

## **EXERCISE 2.1**

PAGE NO: 2.31

- 1. Give an example of a function
- (i) Which is one-one but not onto.
- (ii) Which is not one-one but onto.
- (iii) Which is neither one-one nor onto.

#### **Solution:**

(i) Let f:  $Z \rightarrow Z$  given by f(x) = 3x + 2

Let us check one-one condition on f(x) = 3x + 2

Injectivity:

Let x and y be any two elements in the domain (Z), such that f(x) = f(y).

$$f(x) = f(y)$$

$$\Rightarrow$$
 3x + 2 = 3y + 2

$$\Rightarrow$$
 3x = 3y

$$\Rightarrow$$
 x = y

$$\Rightarrow$$
 f(x) = f(y)

$$\Rightarrow$$
 x = y

So, f is one-one.

Surjectivity:

Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z(domain).

Let 
$$f(x) = y$$

$$\Rightarrow$$
 3x + 2 = y

$$\Rightarrow$$
 3x = y - 2

 $\Rightarrow$  x = (y - 2)/3. It may not be in the domain (Z)

Because if we take y = 3,

$$x = (y - 2)/3 = (3-2)/3 = 1/3 \notin domain Z.$$

So, for every element in the co domain there need not be any element in the domain such that f(x) = y.

Thus, f is not onto.

(ii) Example for the function which is not one-one but onto

Let 
$$f: Z \rightarrow N \cup \{0\}$$
 given by  $f(x) = |x|$ 

Injectivity:

Let x and y be any two elements in the domain (Z),



Such that f(x) = f(y).

$$\Rightarrow |x| = |y|$$

$$\Rightarrow$$
 x =  $\pm$  y

So, different elements of domain f may give the same image.

So, f is not one-one.

Surjectivity:

Let y be any element in the co domain (Z), such that f(x) = y for some element x in Z (domain).

$$f(x) = y$$

$$\Rightarrow |x| = y$$

$$\Rightarrow$$
 x =  $\pm$  y

Which is an element in Z (domain).

So, for every element in the co-domain, there exists a pre-image in the domain.

Thus, f is onto.

(iii) Example for the function which is neither one-one nor onto.

Let f: Z 
$$\rightarrow$$
 Z given by f(x) =  $2x^2 + 1$ 

Injectivity:

Let x and y be any two elements in the domain (Z), such that f(x) = f(y).

$$f(x) = f(y)$$

$$\Rightarrow$$
 2x<sup>2</sup>+1 = 2y<sup>2</sup>+1

$$\Rightarrow$$
 2x<sup>2</sup> = 2y<sup>2</sup>

$$\Rightarrow$$
  $x^2 = y^2$ 

$$\Rightarrow$$
 x =  $\pm$  y

So, different elements of domain f may give the same image.

Thus, f is not one-one.

Surjectivity:

Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).

$$f(x) = y$$

$$\Rightarrow$$
 2x<sup>2</sup>+1=y

$$\Rightarrow$$
 2x<sup>2</sup>= y - 1

$$\Rightarrow$$
 x<sup>2</sup> = (y-1)/2

$$\Rightarrow$$
 x =  $\forall$  ((y-1)/2)  $\notin$  Z always.

For example, if we take, y = 4,

$$x = \pm \sqrt{((y-1)/2)}$$

$$= \pm \sqrt{(4-1)/2}$$



= ± √ (3/2) ∉ Z

So, x may not be in Z (domain).

Thus, f is not onto.

# 2. Which of the following functions from A to B are one-one and onto?

(i) 
$$f_1 = \{(1, 3), (2, 5), (3, 7)\}; A = \{1, 2, 3\}, B = \{3, 5, 7\}$$

(ii) 
$$f_2 = \{(2, a), (3, b), (4, c)\}; A = \{2, 3, 4\}, B = \{a, b, c\}$$

(iii) 
$$f_3 = \{(a, x), (b, x), (c, z), (d, z)\}; A = \{a, b, c, d,\}, B = \{x, y, z\}.$$

## **Solution:**

(i) Consider 
$$f_1 = \{(1, 3), (2, 5), (3, 7)\}; A = \{1, 2, 3\}, B = \{3, 5, 7\}$$

Injectivity:

$$f_1(1) = 3$$

$$f_1(2) = 5$$

$$f_1(3) = 7$$

⇒ Every element of A has different images in B.

So,  $f_1$  is one-one.

Surjectivity:

Co-domain of  $f_1 = \{3, 5, 7\}$ 

Range of  $f_1$  =set of images =  $\{3, 5, 7\}$ 

⇒ Co-domain = range

So,  $f_1$  is onto.

(ii) Consider 
$$f_2 = \{(2, a), (3, b), (4, c)\}; A = \{2, 3, 4\}, B = \{a, b, c\}$$

Injectivity:

$$f_2(2) = a$$

$$f_2(3) = b$$

$$f_2(4) = c$$

⇒ Every element of A has different images in B.

So, f<sub>2</sub> is one-one.

Surjectivity:

Co-domain of  $f_2 = \{a, b, c\}$ 

Range of  $f_2$  = set of images =  $\{a, b, c\}$ 

⇒ Co-domain = range

So,  $f_2$  is onto.

(iii) Consider 
$$f_3 = \{(a, x), (b, x), (c, z), (d, z)\}$$
;  $A = \{a, b, c, d,\}, B = \{x, y, z\}$ 



## Injectivity:

 $f_3$  (a) = x

 $f_3(b) = x$ 

 $f_3(c) = z$ 

 $f_3(d) = z$ 

 $\Rightarrow$  a and b have the same image x.

Also c and d have the same image z

So,  $f_3$  is not one-one.

Surjectivity:

Co-domain of  $f_3 = \{x, y, z\}$ 

Range of  $f_3$  =set of images =  $\{x, z\}$ 

So, the co-domain is not same as the range.

So,  $f_3$  is not onto.

# 3. Prove that the function f: N $\rightarrow$ N, defined by f(x) = $x^2 + x + 1$ , is one-one but not onto

### **Solution:**

Given f: N  $\rightarrow$  N, defined by f(x) =  $x^2 + x + 1$ 

Now we have to prove that given function is one-one

Injectivity:

Let x and y be any two elements in the domain (N), such that f(x) = f(y).

$$\Rightarrow$$
  $x^2 + x + 1 = y^2 + y + 1$ 

$$\Rightarrow$$
  $(x^2 - y^2) + (x - y) = 0$ 

$$\Rightarrow$$
 (x + y) (x-y) + (x - y) = 0

$$\Rightarrow (x - y) (x + y + 1) = 0$$

 $\Rightarrow$  x - y = 0 [x + y + 1 cannot be zero because x and y are natural numbers

$$\Rightarrow$$
 x = y

So, f is one-one.

Surjectivity:

When x = 1

$$x^2 + x + 1 = 1 + 1 + 1 = 3$$

$$\Rightarrow$$
  $x^2 + x + 1 \ge 3$ , for every x in N.

 $\Rightarrow$  f(x) will not assume the values 1 and 2.

So, f is not onto.

# 4. Let $A = \{-1, 0, 1\}$ and $f = \{(x, x^2) : x \in A\}$ . Show that $f : A \rightarrow A$ is neither one-one nor onto.



#### **Solution:**

Given A =  $\{-1, 0, 1\}$  and f =  $\{(x, x^2): x \in A\}$ 

Also given that,  $f(x) = x^2$ 

Now we have to prove that given function neither one-one or nor onto.

Injectivity:

Let x = 1

Therefore  $f(1) = 1^2 = 1$  and

 $f(-1)=(-1)^2=1$ 

 $\Rightarrow$  1 and -1 have the same images.

So, f is not one-one.

Surjectivity:

Co-domain of  $f = \{-1, 0, 1\}$ 

 $f(1) = 1^2 = 1$ ,

 $f(-1) = (-1)^2 = 1$  and

f(0) = 0

 $\Rightarrow$  Range of f = {0, 1}

So, both are not same.

Hence, f is not onto

# 5. Classify the following function as injection, surjection or bijection:

(i) f: N  $\rightarrow$  N given by f(x) =  $x^2$ 

(ii) f:  $Z \rightarrow Z$  given by  $f(x) = x^2$ 

(iii) f: N  $\rightarrow$  N given by f(x) =  $x^3$ 

(iv) f:  $Z \rightarrow Z$  given by  $f(x) = x^3$ 

(v) f: R  $\rightarrow$  R, defined by f(x) = |x|

(vi) f:  $Z \rightarrow Z$ , defined by  $f(x) = x^2 + x$ 

(vii) f:  $Z \rightarrow Z$ , defined by f(x) = x - 5

(viii) f: R  $\rightarrow$  R, defined by f(x) = sin x

(ix) f: R  $\rightarrow$  R, defined by f(x) =  $x^3 + 1$ 

(x) f: R  $\rightarrow$  R, defined by f(x) =  $x^3 - x$ 

(xi) f: R  $\rightarrow$  R, defined by f(x) =  $\sin^2 x + \cos^2 x$ 

(xii) f: Q –  $\{3\} \rightarrow$  Q, defined by f (x) = (2x + 3)/(x-3)

(xiii) f: Q  $\Rightarrow$  Q, defined by f(x) =  $x^3 + 1$ 

(xiv) f: R  $\rightarrow$  R, defined by f(x) =  $5x^3 + 4$ 

(xv) f: R  $\rightarrow$  R, defined by f(x) =  $5x^3 + 4$ 

(xvi) f: R  $\rightarrow$  R, defined by f(x) = 1 +  $x^2$ 



# (xvii) f: R $\rightarrow$ R, defined by f(x) = x/(x<sup>2</sup> + 1)

### **Solution:**

(i) Given f: N  $\rightarrow$  N, given by f(x) =  $x^2$ 

Now we have to check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in the domain (N), such that f(x) = f(y).

$$f(x) = f(y)$$

$$x^2 = y^2$$

x = y (We do not get  $\pm$  because x and y are in N that is natural numbers)

So, f is an injection.

Surjection condition:

Let y be any element in the co-domain (N), such that f(x) = y for some element x in N (domain).

$$f(x) = y$$

$$x^2 = y$$

 $x = \sqrt{y}$ , which may not be in N.

For example, if y = 3,

 $x = \sqrt{3}$  is not in N.

So, f is not a surjection.

Also f is not a bijection.

(ii) Given f:  $Z \rightarrow Z$ , given by  $f(x) = x^2$ 

Now we have to check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in the domain (Z), such that f(x) = f(y).

$$f(x) = f(y)$$

$$x^2 = y^2$$

$$x = \pm y$$

So, f is not an injection.

Surjection test:

Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).

$$f(x) = y$$

$$x^2 = y$$



 $x = \pm \sqrt{y}$  which may not be in Z.

For example, if y = 3,

 $x = \pm \sqrt{3}$  is not in Z.

So, f is not a surjection.

Also f is not bijection.

# (iii) Given f: N $\rightarrow$ N given by f(x) = $x^3$

Now we have to check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in the domain (N), such that f(x) = f(y).

$$f(x) = f(y)$$

$$x^3 = y^3$$

$$x = y$$

So, f is an injection

Surjection condition:

Let y be any element in the co-domain (N), such that f(x) = y for some element x in N (domain).

$$f(x) = y$$

$$\chi^3 = y$$

 $x = \sqrt[3]{y}$  which may not be in N.

For example, if y = 3,

 $X = \sqrt[3]{3}$  is not in N.

So, f is not a surjection and f is not a bijection.

# (iv) Given f: $Z \rightarrow Z$ given by $f(x) = x^3$

Now we have to check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in the domain (Z), such that f(x) = f(y)

$$f(x) = f(y)$$

$$x^3 = y^3$$

$$x = y$$

So, f is an injection.

Surjection condition:

Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).



$$f(x) = y$$

$$x^3 = y$$

 $x = \sqrt[3]{y}$  which may not be in Z.

For example, if y = 3,

$$x = \sqrt[3]{3}$$
 is not in Z.

So, f is not a surjection and f is not a bijection.

# (v) Given f: R $\rightarrow$ R, defined by f(x) = |x|

Now we have to check for the given function is injection, surjection and bijection condition.

Injection test:

Let x and y be any two elements in the domain (R), such that f(x) = f(y)

$$f(x) = f(y)$$

$$|x| = |y|$$

$$x = \pm y$$

So, f is not an injection.

Surjection test:

Let y be any element in the co-domain (R), such that f(x) = y for some element x in R (domain).

$$f(x) = y$$

$$|x|=y$$

$$x = \pm y \in Z$$

So, f is a surjection and f is not a bijection.

# (vi) Given f: $Z \rightarrow Z$ , defined by $f(x) = x^2 + x$

Now we have to check for the given function is injection, surjection and bijection condition.

Injection test:

Let x and y be any two elements in the domain (Z), such that f(x) = f(y).

$$f(x) = f(y)$$

$$x^2 + x = y^2 + y$$

Here, we cannot say that x = y.

For example, x = 2 and y = -3

Then,

$$x^2 + x = 2^2 + 2 = 6$$

$$y^2 + y = (-3)^2 - 3 = 6$$

So, we have two numbers 2 and -3 in the domain Z whose image is same as 6.



So, f is not an injection.

Surjection test:

Let y be any element in the co-domain (Z),

such that f(x) = y for some element x in Z (domain).

$$f(x) = y$$

$$x^2 + x = y$$

Here, we cannot say  $x \in Z$ .

For example, y = -4.

$$x^2 + x = -4$$

$$x^2 + x + 4 = 0$$

$$x = (-1 \pm \sqrt{-5})/2 = (-1 \pm i \sqrt{5})/2$$
 which is not in Z.

So, f is not a surjection and f is not a bijection.

(vii) Given f:  $Z \rightarrow Z$ , defined by f(x) = x - 5

Now we have to check for the given function is injection, surjection and bijection condition.

Injection test:

Let x and y be any two elements in the domain (Z), such that f(x) = f(y).

$$f(x) = f(y)$$

$$x - 5 = y - 5$$

$$x = y$$

So, f is an injection.

Surjection test:

Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).

$$f(x) = y$$

$$x - 5 = y$$

$$x = y + 5$$
, which is in Z.

So, f is a surjection and f is a bijection

(viii) Given f:  $R \rightarrow R$ , defined by  $f(x) = \sin x$ 

Now we have to check for the given function is injection, surjection and bijection condition.

Injection test:

Let x and y be any two elements in the domain (R), such that f(x) = f(y).

$$f(x) = f(y)$$

$$Sin x = sin y$$



Here, x may not be equal to y because  $\sin 0 = \sin \pi$ .

So, 0 and  $\pi$  have the same image 0.

So, f is not an injection.

Surjection test:

Range of f = [-1, 1]

Co-domain of f = R

Both are not same.

So, f is not a surjection and f is not a bijection.

(ix) Given f: R  $\rightarrow$  R, defined by f(x) =  $x^3 + 1$ 

Now we have to check for the given function is injection, surjection and bijection condition.

Injection test:

Let x and y be any two elements in the domain (R), such that f(x) = f(y).

$$f(x) = f(y)$$

$$x^3+1=y^3+1$$

$$x^3 = y^3$$

$$x = y$$

So, f is an injection.

Surjection test:

Let y be any element in the co-domain (R), such that f(x) = y for some element x in R (domain).

$$f(x) = y$$

$$x^3+1=y$$

$$x = \sqrt[3]{(y - 1)} \in R$$

So, f is a surjection.

So, f is a bijection.

(x) Given f: R  $\rightarrow$  R, defined by f(x) =  $x^3 - x$ 

Now we have to check for the given function is injection, surjection and bijection condition.

Injection test:

Let x and y be any two elements in the domain (R), such that f(x) = f(y).

$$f(x) = f(y)$$

$$x^3 - x = y^3 - y$$

Here, we cannot say x = y.

For example, x = 1 and y = -1



$$x^3 - x = 1 - 1 = 0$$

$$y^3 - y = (-1)^3 - (-1) - 1 + 1 = 0$$

So, 1 and -1 have the same image 0.

So, f is not an injection.

Surjection test:

Let y be any element in the co-domain (R), such that f(x) = y for some element x in R (domain).

$$f(x) = y$$

$$x^3 - x = y$$

By observation we can say that there exist some x in R, such that  $x^3 - x = y$ .

So, f is a surjection and f is not a bijection.

(xi) Given f: R  $\rightarrow$  R, defined by f(x) =  $\sin^2 x + \cos^2 x$ 

Now we have to check for the given function is injection, surjection and bijection condition.

Injection condition:

$$f(x) = \sin^2 x + \cos^2 x$$

We know that  $\sin^2 x + \cos^2 x = 1$ 

So, f(x) = 1 for every x in R.

So, for all elements in the domain, the image is 1.

So, f is not an injection.

Surjection condition:

Range of  $f = \{1\}$ 

Co-domain of f = R

Both are not same.

So, f is not a surjection and f is not a bijection.

(xii) Given f: Q –  $\{3\} \rightarrow$  Q, defined by f (x) = (2x + 3)/(x-3)

Now we have to check for the given function is injection, surjection and bijection condition.

Injection test:

Let x and y be any two elements in the domain  $(Q - \{3\})$ , such that f(x) = f(y).

$$f(x) = f(y)$$

$$(2x + 3)/(x - 3) = (2y + 3)/(y - 3)$$

$$(2x + 3) (y - 3) = (2y + 3) (x - 3)$$

$$2xy - 6x + 3y - 9 = 2xy - 6y + 3x - 9$$

$$9x = 9y$$



$$x = y$$

So, f is an injection.

Surjection test:

Let y be any element in the co-domain  $(Q - \{3\})$ , such that f(x) = y for some element x in Q (domain).

$$f(x) = y$$

$$(2x + 3)/(x - 3) = y$$

$$2x + 3 = xy - 3y$$

$$2x - xy = -3y - 3$$

$$x(2-y) = -3(y+1)$$

x = -3(y + 1)/(2 - y) which is not defined at y = 2.

So, f is not a surjection and f is not a bijection.

(xiii) Given f: Q  $\rightarrow$  Q, defined by f(x) =  $x^3 + 1$ 

Now we have to check for the given function is injection, surjection and bijection condition.

Injection test:

Let x and y be any two elements in the domain (Q), such that f(x) = f(y).

$$f(x) = f(y)$$

$$x^3 + 1 = y^3 + 1$$

$$x^3 = y^3$$

$$x = y$$

So, f is an injection.

Surjection test:

Let y be any element in the co-domain (Q), such that f(x) = y for some element x in Q (domain).

$$f(x) = y$$

$$x^3 + 1 = y$$

 $x = \sqrt[3]{(y-1)}$ , which may not be in Q.

For example, if y= 8,

$$x^3 + 1 = 8$$

$$x^3 = 7$$

 $x = \sqrt[3]{7}$ , which is not in Q.

So, f is not a surjection and f is not a bijection.

(xiv) Given f: R  $\rightarrow$  R, defined by f(x) =  $5x^3 + 4$ 

Now we have to check for the given function is injection, surjection and bijection



condition.

Injection test:

Let x and y be any two elements in the domain (R), such that f(x) = f(y).

$$f(x) = f(y)$$

$$5x^3 + 4 = 5y^3 + 4$$

$$5x^3 = 5y^3$$

$$x^3 = y^3$$

$$x = y$$

So, f is an injection.

Surjection test:

Let y be any element in the co-domain (R), such that f(x) = y for some element x in R (domain).

$$f(x) = y$$

$$5x^3 + 4 = y$$

$$x^3 = (y - 4)/5 \in R$$

So, f is a surjection and f is a bijection.

(xv) Given f: R  $\rightarrow$  R, defined by f(x) =  $5x^3 + 4$ 

Now we have to check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in the domain (R), such that f(x) = f(y).

$$f(x) = f(y)$$

$$5x^3 + 4 = 5v^3 + 4$$

$$5x^3 = 5y^3$$

$$x^3 = y^3$$

$$x = y$$

So, f is an injection.

Surjection test:

Let y be any element in the co-domain (R), such that f(x) = y for some element x in R (domain).

$$f(x) = y$$

$$5x^3 + 4 = y$$

$$x^3 = (y - 4)/5 \in R$$

So, f is a surjection and f is a bijection.

(xvi) Given f: R  $\rightarrow$  R, defined by f(x) = 1 +  $x^2$ 



Now we have to check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in the domain (R), such that f(x) = f(y).

$$f(x) = f(y)$$

$$1 + x^2 = 1 + y^2$$

$$x^2 = y^2$$

$$x = \pm y$$

So, f is not an injection.

Surjection test:

Let y be any element in the co-domain (R), such that f(x) = y for some element x in R (domain).

$$f(x) = y$$

$$1 + x^2 = y$$

$$x^2 = y - 1$$

$$x = \pm \sqrt{1} = \pm i$$
 is not in R.

So, f is not a surjection and f is not a bijection.

(xvii) Given f: R  $\rightarrow$  R, defined by f(x) = x/(x<sup>2</sup> + 1)

Now we have to check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in the domain (R), such that f(x) = f(y).

$$f(x) = f(y)$$

$$x/(x^2+1) = y/(y^2+1)$$

$$x y^2 + x = x^2y + y$$

$$xy^2 - x^2y + x - y = 0$$

$$-x y (-y + x) + 1 (x - y) = 0$$

$$(x - y) (1 - x y) = 0$$

$$x = y \text{ or } x = 1/y$$

So, f is not an injection.

Surjection test:

Let y be any element in the co-domain (R), such that f(x) = y for some element x in R (domain).

$$f(x) = y$$

$$x/(x^2 + 1) = y$$

$$y x^2 - x + y = 0$$



$$x = (-(-1) \pm \sqrt{(1-4y^2)})/(2y)$$
 if  $y \neq 0$   
=  $(1 \pm \sqrt{(1-4y^2)})/(2y)$ , which may not be in R  
For example, if  $y=1$ , then  
 $(1 \pm \sqrt{(1-4)})/(2y) = (1 \pm i\sqrt{3})/2$ , which is not in R  
So, f is not surjection and f is not bijection.

# 6. If f: A $\rightarrow$ B is an injection, such that range of f = {a}, determine the number of elements in A.

#### **Solution:**

Given f: A  $\rightarrow$  B is an injection

And also given that range of  $f = \{a\}$ 

So, the number of images of f = 1

Since, f is an injection, there will be exactly one image for each element of f.

So, number of elements in A = 1.

# 7. Show that the function f: $R - \{3\} \rightarrow R - \{2\}$ given by f(x) = (x-2)/(x-3) is a bijection.

## **Solution:**

Given that f: R –  $\{3\} \rightarrow R - \{2\}$  given by f (x) = (x-2)/(x-3)

Now we have to show that the given function is one-one and on-to

Injectivity:

Let x and y be any two elements in the domain  $(R - \{3\})$ , such that f(x) = f(y).

$$f(x) = f(y)$$

$$\Rightarrow$$
 (x - 2) /(x - 3) = (y - 2) /(y - 3)

$$\Rightarrow$$
 (x - 2) (y - 3) = (y - 2) (x - 3)

$$\Rightarrow$$
 x y - 3 x - 2 y + 6 = x y - 3y - 2x + 6

$$\Rightarrow$$
 x = y

So, f is one-one.

Surjectivity:

Let y be any element in the co-domain  $(R - \{2\})$ , such that f(x) = y for some element x in  $R - \{3\}$  (domain).

$$f(x) = y$$

$$\Rightarrow$$
 (x - 2) /(x - 3) = y

$$\Rightarrow$$
 x - 2 = x y - 3y

$$\Rightarrow$$
 x y - x = 3y - 2

$$\Rightarrow$$
 x (y - 1) = 3y - 2



$$\Rightarrow$$
 x = (3y - 2)/ (y - 1), which is in R - {3}

So, for every element in the co-domain, there exists some pre-image in the domain.  $\Rightarrow$  f is onto.

Since, f is both one-one and onto, it is a bijection.

# 8. Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective:

(i) 
$$f(x) = x/2$$

(ii) 
$$g(x) = |x|$$

(iii) 
$$h(x) = x^2$$

### **Solution:**

(i) Given f: A 
$$\rightarrow$$
 A, given by f (x) = x/2

Now we have to show that the given function is one-one and on-to Injection test:

Let x and y be any two elements in the domain (A), such that f(x) = f(y).

$$f(x) = f(y)$$

$$x/2 = y/2$$

$$x = y$$

So, f is one-one.

Surjection test:

Let y be any element in the co-domain (A), such that f(x) = y for some element x in A (domain)

$$f(x) = y$$

$$x/2 = y$$

x = 2y, which may not be in A.

For example, if y = 1, then

x = 2, which is not in A.

So, f is not onto.

So, f is not bijective.

# (ii) Given g: A $\rightarrow$ A, given by g (x) = |x|

Now we have to show that the given function is one-one and on-to Injection test:

Let x and y be any two elements in the domain (A), such that f(x) = f(y).

$$g(x) = g(y)$$

$$|x| = |y|$$



 $x = \pm y$ 

So, f is not one-one.

Surjection test:

For y = -1, there is no value of x in A.

So, g is not onto.

So, g is not bijective.

(iii) Given h: A  $\rightarrow$  A, given by h (x) =  $x^2$ 

Now we have to show that the given function is one-one and on-to

Injection test:

Let x and y be any two elements in the domain (A), such that h(x) = h(y).

h(x) = h(y)

 $x^2 = y^2$ 

 $x = \pm y$ 

So, f is not one-one.

Surjection test:

For y = -1, there is no value of x in A.

So, h is not onto.

So, h is not bijective.

- 9. Are the following set of ordered pair of a function? If so, examine whether the mapping is injective or surjective:
- (i) {(x, y): x is a person, y is the mother of x}
- (ii) {(a, b): a is a person, b is an ancestor of a}

#### **Solution:**

Let  $f = \{(x, y): x \text{ is a person, } y \text{ is the mother of } x\}$ 

As, for each element x in domain set, there is a unique related element y in co-domain set.

So, f is the function.

Injection test:

As, y can be mother of two or more persons

So, f is not injective.

Surjection test:

For every mother y defined by (x, y), there exists a person x for whom y is mother.

So, f is surjective.

Therefore, f is surjective function.



(ii) Let g = {(a, b): a is a person, b is an ancestor of a} Since, the ordered map (a, b) does not map 'a' - a person to a living person. So, g is not a function.

## 10. Let $A = \{1, 2, 3\}$ . Write all one-one from A to itself.

#### **Solution:**

Given  $A = \{1, 2, 3\}$ 

Number of elements in A = 3

Number of one-one functions = number of ways of arranging 3 elements = 3! = 6

(i)  $\{(1, 1), (2, 2), (3, 3)\}$ 

(ii) {(1, 1), (2, 3), (3, 2)}

(iii) {(1, 2), (2, 2), (3, 3)}

(iv) {(1, 2), (2, 1), (3, 3)}

(v) {(1, 3), (2, 2), (3, 1)}

(vi) {(1, 3), (2, 1), (3,2)}

# 11. If f: R $\rightarrow$ R be the function defined by f(x) = $4x^3 + 7$ , show that f is a bijection.

#### **Solution:**

Given f: R  $\rightarrow$  R is a function defined by f(x) =  $4x^3 + 7$ 

Injectivity:

Let x and y be any two elements in the domain (R), such that f(x) = f(y)

$$\Rightarrow 4x^3 + 7 = 4y^3 + 7$$

$$\Rightarrow$$
 4x<sup>3</sup> = 4y<sup>3</sup>

$$\Rightarrow$$
  $x^3 = y^3$ 

$$\Rightarrow$$
 x = y

So, f is one-one.

Surjectivity:

Let y be any element in the co-domain (R), such that f(x) = y for some element x in R (domain)

$$f(x) = y$$

$$\Rightarrow$$
 4x<sup>3</sup> + 7 = y

$$\Rightarrow$$
 4x<sup>3</sup> = y - 7

$$\Rightarrow$$
  $x^3 = (y - 7)/4$ 

$$\Rightarrow$$
 x =  $\sqrt[3]{(y-7)/4}$  in R



So, for every element in the co-domain, there exists some pre-image in the domain. f is onto.

Since, f is both one-to-one and onto, it is a bijection.





## **EXERCISE 2.2**

PAGE NO: 2.46

# 1. Find gof and fog when f: $R \rightarrow R$ and g: $R \rightarrow R$ is defined by

(i) 
$$f(x) = 2x + 3$$
 and  $g(x) = x^2 + 5$ .

(ii) 
$$f(x) = 2x + x^2$$
 and  $g(x) = x^3$ 

(iii) 
$$f(x) = x^2 + 8$$
 and  $g(x) = 3x^3 + 1$ 

(iv) 
$$f(x) = x$$
 and  $g(x) = |x|$ 

(v) 
$$f(x) = x^2 + 2x - 3$$
 and  $g(x) = 3x - 4$ 

(vi) 
$$f(x) = 8x^3$$
 and  $g(x) = x^{1/3}$ 

## **Solution:**

(i) Given, f: 
$$R \rightarrow R$$
 and g:  $R \rightarrow R$ 

So, gof: 
$$R \rightarrow R$$
 and fog:  $R \rightarrow R$ 

Also given that 
$$f(x) = 2x + 3$$
 and  $g(x) = x^2 + 5$ 

Now, 
$$(gof)(x) = g(f(x))$$

$$= g (2x +3)$$

$$=(2x+3)^2+5$$

$$= 4x^2 + 9 + 12x + 5$$

$$=4x^2+12x+14$$

Now, 
$$(fog)(x) = f(g(x))$$

$$= f(x^2 + 5)$$

$$= 2(x^2 + 5) + 3$$

$$= 2 x^2 + 10 + 3$$

$$= 2x^2 + 13$$

(ii) Given, f: 
$$R \rightarrow R$$
 and g:  $R \rightarrow R$ 

so, gof: 
$$R \rightarrow R$$
 and fog:  $R \rightarrow R$ 

$$f(x) = 2x + x^2$$
 and  $g(x) = x^3$ 

$$(gof)(x) = g(f(x))$$

$$= g (2x+x^2)$$

$$=(2x+x^2)^3$$

Now, 
$$(fog)(x) = f(g(x))$$

$$= f(x^3)$$

$$= 2 (x^3) + (x^3)^2$$

$$= 2x^3 + x^6$$



(iii) Given, f: R 
$$\rightarrow$$
 R and g: R  $\rightarrow$  R  
So, gof: R  $\rightarrow$  R and fog: R  $\rightarrow$  R  
 $f(x) = x^2 + 8$  and  $g(x) = 3x^3 + 1$   
(gof) (x) = g (f (x))  
= g (x<sup>2</sup> + 8)  
= 3 (x<sup>2</sup>+8)<sup>3</sup> + 1  
Now, (fog) (x) = f (g (x))  
= f (3x<sup>3</sup> + 1)  
= (3x<sup>3</sup>+1)<sup>2</sup> + 8  
= 9x<sup>6</sup> + 6x<sup>3</sup> + 1 + 8  
= 9x<sup>6</sup> + 6x<sup>3</sup> + 9

(iv) Given, f: 
$$R \rightarrow R$$
 and g:  $R \rightarrow R$   
So, gof:  $R \rightarrow R$  and fog:  $R \rightarrow R$   
 $f(x) = x$  and  $g(x) = |x|$   
(gof)  $(x) = g(f(x))$   
 $= g(x)$   
 $= |x|$   
Now (fog)  $(x) = f(g(x))$   
 $= f(|x|)$   
 $= |x|$ 

(v) Given, f: R 
$$\rightarrow$$
 R and g: R  $\rightarrow$  R  
So, gof: R  $\rightarrow$  R and fog: R  $\rightarrow$  R  
 $f(x) = x^2 + 2x - 3$  and  $g(x) = 3x - 4$   
(gof) (x) = g (f(x))  
= g (x<sup>2</sup> + 2x - 3) - 4  
= 3x<sup>2</sup> + 6x - 9 - 4  
= 3x<sup>2</sup> + 6x - 13  
Now, (fog) (x) = f (g (x))  
= f (3x - 4)  
= (3x - 4)<sup>2</sup> + 2 (3x - 4) - 3  
= 9x<sup>2</sup> + 16 - 24x + 6x - 8 - 3  
= 9x<sup>2</sup> - 18x + 5

(vi) Given, f:  $R \rightarrow R$  and g:  $R \rightarrow R$ 



```
So, gof: R \rightarrow R and fog: R \rightarrow R

f(x) = 8x^3 and g(x) = x^{1/3}

(gof)(x) = g(f(x))

= g(8x^3)

= (8x^3)^{1/3}

= [(2x)^3]^{1/3}

= 2x

Now, (fog) (x) = f(g(x))

= f(x^{1/3})

= 8(x^{1/3})^3

= 8x
```

2. Let  $f = \{(3, 1), (9, 3), (12, 4)\}$  and  $g = \{(1, 3), (3, 3), (4, 9), (5, 9)\}$ . Show that gof and fog are both defined. Also, find fog and gof.

#### **Solution:**

3. Let  $f = \{(1, -1), (4, -2), (9, -3), (16, 4)\}$  and  $g = \{(-1, -2), (-2, -4), (-3, -6), (4, 8)\}$ . Show that gof is defined while fog is not defined. Also, find gof.

#### **Solution:**

Given 
$$f = \{(1, -1), (4, -2), (9, -3), (16, 4)\}$$
 and  $g = \{(-1, -2), (-2, -4), (-3, -6), (4, 8)\}$ 



f:  $\{1, 4, 9, 16\} \rightarrow \{-1, -2, -3, 4\}$  and g:  $\{-1, -2, -3, 4\} \rightarrow \{-2, -4, -6, 8\}$ 

Co-domain of f = domain of g

So, gof exists and gof:  $\{1, 4, 9, 16\} \rightarrow \{-2, -4, -6, 8\}$ 

(gof)(1) = g(f(1)) = g(-1) = -2

(gof)(4) = g(f(4)) = g(-2) = -4

(gof)(9) = g(f(9)) = g(-3) = -6

(gof) (16) = g (f (16)) = g (4) = 8

So, gof =  $\{(1, -2), (4, -4), (9, -6), (16, 8)\}$ 

But the co-domain of g is not same as the domain of f.

So, fog does not exist.

4. Let  $A = \{a, b, c\}$ ,  $B = \{u, v, w\}$  and let f and g be two functions from A to B and from B to A, respectively, defined as:  $f = \{(a, v), (b, u), (c, w)\}$ ,  $g = \{(u, b), (v, a), (w, c)\}$ . Show that f and g both are bijections and find fog and gof.

#### **Solution:**

Given  $f = \{(a, v), (b, u), (c, w)\}, g = \{(u, b), (v, a), (w, c)\}.$ 

Also given that  $A = \{a, b, c\}, B = \{u, v, w\}$ 

Now we have to show f and g both are bijective.

Consider  $f = \{(a, v), (b, u), (c, w)\}$  and  $f: A \rightarrow B$ 

Injectivity of f: No two elements of A have the same image in B.

So, f is one-one.

Surjectivity of f: Co-domain of  $f = \{u, v, w\}$ 

Range of  $f = \{u, v, w\}$ 

Both are same.

So, f is onto.

Hence, f is a bijection.

Now consider  $g = \{(u, b), (v, a), (w, c)\}$  and  $g: B \rightarrow A$ 

Injectivity of g: No two elements of B have the same image in A.

So, g is one-one.

Surjectivity of g: Co-domain of g = {a, b, c}

Range of  $g = \{a, b, c\}$ 

Both are the same.

So, g is onto.

Hence, g is a bijection.

Now we have to find fog,

we know that Co-domain of g is same as the domain of f.



So, fog exists and fog:  $\{u \ v, w\} \rightarrow \{u, v, w\}$ 

$$(fog)(u) = f(g(u)) = f(b) = u$$

$$(fog)(v) = f(g(v)) = f(a) = v$$

$$(fog)(w) = f(g(w)) = f(c) = w$$

So, fog = 
$$\{(u, u), (v, v), (w, w)\}$$

Now we have to find gof,

Co-domain of f is same as the domain of g.

So, fog exists and gof:  $\{a, b, c\} \rightarrow \{a, b, c\}$ 

$$(gof)(a) = g(f(a)) = g(v) = a$$

$$(gof)(b) = g(f(b)) = g(u) = b$$

$$(gof)(c) = g(f(c)) = g(w) = c$$

So, 
$$gof = \{(a, a), (b, b), (c, c)\}\$$

5. Find fog (2) and gof (1) when f: R  $\rightarrow$  R; f(x) =  $x^2 + 8$  and g: R  $\rightarrow$  R; g(x) =  $3x^3 + 1$ .

#### **Solution:**

Given f: R  $\rightarrow$  R; f(x) = x<sup>2</sup> + 8 and g: R  $\rightarrow$  R; g(x) = 3x<sup>3</sup> + 1.

Consider (fog) (2) = f(g(2))

$$= f (3 \times 2^3 + 1)$$

$$= f(3 \times 8 + 1)$$

$$= f(25)$$

$$= 25^2 + 8$$

$$(gof)(1) = g(f(1))$$

$$= g (1^2 + 8)$$

$$= g (9)$$

$$= 3 \times 9^3 + 1$$

= 2188

6. Let R<sup>+</sup> be the set of all non-negative real numbers. If f: R<sup>+</sup>  $\rightarrow$  R<sup>+</sup> and g: R<sup>+</sup>  $\rightarrow$  R<sup>+</sup> are defined as f(x)=x<sup>2</sup> and g(x)=+  $\forall$ x, find fog and gof. Are they equal functions.

## **Solution:**

Given f:  $R^+ \rightarrow R^+$  and g:  $R^+ \rightarrow R^+$ 

So, fog:  $R^+ \rightarrow R^+$  and gof:  $R^+ \rightarrow R^+$ 

Domains of fog and gof are the same.

Now we have to find fog and gof also we have to check whether they are equal or not,



Consider (fog) (x) = f (g (x))  
= f (
$$\forall$$
x)  
=  $\forall$ x<sup>2</sup>  
= x  
Now consider (gof) (x) = g (f (x))  
= g (x<sup>2</sup>)  
=  $\forall$ x<sup>2</sup>  
= x  
So, (fog) (x) = (gof) (x),  $\forall$ x  $\in$  R<sup>+</sup>  
Hence, fog = gof

7. Let f: R  $\rightarrow$  R and g: R  $\rightarrow$  R be defined by f(x) =  $x^2$  and g(x) = x + 1. Show that fog  $\neq$  gof.

## **Solution:**

Given f:  $R \rightarrow R$  and g:  $R \rightarrow R$ .

So, the domains of f and g are the same.

Consider (fog) (x) = f(g(x))

$$= f(x + 1) = (x + 1)^2$$

$$= x^2 + 1 + 2x$$

Again consider (gof) (x) = g(f(x))

$$= g(x^2) = x^2 + 1$$



## **EXERCISE 2.3**

PAGE NO: 2.54

## 1. Find fog and gof, if

(i) 
$$f(x) = e^x$$
,  $g(x) = log_e x$ 

(ii) 
$$f(x) = x^2$$
,  $g(x) = \cos x$ 

(iii) 
$$f(x) = |x|, g(x) = \sin x$$

(iv) 
$$f(x) = x+1$$
,  $g(x) = e^x$ 

(v) 
$$f(x) = \sin^{-1} x$$
,  $g(x) = x^2$ 

(vi) 
$$f(x) = x+1$$
,  $g(x) = \sin x$ 

(vii) 
$$f(x) = x + 1$$
,  $g(x) = 2x + 3$ 

(viii) 
$$f(x) = c, c \in R, g(x) = \sin x^2$$

(ix) 
$$f(x) = x^2 + 2$$
,  $g(x) = 1 - 1/(1-x)$ 

## **Solution:**

(i) Given 
$$f(x) = e^x$$
,  $g(x) = \log_e x$ 

Let f: 
$$R \rightarrow (0, \infty)$$
; and g:  $(0, \infty) \rightarrow R$ 

Now we have to calculate fog,

Clearly, the range of g is a subset of the domain of f.

fog: 
$$(0, \infty) \rightarrow R$$

$$(fog)(x) = f(g(x))$$

$$= f (log_e x)$$

$$= log_e e^x$$

$$= x$$

Now we have to calculate gof,

Clearly, the range of f is a subset of the domain of g.

$$\Rightarrow$$
 fog: R $\rightarrow$  R

$$(gof)(x) = g(f(x))$$

$$= g(e^x)$$

$$= x$$

(ii) 
$$f(x) = x^2$$
,  $g(x) = \cos x$ 

f: 
$$R \rightarrow [0, \infty)$$
; g:  $R \rightarrow [-1, 1]$ 

Now we have to calculate fog,

Clearly, the range of g is not a subset of the domain of f.

- $\Rightarrow$  Domain (fog) = {x: x \in domain of g and g (x) \in domain of f}
- $\Rightarrow$  Domain (fog) = x: x  $\in$  R and cos x  $\in$  R}



```
\Rightarrow Domain of (fog) = R
(fog): R \rightarrow R
(fog)(x) = f(g(x))
= f (\cos x)
= \cos^2 x
Now we have to calculate gof,
Clearly, the range of f is a subset of the domain of g.
\Rightarrow fog: R\rightarrowR
(gof)(x) = g(f(x))
= g(x^2)
= \cos x^2
(iii) Given f(x) = |x|, g(x) = \sin x
f: R \rightarrow (0, \infty); g: R \rightarrow [-1, 1]
Now we have to calculate fog,
Clearly, the range of g is a subset of the domain of f.
\Rightarrow fog: R\rightarrowR
(fog)(x) = f(g(x))
= f (\sin x)
= |\sin x|
Now we have to calculate gof,
Clearly, the range of f is a subset of the domain of g.
\Rightarrow fog: R\rightarrow R
(gof)(x) = g(f(x))
=g(|x|)
= \sin |x|
(iv) Given f(x) = x + 1, g(x) = e^x
f: R \rightarrow R; g: R \rightarrow [1, \infty)
Now we have calculate fog:
Clearly, range of g is a subset of domain of f.
\Rightarrow fog: R\rightarrowR
(fog)(x) = f(g(x))
= f(e^x)
= e^{x} + 1
Now we have to compute gof,
```

Clearly, range of f is a subset of domain of g.



```
\Rightarrow fog: R\rightarrowR
(gof)(x) = g(f(x))
= g(x+1)
= e^{x+1}
(v) Given f (x) = \sin^{-1} x, g(x) = x^2
f: [-1,1] → [(-\pi)/2 ,\pi/2]; g : R → [0, \infty)
Now we have to compute fog:
Clearly, the range of g is not a subset of the domain of f.
Domain (fog) = \{x: x \in \text{domain of g and g } (x) \in \text{domain of f} \}
Domain (fog) = \{x: x \in R \text{ and } x^2 \in [-1, 1]\}
Domain (fog) = \{x: x \in R \text{ and } x \in [-1, 1]\}
Domain of (fog) = [-1, 1]
fog: [-1,1] \rightarrow R
(fog)(x) = f(g(x))
= f(x^2)
= \sin^{-1}(x^2)
Now we have to compute gof:
Clearly, the range of f is a subset of the domain of g.
fog: [-1, 1] \rightarrow R
(gof)(x) = g(f(x))
= g (sin^{-1} x)
= (\sin^{-1} x)^2
(vi) Given f(x) = x+1, g(x) = \sin x
f: R \rightarrow R; g: R \rightarrow [-1, 1]
Now we have to compute fog
Clearly, the range of g is a subset of the domain of f.
Set of the domain of f.
\Rightarrow fog: R\rightarrow R
(fog)(x) = f(g(x))
= f (\sin x)
= \sin x + 1
Now we have to compute gof,
Clearly, the range of f is a subset of the domain of g.
\Rightarrow fog: R \rightarrow R
(gof)(x) = g(f(x))
```



```
= g(x+1)
= \sin(x+1)
(vii) Given f(x) = x+1, g(x) = 2x + 3
f: R \rightarrow R; g: R \rightarrow R
Now we have to compute fog
Clearly, the range of g is a subset of the domain of f.
\Rightarrow fog: R\rightarrow R
(fog)(x) = f(g(x))
= f(2x+3)
= 2x + 3 + 1
= 2x + 4
Now we have to compute gof
Clearly, the range of f is a subset of the domain of g.
\Rightarrow fog: R \rightarrow R
(gof)(x) = g(f(x))
= g(x+1)
= 2(x + 1) + 3
= 2x + 5
(viii) Given f (x) = c, g (x) = \sin x^2
f: R \rightarrow \{c\}; g: R \rightarrow [0, 1]
Now we have to compute fog
Clearly, the range of g is a subset of the domain of f.
fog: R→R
(fog)(x) = f(g(x))
= f (sin x^2)
= c
Now we have to compute gof,
Clearly, the range of f is a subset of the domain of g.
\Rightarrow fog: R\rightarrow R
(gof)(x) = g(f(x))
= g(c)
= \sin c^2
(ix) Given f(x) = x^2 + 2 and g(x) = 1 - 1/(1 - x)
f: R \rightarrow [2, \infty)
```



For domain of g:  $1-x \neq 0$ 

$$\Rightarrow$$
 x  $\neq$  1

$$\Rightarrow$$
 Domain of g = R - {1}

$$g(x) = 1 - [1/(1-x)] = (1-x-1)/(1-x) = -x/(1-x)$$

For range of g

$$y = (-x)/(1-x)$$

$$\Rightarrow$$
 y - x y = - x

$$\Rightarrow$$
 y = x y - x

$$\Rightarrow$$
 y = x (y-1)

$$\Rightarrow$$
 x = y/(y - 1)

Range of 
$$g = R - \{1\}$$

So, g: 
$$R - \{1\} \rightarrow R - \{1\}$$

Now we have to compute fog

Clearly, the range of g is a subset of the domain of f.

$$\Rightarrow$$
 fog: R - {1}  $\rightarrow$  R

$$(fog)(x) = f(g(x))$$

$$= f(-x/(1-x))$$

$$=((-x)/(1-x))^2+2$$

$$= (x^2 + 2x^2 + 2 - 4x) / (1 - x)^2$$

$$= (3x^2 - 4x + 2)/(1 - x)^2$$

Now we have to compute gof

Clearly, the range of f is a subset of the domain of g.

$$\Rightarrow$$
 gof: R $\rightarrow$ R

$$(gof)(x) = g(f(x))$$

$$= g (x^2 + 2)$$

$$= 1 - 1 / (1 - (x^2 + 2))$$

$$= -1/(1-(x^2+2))$$

$$=(x^2+2)/(x^2+1)$$

2. Let  $f(x) = x^2 + x + 1$  and  $g(x) = \sin x$ . Show that  $\cos \neq g \circ f$ .

#### **Solution:**

Given 
$$f(x) = x^2 + x + 1$$
 and  $g(x) = \sin x$ 

Now we have to prove fog ≠ gof

$$(fog)(x) = f(g(x))$$

$$= f (\sin x)$$

$$= \sin^2 x + \sin x + 1$$



And (gof) (x) = g (f (x))  
= g (
$$x^2$$
+ x + 1)  
= sin ( $x^2$ + x + 1)  
So, fog  $\neq$  gof.

# 3. If f(x) = |x|, prove that fof = f.

## **Solution:**

Given f(x) = |x|, Now we have to prove that fof = f. Consider (fof) (x) = f(f(x))= f(|x|)= |x|= |x|= f(x)So, (fof) (x) = f(x),  $\forall x \in R$ Hence, fof = f

4. If f(x) = 2x + 5 and  $g(x) = x^2 + 1$  be two real functions, then describe each of the following functions:

- (i) fog
- (ii) gof
- (iii) fof
- (iv) f<sup>2</sup>

Also, show that fof  $\neq f^2$ 

## **Solution:**

 $= 2x^2 + 7$ 

f(x) and g(x) are polynomials.  $\Rightarrow$  f: R  $\rightarrow$  R and g: R  $\rightarrow$  R. So, fog: R  $\rightarrow$  R and gof: R  $\rightarrow$  R. (i) (fog) (x) = f (g (x)) = f (x<sup>2</sup> + 1) = 2 (x<sup>2</sup> + 1) + 5 = 2x<sup>2</sup> + 2 + 5



(ii) (gof) (x) = g (f (x))  
= g (2x + 5)  
= 
$$(2x + 5)^2 + 1$$
  
=  $4x^2 + 20x + 26$   
(iii) (fof) (x) = f (f (x))  
= f (2x + 5)  
= 2 (2x + 5) + 5  
=  $4x + 10 + 5$   
=  $4x + 15$   
(iv)  $f^2$  (x) = f (x) x f (x)  
=  $(2x + 5)(2x + 5)$   
=  $(2x + 5)^2$   
=  $4x^2 + 20x + 25$   
Hence, from (iii) and (iv) clearly fof  $\neq f^2$ 

# 5. If $f(x) = \sin x$ and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?

## **Solution:**

Given  $f(x) = \sin x$  and g(x) = 2x

We know that

f:  $R \rightarrow [-1, 1]$  and g:  $R \rightarrow R$ 

Clearly, the range of f is a subset of the domain of g.

gof:  $R \rightarrow R$ 

(gof)(x) = g(f(x))

 $= g (\sin x)$ 

= 2 sin x

Clearly, the range of g is a subset of the domain of f.

fog:  $R \rightarrow R$ 

So, (fog)(x) = f(g(x))

= f(2x)

 $= \sin(2x)$ 

Clearly, fog ≠ gof

Hence they are not equal functions.



# 6. Let f, g, h be real functions given by $f(x) = \sin x$ , g(x) = 2x and $h(x) = \cos x$ . Prove that fog = go (f h).

### **Solution:**

```
Given that f(x) = \sin x, g(x) = 2x and h(x) = \cos x
We know that f: R \rightarrow [-1, 1] and g: R \rightarrow R
Clearly, the range of g is a subset of the domain of f.
fog: R \rightarrow R
Now, (f h) (x) = f (x) h (x) = (\sin x) (\cos x) = \frac{1}{2} \sin (2x)
Domain of f h is R.
Since range of sin x is [-1, 1], -1 \le \sin 2x \le 1
\Rightarrow -1/2 \leq sin x/2 \leq 1/2
Range of f h = [-1/2, 1/2]
So, (f h): R \rightarrow [(-1)/2, 1/2]
Clearly, range of f h is a subset of g.
\Rightarrow go (f h): R \rightarrow R
\Rightarrow Domains of fog and go (f h) are the same.
So, (fog)(x) = f(g(x))
= f(2x)
= \sin(2x)
And (go (f h)) (x) = g ((f(x), h(x)))
= g (\sin x \cos x)
= 2\sin x \cos x
= \sin(2x)
\Rightarrow (fog) (x) = (go (f h)) (x), \forallx \in R
Hence, fog = go (f h)
```



## **EXERCISE 2.4**

PAGE NO: 2.68

1. State with reason whether the following functions have inverse:

(i) f: 
$$\{1, 2, 3, 4\} \rightarrow \{10\}$$
 with f =  $\{(1, 10), (2, 10), (3, 10), (4, 10)\}$ 

(ii) g: 
$$\{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\}$$
 with  $g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$ 

(iii) h: 
$$\{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$$
 with h =  $\{(2, 7), (3, 9), (4, 11), (5, 13)\}$ 

#### **Solution:**

(i) Given f: 
$$\{1, 2, 3, 4\} \rightarrow \{10\}$$
 with f =  $\{(1, 10), (2, 10), (3, 10), (4, 10)\}$ 

We have:

$$f(1) = f(2) = f(3) = f(4) = 10$$

- $\Rightarrow$  f is not one-one.
- $\Rightarrow$  f is not a bijection.

So, f does not have an inverse.

(ii) Given g:  $\{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\}$  with  $g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$  from the question it is clear that g(5) = g(7) = 4

- $\Rightarrow$  f is not one-one.
- $\Rightarrow$  f is not a bijection.

So, f does not have an inverse.

(iii) Given h:  $\{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$  with h =  $\{(2, 7), (3, 9), (4, 11), (5, 13)\}$ 

Here, different elements of the domain have different images in the co-domain.

 $\Rightarrow$  h is one-one.

Also, each element in the co-domain has a pre-image in the domain.

- $\Rightarrow$  h is onto.
- $\Rightarrow$  h is a bijection.

Therefore h inverse exists.

⇒ h has an inverse and it is given by

$$h^{-1} = \{(7, 2), (9, 3), (11, 4), (13, 5)\}$$

2. Find  $f^{-1}$  if it exists:  $f: A \rightarrow B$ , where

(i) 
$$A = \{0, -1, -3, 2\}$$
;  $B = \{-9, -3, 0, 6\}$  and  $f(x) = 3 x$ .

(ii) 
$$A = \{1, 3, 5, 7, 9\}$$
;  $B = \{0, 1, 9, 25, 49, 81\}$  and  $f(x) = x^2$ 

#### **Solution:**

(i) Given A = 
$$\{0, -1, -3, 2\}$$
; B =  $\{-9, -3, 0, 6\}$  and  $f(x) = 3 x$ .  
So, f =  $\{(0, 0), (-1, -3), (-3, -9), (2, 6)\}$ 



Here, different elements of the domain have different images in the co-domain.

Clearly, this is one-one.

Range of f = Range of f = B

so, f is a bijection and,

Thus, f<sup>-1</sup> exists.

Hence,  $f^{-1} = \{(0, 0), (-3, -1), (-9, -3), (6, 2)\}$ 

(ii) Given A = 
$$\{1, 3, 5, 7, 9\}$$
; B =  $\{0, 1, 9, 25, 49, 81\}$  and  $f(x) = x^2$  So, f =  $\{(1, 1), (3, 9), (5, 25), (7, 49), (9, 81)\}$ 

Here, different elements of the domain have different images in the co-domain.

Clearly, f is one-one.

But this is not onto because the element 0 in the co-domain (B) has no pre-image in the domain (A)

 $\Rightarrow$  f is not a bijection.

So, f<sup>-1</sup>does not exist.

3. Consider f:  $\{1, 2, 3\} \rightarrow \{a, b, c\}$  and g:  $\{a, b, c\} \rightarrow \{apple, ball, cat\}$  defined as f (1) = a, f (2) = b, f (3) = c, g (a) = apple, g (b) = ball and g (c) = cat. Show that f, g and gof are invertible. Find  $f^{-1}$ ,  $g^{-1}$  and  $gof^{-1}$  and show that  $(gof)^{-1} = f^{-1}og^{-1}$ 

#### **Solution:**

Given  $f = \{(1, a), (2, b), (c, 3)\}$  and  $g = \{(a, apple), (b, ball), (c, cat)\}$  Clearly, f and g are bijections.

So, f and g are invertible.

Now,

$$f^{-1} = \{(a,1), (b,2), (3,c)\}$$
 and  $g^{-1} = \{(apple, a), (ball, b), (cat, c)\}$   
So,  $f^{-1}$  o  $g^{-1} = \{apple, 1\}, (ball, 2), (cat, 3)\}$ ......................(1)  
 $f: \{1,2,3,\} \rightarrow \{a, b, c\}$  and  $g: \{a, b, c\} \rightarrow \{apple, ball, cat\}$   
So,  $gof: \{1, 2, 3\} \rightarrow \{apple, ball, cat\}$   
 $\Rightarrow (gof) (1) = g (f (1)) = g (a) = apple$   
 $(gof) (2) = g (f (2))$   
 $= g (b)$   
 $= ball,$   
And  $(gof) (3) = g (f (3))$   
 $= g (c)$   
 $= cat$   
∴  $gof = \{(1, apple), (2, ball), (3, cat)\}$ 



Clearly, gof is a bijection.

So, gof is invertible.

$$(gof)^{-1} = {(apple, 1), (ball, 2), (cat, 3)}.....(2)$$

Form (1) and (2), we get

$$(gof)^{-1} = f^{-1} o g^{-1}$$

4. Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f: A  $\rightarrow$  B, g: B  $\rightarrow$  C be defined as f(x) = 2x + 1 and g(x) =  $x^2 - 2$ . Express (gof)<sup>-1</sup> and f<sup>-1</sup> og<sup>-1</sup> as the sets of ordered pairs and verify that (gof)<sup>-1</sup> = f<sup>-1</sup> og<sup>-1</sup>.

#### **Solution:**

```
Given that f(x) = 2x + 1
\Rightarrow f= {(1, 2(1) + 1), (2, 2(2) + 1), (3, 2(3) + 1), (4, 2(4) + 1)}
= \{(1, 3), (2, 5), (3, 7), (4, 9)\}
Also given that g(x) = x^2 - 2
\Rightarrow g = {(3, 3<sup>2</sup>-2), (5, 5<sup>2</sup>-2), (7, 7<sup>2</sup>-2), (9, 9<sup>2</sup>-2)}
= \{(3, 7), (5, 23), (7, 47), (9, 79)\}
Clearly f and g are bijections and, hence, f^{-1}: B \rightarrow A and g^{-1}: C \rightarrow B exist.
So, f^{-1} = \{(3, 1), (5, 2), (7, 3), (9, 4)\}
And g^{-1} = \{(7, 3), (23, 5), (47, 7), (79, 9)\}
Now, (f^{-1} \circ g^{-1}): C \rightarrow A
f^{-1} \circ g^{-1} = \{(7, 1), (23, 2), (47, 3), (79, 4)\}...(1)
Also, f: A \rightarrow B and g: B \rightarrow C,
\Rightarrow gof: A \rightarrow C, (gof) ^{-1}: C\rightarrow A
So, f<sup>-1</sup> o g<sup>-1</sup>and (gof)<sup>-1</sup> have same domains.
(gof)(x) = g(f(x))
=g(2x + 1)
=(2x + 1)^2 - 2
\Rightarrow (gof) (x) = 4x<sup>2</sup> + 4x + 1 - 2
\Rightarrow (gof) (x) = 4x<sup>2</sup>+ 4x -1
Then, (gof)(1) = g(f(1))
= 4 + 4 - 1
=7,
(gof)(2) = g(f(2))
=4(2)^2+4(2)-1=23,
(gof)(3) = g(f(3))
=4(3)^2+4(3)-1=47 and
```



(gof) (4) = g (f (4))  
= 
$$4(4)^2 + 4(4) - 1 = 79$$
  
So, gof =  $\{(1, 7), (2, 23), (3, 47), (4, 79)\}$   
 $\Rightarrow (gof)^{-1} = \{(7, 1), (23, 2), (47, 3), (79, 4)\}.....$  (2)  
From (1) and (2), we get:  
 $(gof)^{-1} = f^{-1} \circ g^{-1}$ 

# 5. Show that the function f: Q $\rightarrow$ Q, defined by f(x) = 3x + 5, is invertible. Also, find f<sup>-1</sup>

#### **Solution:**

Given function f: Q  $\rightarrow$  Q, defined by f(x) = 3x + 5

Now we have to show that the given function is invertible.

Injection of f:

Let x and y be two elements of the domain (Q),

Such that f(x) = f(y)

$$\Rightarrow$$
 3x + 5 = 3y + 5

$$\Rightarrow$$
 3x = 3y

$$\Rightarrow$$
 x = y

so, f is one-one.

Surjection of f:

Let y be in the co-domain (Q),

Such that f(x) = y

$$\Rightarrow$$
 3x +5 = y

$$\Rightarrow$$
 3x = y - 5

$$\Rightarrow$$
 x = (y -5)/3 belongs to Q domain

 $\Rightarrow$  f is onto.

So, f is a bijection and, hence, it is invertible.

Now we have to find f<sup>-1</sup>:

Let 
$$f^{-1}(x) = y.....(1)$$

$$\Rightarrow$$
 x = f(y)

$$\Rightarrow$$
 x = 3y + 5

$$\Rightarrow$$
 x -5 = 3y

$$\Rightarrow$$
 y = (x - 5)/3

Now substituting this value in (1) we get

So, 
$$f^{-1}(x) = (x - 5)/3$$

# 6. Consider f: R $\rightarrow$ R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse



of f.

### **Solution:**

Given f: R  $\rightarrow$  R given by f(x) = 4x + 3

Now we have to show that the given function is invertible.

Consider injection of f:

Let x and y be two elements of domain (R),

Such that f(x) = f(y)

$$\Rightarrow$$
 4x + 3 = 4y + 3

$$\Rightarrow$$
 4x = 4y

$$\Rightarrow$$
 x = y

So, f is one-one.

Now surjection of f:

Let y be in the co-domain (R),

Such that f(x) = y.

$$\Rightarrow$$
 4x + 3 = y

$$\Rightarrow$$
 4x = y -3

$$\Rightarrow$$
 x = (y-3)/4 in R (domain)

 $\Rightarrow$  f is onto.

So, f is a bijection and, hence, it is invertible.

Now we have to find f<sup>-1</sup>

Let 
$$f^{-1}(x) = y$$
......(1)

$$\Rightarrow$$
 x = f (y)

$$\Rightarrow$$
 x = 4y + 3

$$\Rightarrow$$
 x - 3 = 4y

$$\Rightarrow$$
 y = (x -3)/4

Now substituting this value in (1) we get

So, 
$$f^{-1}(x) = (x-3)/4$$

7. Consider f:  $R \to R^+ \to [4, \infty)$  given by  $f(x) = x^2 + 4$ . Show that f is invertible with inverse  $f^{-1}$  of f given by  $f^{-1}(x) = V$  (x-4) where  $R^+$  is the set of all non-negative real numbers.

#### **Solution:**

Given f:  $R \to R^+ \to [4, \infty)$  given by  $f(x) = x^2 + 4$ .

Now we have to show that f is invertible,

Consider injection of f:



Let x and y be two elements of the domain (Q),

Such that f(x) = f(y)

$$\Rightarrow$$
 x<sup>2</sup> + 4 = y<sup>2</sup> + 4

$$\Rightarrow$$
  $x^2 = y^2$ 

$$\Rightarrow$$
 x = y (as co-domain as R+)

So, f is one-one

Now surjection of f:

Let y be in the co-domain (Q),

Such that f(x) = y

$$\Rightarrow$$
 x<sup>2</sup> + 4 = y

$$\Rightarrow$$
  $x^2 = y - 4$ 

$$\Rightarrow$$
 x =  $\sqrt{(y-4)}$  in R

 $\Rightarrow$  f is onto.

So, f is a bijection and, hence, it is invertible.

Now we have to find f<sup>-1</sup>:

Let 
$$f^{-1}(x) = y.....(1)$$

$$\Rightarrow$$
 x = f (y)

$$\Rightarrow$$
 x =  $y^2 + 4$ 

$$\Rightarrow$$
 x - 4 =  $y^2$ 

$$\Rightarrow$$
 y =  $\sqrt{(x-4)}$ 

So, 
$$f^{-1}(x) = \sqrt{(x-4)}$$

Now substituting this value in (1) we get,

So, 
$$f^{-1}(x) = \sqrt{(x-4)}$$

# 8. If f(x) = (4x + 3)/(6x - 4), $x \ne (2/3)$ show that f(x) = x, for all $x \ne (2/3)$ . What is the inverse of f?

#### **Solution:**

It is given that  $f(x) = (4x + 3)/(6x - 4), x \ne 2/3$ 

Now we have to show fof(x) = x

$$(fof)(x) = f(f(x))$$

$$= f((4x+3)/(6x-4))$$

$$= (4((4x + 3)/(6x - 4)) + 3)/(6((4x + 3)/(6x - 4)) - 4)$$

$$= (16x + 12 + 18x - 12)/(24x + 18 - 24x + 16)$$

$$= (34x)/(34)$$

$$= x$$

Therefore, fof(x) = x for all  $x \ne 2/3$ 



=> fof = 1

Hence, the given function f is invertible and the inverse of f is f itself.

# 9. Consider f: $R^+ \rightarrow [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$ . Show that f is invertible with $f^{-1}(x) = (\sqrt{(x+6)-1})/3$

## **Solution:**

Given f:  $R^+ \rightarrow [-5, \infty)$  given by  $f(x) = 9x^2 + 6x - 5$ 

We have to show that f is invertible.

Injectivity of f:

Let x and y be two elements of domain (R<sup>+</sup>),

Such that f(x) = f(y)

$$\Rightarrow$$
 9x<sup>2</sup> + 6x - 5 = 9y<sup>2</sup> + 6y - 5

$$\Rightarrow$$
 9x<sup>2</sup> + 6x = 9y<sup>2</sup> + 6y

$$\Rightarrow$$
 x = y (As, x, y  $\in$  R<sup>+</sup>)

So, f is one-one.

Surjectivity of f:

Let y is in the co domain (Q)

Such that f(x) = y

$$\Rightarrow$$
 9x<sup>2</sup> + 6x - 5 = y

$$\Rightarrow$$
 9x<sup>2</sup> + 6x = y + 5

$$\Rightarrow$$
 9x<sup>2</sup> + 6x +1 = y + 6 (By adding 1 on both sides)

$$\Rightarrow (3x + 1)^2 = y + 6$$

$$\Rightarrow$$
 3x + 1 =  $\sqrt{(y + 6)}$ 

$$\Rightarrow$$
 3x =  $\sqrt{(y + 6)}$  - 1

$$\Rightarrow$$
 x = ( $\forall$  (y + 6)-1)/3 in R<sup>+</sup> (domain)

f is onto.

So, f is a bijection and hence, it is invertible.

Now we have to find f<sup>-1</sup>

Let 
$$f^{-1}(x) = y....(1)$$

$$\Rightarrow$$
 x = f (y)

$$\Rightarrow$$
 x = 9y<sup>2</sup> + 6y - 5

$$\Rightarrow$$
 x + 5 = 9y<sup>2</sup> + 6y

$$\Rightarrow$$
 x + 6 = 9y<sup>2</sup>+ 6y + 1 (adding 1 on both sides)

$$\Rightarrow$$
 x + 6 =  $(3y + 1)^2$ 

$$\Rightarrow$$
 3y + 1 =  $\sqrt{(x+6)}$ 

$$\Rightarrow$$
 3y = $\sqrt{(x+6)}$  -1



$$\Rightarrow y = (\sqrt{(x+6)-1})/3$$

Now substituting this value in (1) we get,

So, 
$$f^{-1}(x) = (\sqrt{(x+6)-1})/3$$

10. If f: R  $\rightarrow$  R be defined by f(x) =  $x^3$  -3, then prove that  $f^{-1}$  exists and find a formula for  $f^{-1}$ . Hence, find  $f^{-1}$  (24) and  $f^{-1}$  (5).

## **Solution:**

Given f: R  $\rightarrow$  R be defined by f(x) =  $x^3 - 3$ 

Now we have to prove that f<sup>-1</sup> exists

Injectivity of f:

Let x and y be two elements in domain (R),

Such that,  $x^3 - 3 = y^3 - 3$ 

$$\Rightarrow$$
  $x^3 = y^3$ 

$$\Rightarrow x = y$$

So, f is one-one.

Surjectivity of f:

Let y be in the co-domain (R)

Such that f(x) = y

$$\Rightarrow$$
  $x^3 - 3 = y$ 

$$\Rightarrow$$
  $x^3 = y + 3$ 

$$\Rightarrow$$
 x =  $\sqrt[3]{(y+3)}$  in R

 $\Rightarrow$  f is onto.

So, f is a bijection and, hence, it is invertible.

Finding f<sup>-1</sup>:

Let 
$$f^{-1}(x) = y$$
.....(1)

$$\Rightarrow$$
 x= f(y)

$$\Rightarrow$$
 x =  $y^3 - 3$ 

$$\Rightarrow$$
 x + 3 =  $y^3$ 

$$\Rightarrow$$
 y =  $\sqrt[3]{(x + 3)}$  = f<sup>-1</sup>(x) [from (1)]

So, 
$$f^{-1}(x) = \sqrt[3]{(x+3)}$$

Now, 
$$f^{-1}(24) = \sqrt[3]{(24 + 3)}$$

$$=\sqrt[3]{27}$$

$$=\sqrt[3]{3^3}$$

And 
$$f^{-1}(5) = \sqrt[3]{(5+3)}$$

$$=\sqrt[3]{8}$$



$$= \sqrt[3]{2^3}$$
  
= 2

# 11. A function f: R $\rightarrow$ R is defined as f(x) = $x^3 + 4$ . Is it a bijection or not? In case it is a bijection, find $f^{-1}$ (3).

## **Solution:**

Given that f: R  $\rightarrow$  R is defined as f(x) =  $x^3 + 4$ 

Injectivity of f:

Let x and y be two elements of domain (R),

Such that f(x) = f(y)

$$\Rightarrow$$
 x<sup>3</sup> + 4 = y<sup>3</sup> + 4

$$\Rightarrow$$
  $x^3 = y^3$ 

$$\Rightarrow x = y$$

So, f is one-one.

Surjectivity of f:

Let y be in the co-domain (R),

Such that f(x) = y.

$$\Rightarrow$$
 x<sup>3</sup> + 4 = y

$$\Rightarrow$$
  $x^3 = y - 4$ 

$$\Rightarrow$$
 x =  $\sqrt[3]{(y - 4)}$  in R (domain)

 $\Rightarrow$  f is onto.

So, f is a bijection and, hence, it is invertible.

Finding f<sup>-1</sup>:

Let 
$$f^{-1}(x) = y.....(1)$$

$$\Rightarrow$$
 x = f (y)

$$\Rightarrow$$
 x =  $y^3 + 4$ 

$$\Rightarrow$$
 x - 4 = y<sup>3</sup>

$$\Rightarrow$$
 y =  $\sqrt[3]{(x-4)}$ 

So, 
$$f^{-1}(x) = \sqrt[3]{(x-4)}$$
 [from (1)]

$$f^{-1}(3) = \sqrt[3]{(3-4)}$$
  
=  $\sqrt[3]{-1}$