

EXERCISE 19.25

PAGE NO: 19.133

Evaluate the following integrals:

1.
$$\int x \cos x \, dx$$

Solution:

Let
$$I = \int x \cos x \, dx$$

We know that,
$$\int u\ v\ dx = u \int v\ dx - \int \left(rac{du}{dx}\int v\ dx
ight) dx$$

Using integration by parts,

$$I = x \int \cos x \, dx - \int (\frac{d}{dx} x \int \cos x \, dx) \, dx$$

We have,
$$\int \sin x = -\cos x$$
, $\int \cos x = \sin x$

$$= x \times \sin x - \int \sin x \, dx$$

$$= xsinx + cosx + c$$

$$2. \int \log(x+1) \, dx$$

Solution:

Let
$$I = \int \log(x+1) dx$$

That is,

$$I = \int 1 \times \log(x+1) \, dx$$

Using integration by parts,

$$I = \log(x+1) \int 1 dx - \int \frac{d}{dx} \log(x+1) \int 1 dx$$

We know that,
$$\int 1 dx = x$$
 and $\int \log x = \frac{1}{x}$

$$= \log(x+1) \times x - \int \frac{1}{x+1} \times x \, dx$$
Now,
$$\frac{x}{x+1} = 1 - \frac{1}{x+1}$$

$$= x \log(x+1) - \int \left(1 - \frac{1}{x+1}\right) dx$$

$$= x \log(x+1) - x + \log(x+1) + c$$

$$3. \int x^3 \log x \, dx$$

Solution:

Let
$$I = \int x^3 \log x \, dx$$

Using integration by parts,

$$I = \log x \int x^3 dx - \int \frac{d}{dx} \log x \int x^3 dx$$

We have,
$$\int x^n dx = \frac{x^{n+1}}{n+1}$$
 and $\int \log x = \frac{1}{x}$

$$= \log x \times \frac{x^4}{4} - \int \frac{1}{x} \times \frac{x^4}{4} dx$$

$$= \log x \times \frac{x^4}{4} - \frac{1}{4} \int x^3 dx$$

$$=\frac{x^4}{4}\log x - \frac{1}{4} \times \frac{x^4}{4}$$

$$=\frac{x^4}{4}\log x - \frac{x^4}{16} + c$$

4.
$$\int xe^x dx$$

Solution:

Let
$$I = \int xe^x dx$$

Using integration by parts,

$$I = x \int e^{x} dx - \int (\frac{d}{dx} x \int e^{x} dx) dx$$

We know that, $\int e^x dx = e^x$ and $\frac{d}{dx}x = 1$

$$= xe^x - \int e^x \, dx$$

$$= xe^x - e^x + c$$

5.
$$\int xe^{2x} dx$$

Solution:

Let
$$I = \int xe^{2x} dx$$

Using integration by parts,

$$I = x \int e^{2x} dx - \int \left(\frac{d}{dx} x \int e^{2x} dx\right) dx$$

We know that, $\int e^{nx}\,dx = \frac{e^x}{n}$ and $\frac{d}{dx}x = 1$

$$=\frac{xe^{2x}}{2}-\int\frac{e^{2x}}{2}dx$$

$$=\frac{xe^{2x}}{2}-\frac{e^{2x}}{4}+c$$

$$I = \left(\frac{x}{2} - \frac{1}{4}\right)e^{2x} + c$$