 0 $\Rightarrow x = 3$ Clearly, f'(x) > 0 if x > 3 and f'(x) < 0 if x < 3Thus, f(x) increases on $(3, \infty)$ and f(x) is decreasing on interval $x \in (-\infty, 3)$ Now, let us find coordinates of point Equation of curve is $f(x) = x^2 - 6x + 9$ Slope of this curve is given by \Rightarrow m₁ = $\frac{dy}{dx}$ \Rightarrow m₁ = $\frac{d}{dx}(x^2 - 6x + 9)$ \Rightarrow m₁ = 2x - 6 Equation of line is y = x + 5Slope of this curve is given by $\Rightarrow m_2 = \frac{dy}{dx}$ $\Rightarrow m_2 = \frac{d}{dx}(x+5)$ \Rightarrow m₂ = 1 Since slope of curve is parallel to line Therefore, they follow the relation $\Rightarrow \frac{-1}{m_1} = m_2$

 $\Rightarrow \frac{-1}{2x-6} = 1$

$$\Rightarrow 2x - 6 = -1$$

$$\Rightarrow x = \frac{5}{2}$$

Thus putting the value of x in equation of curve, we get

$$\Rightarrow y = x^{2} - 6x + 9$$

$$\Rightarrow y = (\frac{5}{2})^{2} - 6(\frac{5}{2}) + 9$$

$$\Rightarrow y = \frac{25}{4} - 15 + 9$$

$$\Rightarrow y = \frac{25}{4} - 6$$

$$\Rightarrow y = \frac{1}{4}$$

Thus the required coordinates is $(\frac{5}{2}, \frac{1}{4})$

3. Find the intervals in which $f(x) = \sin x - \cos x$, where $0 < x < 2\pi$ is increasing or decreasing.

Solution:

Given f (x) = $\sin x - \cos x$

$$\Rightarrow f(x) = \frac{d}{dx}(\sin x - \cos x)$$

 \Rightarrow f'(x) = cos x + sin x

For f(x) let us find critical point, we must have

$$\Rightarrow X = \frac{3\pi}{4}, \frac{7\pi}{4}$$

Here these points divide the angle range from 0 to 2π since we have x as angle

Clearly, f'(x) > 0 if
$$0 < x < \frac{3\pi}{4}$$
 and $\frac{7\pi}{4} < x < 2\pi$ and f'(x) < 0 if $\frac{3\pi}{4} < x < \frac{7\pi}{4}$
Thus, f(x) increases on $(0, \frac{3\pi}{4}) \cup (\frac{7\pi}{4}, 2\pi)$ and f(x) is decreasing on

interval $\left(\frac{3\pi}{4}, \frac{7\pi}{4}\right)$

4. Show that $f(x) = e^{2x}$ is increasing on R.

Solution:

Given f (x) = e^{2x} $\Rightarrow f'(x) = \frac{d}{dx}(e^{2x})$ $\Rightarrow f'(x) = 2e^{2x}$ For f(x) to be increasing, we must have $\Rightarrow f'(x) > 0$ $\Rightarrow 2e^{2x} > 0$ $\Rightarrow e^{2x} > 0$

Since, the value of e lies between 2 and 3

So, whatever be the power of e (that is x in domain R) will be greater than zero.

Thus f(x) is increasing on interval R

5. Show that f (x) = $e^{1/x}$, x $\neq 0$ is a decreasing function for all x $\neq 0$.

Solution:

Given $f(x) = e^{\frac{1}{x}}$

$$\Rightarrow f(x) = \frac{d}{dx} \left(e^{\frac{1}{x}} \right)$$
$$\Rightarrow f(x) = e^{\frac{1}{x}} \cdot \left(\frac{-1}{x^2} \right)$$

$$\Rightarrow \mathbf{f}(\mathbf{x}) = -\frac{\mathbf{e}^{\frac{1}{\mathbf{x}}}}{\mathbf{x}^2}$$

As given $x \in R$, $x \neq 0$

$$\Rightarrow \frac{1}{x^2} > 0$$
 and $e^{\frac{1}{x}} > 0$

Their ratio is also greater than 0

$$\Rightarrow \frac{e^{\frac{1}{x}}}{x^2} > 0$$

$$\Rightarrow -\frac{e^{\frac{1}{x}}}{v^2} < 0$$

 $-\frac{1}{x^2} < 0$; as by applying negative sign change in comparison sign

$$\Rightarrow$$
 f'(x) < 0

Hence, condition for f(x) to be decreasing

Thus f(x) is decreasing for all $x \neq 0$

6. Show that $f(x) = \log_a x$, 0 < a < 1 is a decreasing function for all x > 0.

Solution:

Given f (x) = $\log_a x$, 0 < a < 1

$$\Rightarrow f(x) = \frac{d}{dx}(\log_a x)$$

$$\Rightarrow f'(x) = \frac{1}{x \log a}$$

As given 0 < a < 1

```
\Rightarrow log (a) < 0 and for x > 0
```

$$\Rightarrow \frac{1}{x} > 0$$

Therefore f'(x) is

$$\frac{1}{x \log a} < 0$$

 \Rightarrow f'(x) < 0

Hence, condition for f(x) to be decreasing

Thus f(x) is decreasing for all x > 0

7. Show that $f(x) = \sin x$ is increasing on $(0, \pi/2)$ and decreasing on $(\pi/2, \pi)$ and neither

increasing nor decreasing in (0, π).

Solution:

Given f(x) = sin x

$$\Rightarrow \mathbf{f}(\mathbf{x}) = \frac{d}{d\mathbf{x}}(\sin \mathbf{x})$$

 \Rightarrow f'(x) = cos x

Taking different region from 0 to 2π

Let $x \in (0, \frac{\pi}{2})$ $\Rightarrow \cos(x) > 0$ $\Rightarrow f'(x) > 0$

Thus f(x) is increasing in $(0, \frac{\pi}{2})$

Let $X \in \left(\frac{\pi}{2}, \pi\right)$

 \Rightarrow Cos (x) < 0

$$\Rightarrow$$
 f'(x) < 0

Thus f(x) is decreasing in $(\frac{\pi}{2}, \pi)$

Therefore, from above condition we find that

 \Rightarrow f (x) is increasing in $(0, \frac{\pi}{2})$ and decreasing in $(\frac{\pi}{2}, \pi)$

Hence, condition for f(x) neither increasing nor decreasing in (0, π)

8. Show that $f(x) = \log \sin x$ is increasing on $(0, \pi/2)$ and decreasing on $(\pi/2, \pi)$.

Solution:

Given $f(x) = \log \sin x$

 $\Rightarrow f'(x) = \frac{d}{dx}(\log \sin x)$

$$\Rightarrow f(x) = \frac{1}{\sin x} \times \cos x$$

 \Rightarrow f'(x) = cot(x)

Taking different region from 0 to π

Let $X \in (0, \frac{\pi}{2})$

 \Rightarrow Cot(x) > 0

$$\Rightarrow$$
 f'(x) > 0

Thus f(x) is increasing in $(0, \frac{\pi}{2})$

Let $X \in \left(\frac{\pi}{2}, \pi\right)$

 \Rightarrow Cot (x) < 0

 \Rightarrow f'(x) < 0

Thus f(x) is decreasing in $(\frac{\pi}{2}, \pi)$

Hence proved

9. Show that $f(x) = x - \sin x$ is increasing for all $x \in R$.

Solution:

Given f (x) = x - sin x $\Rightarrow f'(x) = \frac{d}{dx}(x - sin x)$ $\Rightarrow f'(x) = 1 - cos x$ Now, as given x $\in \mathbb{R}$ $\Rightarrow -1 < cos x < 1$ $\Rightarrow -1 > cos x > 0$ $\Rightarrow f'(x) > 0$ Hence, condition for f(x) to be increasing Thus f(x) is increasing on interval x $\in \mathbb{R}$

10. Show that $f(x) = x^3 - 15x^2 + 75x - 50$ is an increasing function for all $x \in R$.

Solution:

Given $f(x) = x^3 - 15x^2 + 75x - 50$ $\Rightarrow f'(x) = \frac{d}{dx}(x^3 - 15x^2 + 75x - 50)$ $\Rightarrow f'(x) = 3x^2 - 30x + 75$ $\Rightarrow f'(x) = 3(x^2 - 10x + 25)$ $\Rightarrow f'(x) = 3(x - 5)^2$ Now, as given $x \in \mathbb{R}$ $\Rightarrow (x - 5)^2 > 0$ $\Rightarrow 3(x - 5)^2 > 0$ $\Rightarrow 3(x - 5)^2 > 0$ Hence, condition for f(x) to be increasing Thus f(x) is increasing on interval $x \in \mathbb{R}$

11. Show that $f(x) = \cos^2 x$ is a decreasing function on $(0, \pi/2)$.

Solution:

Given f (x) = $\cos^2 x$ $\Rightarrow f'(x) = \frac{d}{dx}(\cos^2 x)$ $\Rightarrow f'(x) = 2\cos x (-\sin x)$ $\Rightarrow f'(x) = -2\sin (x) \cos (x)$ $\Rightarrow f'(x) = -\sin 2x$ Now, as given x belongs to $(0, \pi/2)$. $\Rightarrow 2x \in (0, \pi)$ $\Rightarrow \sin (2x) > 0$ $\Rightarrow -\sin (2x) < 0$ $\Rightarrow -\sin (2x) < 0$ Hence, condition for f(x) to be decreasing Thus f(x) is decreasing on interval $(0, \pi/2)$.

Hence proved

12. Show that $f(x) = \sin x$ is an increasing function on $(-\pi/2, \pi/2)$.

Solution:

Given f (x) = sin x $\Rightarrow f'(x) = \frac{d}{dx}(\sin x)$

 $\Rightarrow f'(x) = \cos x$ Now, as given $x \in (-\pi/2, \pi/2)$. That is 4th quadrant, where $\Rightarrow \cos x > 0$ $\Rightarrow f'(x) > 0$ Hence, condition for f(x) to be increasing Thus f(x) is increasing on interval $(-\pi/2, \pi/2)$.

13. Show that $f(x) = \cos x$ is a decreasing function on $(0, \pi)$, increasing in $(-\pi, 0)$ and neither increasing nor decreasing in $(-\pi, \pi)$.

Solution:

Given $f(x) = \cos x$ \Rightarrow f'(x) = $\frac{d}{dx}(\cos x)$ \Rightarrow f'(x) = -sin x Taking different region from 0 to 2π Let $x \in (0, \pi)$. \Rightarrow Sin(x) > 0 \Rightarrow -sin x < 0 \Rightarrow f'(x) < 0 Thus f(x) is decreasing in $(0, \pi)$ Let $x \in (-\pi, o)$. \Rightarrow Sin (x) < 0 \Rightarrow -sin x > 0 \Rightarrow f'(x) > 0 Thus f(x) is increasing in $(-\pi, 0)$. Therefore, from above condition we find that \Rightarrow f (x) is decreasing in (0, π) and increasing in ($-\pi$, 0). Hence, condition for f(x) neither increasing nor decreasing in $(-\pi, \pi)$

14. Show that $f(x) = \tan x$ is an increasing function on $(-\pi/2, \pi/2)$.

Solution:

Given f (x) = tan x $\Rightarrow f'(x) = \frac{d}{dx}(tan x)$ $\Rightarrow f'(x) = \sec^2 x$

Now, as given $x \in (-\pi/2, \pi/2)$. That is 4th quadrant, where $\Rightarrow \sec^2 x > 0$ $\Rightarrow f'(x) > 0$ Hence, Condition for f(x) to be increasing Thus f(x) is increasing on interval $(-\pi/2, \pi/2)$.

15. Show that $f(x) = \tan^{-1} (\sin x + \cos x)$ is a decreasing function on the interval ($\pi/4$, $\pi/2$).

Solution:

Given $f(x) = \tan^{-1}(\sin x + \cos x)$

$$\Rightarrow f'(x) = \frac{d}{dx} (\tan^{-1}(\sin x + \cos x))$$

$$\Rightarrow f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \times (\cos x - \sin x)$$

$$\Rightarrow f'(x) = \frac{(\cos x - \sin x)}{1 + \sin^2 x + \cos^2 x + 2\sin x \cos x}$$
$$\Rightarrow f'(x) = \frac{\cos x - \sin x}{2(1 + \sin x \cos x)}$$

Now, as given

$$x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

⇒ Cos x – sin x < 0; as here cosine values are smaller than sine values for same angle

$$\Rightarrow \frac{\cos x - \sin x}{2(1 + \sin x \cos x)} < 0$$

 \Rightarrow f'(x) < 0

Hence, Condition for f(x) to be decreasing

Thus f(x) is decreasing on interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

S

16. Show that the function f (x) = sin (2x + $\pi/4$) is decreasing on (3 $\pi/8$, 5 $\pi/8$).

Solution:

Given, $f(x) = \sin(2x + \frac{\pi}{4})$ $\Rightarrow f'(x) = \frac{d}{dx} \{ \sin(2x + \frac{\pi}{4}) \}$ \Rightarrow f(x) = cos $\left(2x + \frac{\pi}{4}\right) \times 2$ \Rightarrow f(x) = 2cos $\left(2x + \frac{\pi}{4}\right)$ Now, as given $x \in \left(\frac{3\pi}{8}, \frac{5\pi}{8}\right)$ $argle \frac{3\pi}{2} < x < \frac{5\pi}{2}$ $\Rightarrow \frac{3\pi}{4} < 2x < \frac{5\pi}{4}$ $\Rightarrow \pi < 2x + \frac{\pi}{4} < \frac{3\pi}{2}$ As here $2x + \frac{\pi}{4}$ lies in 3rd quadrant $\Rightarrow \cos\left(2x + \frac{\pi}{4}\right) < 0$ $\Rightarrow 2\cos\left(2x+\frac{\pi}{4}\right) < 0$ $\Rightarrow f'(x) < 0$

Hence, condition for f(x) to be decreasing Thus f (x) is decreasing on the interval $(3\pi/8, 5\pi/8)$.

17. Show that the function $f(x) = \cot^{-1} (\sin x + \cos x)$ is decreasing on $(0, \pi/4)$ and increasing on $(\pi/4, \pi/2)$.

Solution: Given $f(x) = \cot^{-1} (\sin x + \cos x)$

$$\Rightarrow f'(x) = \frac{d}{dx} \{ \cot^{-1}(\sin x + \cos x) \}$$

$$\Rightarrow f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \times (\cos x - \sin x)$$

$$\Rightarrow f'(x) = \frac{(\cos x - \sin x)}{1 + \sin^2 x + \cos^2 x + 2\sin x \cos x}$$

$$\Rightarrow f'(x) = \frac{\cos x - \sin x}{2(1 + \sin x \cos x)}$$

$$= \sqrt{\pi} \pi$$

Now, as given $x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

 \Rightarrow Cos x – sin x < 0; as here cosine values are smaller than sine values for same angle

$$\Rightarrow \frac{\cos x - \sin x}{2(1 + \sin x \cos x)} < 0$$

 \Rightarrow f'(x) < 0

Hence, condition for f(x) to be decreasing

Thus f(x) is decreasing on interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

18. Show that $f(x) = (x - 1) e^{x} + 1$ is an increasing function for all x > 0.

Solution:

Given f (x) = (x - 1) e^x + 1 Now differentiating the given equation with respect to x, we get $\Rightarrow f'(x) = \frac{d}{dx}((x - 1)e^{x} + 1)$ $\Rightarrow f'(x) = e^{x} + (x - 1) e^{x}$ $\Rightarrow f'(x) = e^{x}(1 + x - 1)$ $\Rightarrow f'(x) = x e^{x}$ As given x > 0 $\Rightarrow e^{x} > 0$ $\Rightarrow x e^{x} > 0$ $\Rightarrow f'(x) > 0$

Hence, condition for f(x) to be increasing Thus f(x) is increasing on interval x > 0

19. Show that the function $x^2 - x + 1$ is neither increasing nor decreasing on (0, 1).

Solution:

Given $f(x) = x^2 - x + 1$ Now by differentiating the given equation with respect to x, we get $\Rightarrow f'(x) = \frac{d}{dx}(x^2 - x + 1)$ \Rightarrow f'(x) = 2x - 1 Taking different region from (0, 1) Let $x \in (0, \frac{1}{2})$ $\Rightarrow 2x - 1 < 0$ \Rightarrow f'(x) < 0 Thus f(x) is decreasing in $(0, \frac{1}{2})$ Let $x \in (\frac{1}{2}, 1)$ $\Rightarrow 2x - 1 > 0$ \Rightarrow f'(x) > 0 Thus f(x) is increasing in $(\frac{1}{2}, 1)$ Therefore, from above condition we find that \Rightarrow f (x) is decreasing in (0, $\frac{1}{2}$) and increasing in ($\frac{1}{2}$, 1) Hence, condition for f(x) neither increasing nor decreasing in (0, 1)

20. Show that $f(x) = x^9 + 4x^7 + 11$ is an increasing function for all $x \in R$.

Solution:

Given f (x) = $x^9 + 4x^7 + 11$ Now by differentiating above equation with respect to x, we get

$$\Rightarrow f'(x) = \frac{d}{dx}(x^9 + 4x^7 + 11)$$

$$\Rightarrow f'(x) = 9x^8 + 28x^6$$

$$\Rightarrow f'(x) = x^6(9x^2 + 28)$$

As given $x \in \mathbb{R}$

$$\Rightarrow x^6 > 0 \text{ and } 9x^2 + 28 > 0$$

$$\Rightarrow x^6 (9x^2 + 28) > 0$$

$$\Rightarrow f'(x) > 0$$

Hence, condition for $f(x)$ to be increasing

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in R$

