EXERCISE 2.1

1. Give an example of a function

(i) Which is one-one but not onto.
(ii) Which is not one-one but onto.
(iii) Which is neither one-one nor onto.

Solution:

(i) Let $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}$ given by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}+2$

Let us check one-one condition on $f(x)=3 x+2$
Injectivity:
Let x and y be any two elements in the domain (Z), such that $f(x)=f(y)$.
$f(x)=f(y)$
$\Rightarrow 3 x+2=3 y+2$
$\Rightarrow 3 x=3 y$
$\Rightarrow \mathrm{x}=\mathrm{y}$
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$\Rightarrow x=y$
So, f is one-one.
Surjectivity:
Let y be any element in the co-domain (Z), such that $f(x)=y$ for some element x in Z (domain).
Let $f(x)=y$
$\Rightarrow 3 x+2=y$
$\Rightarrow 3 x=y-2$
$\Rightarrow x=(y-2) / 3$. It may not be in the domain (Z)
Because if we take $y=3$,
$x=(y-2) / 3=(3-2) / 3=1 / 3 \notin$ domain Z.
So, for every element in the co domain there need not be any element in the domain such that $f(x)=y$.
Thus, f is not onto.
(ii) Example for the function which is not one-one but onto

Let $f: Z \rightarrow N \cup\{0\}$ given by $f(x)=|x|$
Injectivity:
Let x and y be any two elements in the domain (Z),

Such that $f(x)=f(y)$.
$\Rightarrow|x|=|y|$
$\Rightarrow x= \pm y$
So, different elements of domain f may give the same image.
So, f is not one-one.
Surjectivity:
Let y be any element in the co domain (Z), such that $f(x)=y$ for some element x in Z (domain).
$f(x)=y$
$\Rightarrow|x|=y$
$\Rightarrow x= \pm y$
Which is an element in Z (domain).
So, for every element in the co-domain, there exists a pre-image in the domain.
Thus, f is onto.
(iii) Example for the function which is neither one-one nor onto.

Let $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}$ given by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}+1$
Injectivity:
Let x and y be any two elements in the domain (Z), such that $f(x)=f(y)$.
$f(x)=f(y)$
$\Rightarrow 2 x^{2}+1=2 y^{2}+1$
$\Rightarrow 2 x^{2}=2 y^{2}$
$\Rightarrow x^{2}=y^{2}$
$\Rightarrow x= \pm y$
So, different elements of domain f may give the same image.
Thus, f is not one-one.
Surjectivity:
Let y be any element in the co-domain (Z), such that $f(x)=y$ for some element x in Z (domain).
$f(x)=y$
$\Rightarrow 2 x^{2}+1=y$
$\Rightarrow 2 x^{2}=y-1$
$\Rightarrow x^{2}=(y-1) / 2$
$\Rightarrow x=V((y-1) / 2) \notin Z$ always.
For example, if we take, $y=4$,
$x= \pm V((y-1) / 2)$
$= \pm V((4-1) / 2)$
$= \pm V(3 / 2) \notin Z$
So, x may not be in Z (domain).
Thus, f is not onto.
2. Which of the following functions from A to B are one-one and onto?
(i) $f_{1}=\{(1,3),(2,5),(3,7)\} ; A=\{1,2,3\}, B=\{3,5,7\}$
(ii) $f_{2}=\{(2, a),(3, b),(4, c)\} ; A=\{2,3,4\}, B=\{a, b, c\}$
(iii) $f_{3}=\{(a, x),(b, x),(c, z),(d, z)\} ; A=\{a, b, c, d\},, B=\{x, y, z\}$.

Solution:

(i) Consider $f_{1}=\{(1,3),(2,5),(3,7)\} ; A=\{1,2,3\}, B=\{3,5,7\}$

Injectivity:
$f_{1}(1)=3$
$f_{1}(2)=5$
$f_{1}(3)=7$
\Rightarrow Every element of A has different images in B.
So, f_{1} is one-one.
Surjectivity:
Co-domain of $f_{1}=\{3,5,7\}$
Range of $f_{1}=$ set of images $=\{3,5,7\}$
\Rightarrow Co-domain = range
So, f_{1} is onto.
(ii) Consider $f_{2}=\{(2, a),(3, b),(4, c)\} ; A=\{2,3,4\}, B=\{a, b, c\}$

Injectivity:
$f_{2}(2)=a$
$f_{2}(3)=b$
$f_{2}(4)=c$
\Rightarrow Every element of A has different images in B.
So, f_{2} is one-one.
Surjectivity:
Co-domain of $f_{2}=\{a, b, c\}$
Range of $f_{2}=$ set of images $=\{a, b, c\}$
\Rightarrow Co-domain = range
So, f_{2} is onto.
(iii) Consider $f_{3}=\{(a, x),(b, x),(c, z),(d, z)\} ; A=\{a, b, c, d\},, B=\{x, y, z\}$

Injectivity:
$f_{3}(a)=x$
$\mathrm{f}_{3}(\mathrm{~b})=\mathrm{x}$
$f_{3}(c)=z$
$\mathrm{f}_{3}(\mathrm{~d})=\mathrm{z}$
$\Rightarrow \mathrm{a}$ and b have the same image x .
Also c and d have the same image z
So, f_{3} is not one-one.
Surjectivity:
Co-domain of $f_{3}=\{x, y, z\}$
Range of $f_{3}=$ set of images $=\{x, z\}$
So, the co-domain is not same as the range.
So, f_{3} is not onto.
3. Prove that the function $f: N \rightarrow N$, defined by $f(x)=x^{2}+x+1$, is one-one but not onto

Solution:

Given $f: N \rightarrow N$, defined by $f(x)=x^{2}+x+1$
Now we have to prove that given function is one-one
Injectivity:
Let x and y be any two elements in the domain (N), such that $f(x)=f(y)$.
$\Rightarrow x^{2}+x+1=y^{2}+y+1$
$\Rightarrow\left(x^{2}-y^{2}\right)+(x-y)=0$ -
$\Rightarrow(x+y)(x-y)+(x-y)=0$
$\Rightarrow(x-y)(x+y+1)=0$
$\Rightarrow \mathrm{x}-\mathrm{y}=0[\mathrm{x}+\mathrm{y}+1$ cannot be zero because x and y are natural numbers
$\Rightarrow \mathrm{x}=\mathrm{y}$
So, f is one-one.
Surjectivity:
When $\mathrm{x}=1$
$x^{2}+x+1=1+1+1=3$
$\Rightarrow \mathrm{x}^{2}+\mathrm{x}+1 \geq 3$, for every x in N .
$\Rightarrow \mathrm{f}(\mathrm{x})$ will not assume the values 1 and 2 .
So, f is not onto.
4. Let $A=\{-1,0,1\}$ and $f=\left\{\left(x, x^{2}\right): x \in A\right\}$. Show that $f: A \rightarrow A$ is neither one-one nor onto.

Solution:

Given $A=\{-1,0,1\}$ and $f=\left\{\left(x, x^{2}\right): x \in A\right\}$
Also given that, $f(x)=x^{2}$
Now we have to prove that given function neither one-one or nor onto.
Injectivity:
Let $\mathrm{x}=1$
Therefore $\mathrm{f}(1)=1^{2}=1$ and
$\mathrm{f}(-1)=(-1)^{2}=1$
$\Rightarrow 1$ and -1 have the same images.
So, f is not one-one.
Surjectivity:
Co-domain of $f=\{-1,0,1\}$
$f(1)=1^{2}=1$,
$f(-1)=(-1)^{2}=1$ and
$\mathrm{f}(0)=0$
\Rightarrow Range of $f=\{0,1\}$
So, both are not same.
Hence, f is not onto
5. Classify the following function as injection, surjection or bijection:
(i) $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$
(ii) $f: Z \rightarrow Z$ given by $f(x)=x^{2}$
(iii) $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\mathbf{3}}$
(iv) $f: Z \rightarrow Z$ given by $f(x)=x^{3}$
(v) $f: R \rightarrow R$, defined by $f(x)=|x|$
(vi) $f: Z \rightarrow Z$, defined by $f(x)=x^{2}+x$
(vii) $f: Z \rightarrow Z$, defined by $f(x)=x-5$
(viii) $f: R \rightarrow R$, defined by $f(x)=\sin x$
(ix) $f: R \rightarrow R$, defined by $f(x)=x^{3}+1$
(x) $f: R \rightarrow R$, defined by $f(x)=x^{3}-x$
(xi) $f: R \rightarrow R$, defined by $f(x)=\sin ^{2} x+\cos ^{2} x$
(xii) $f: Q-\{3\} \rightarrow Q$, defined by $f(x)=(2 x+3) /(x-3)$
(xiii) $f: Q \rightarrow Q$, defined by $f(x)=x^{3}+1$
(xiv) $f: R \rightarrow R$, defined by $f(x)=5 x^{3}+4$
($x v$) $f: R \rightarrow R$, defined by $f(x)=5 x^{3}+4$
($x v i$) $f: R \rightarrow R$, defined by $f(x)=1+x^{2}$
(x vii) $f: R \rightarrow R$, defined by $f(x)=x /\left(x^{2}+1\right)$

Solution:

(i) Given $f: N \rightarrow N$, given by $f(x)=x^{2}$

Now we have to check for the given function is injection, surjection and bijection condition.
Injection condition:
Let x and y be any two elements in the domain (N), such that $f(x)=f(y)$.
$f(x)=f(y)$
$x^{2}=y^{2}$
$x=y$ (We do not get \pm because x and y are in N that is natural numbers)
So, f is an injection.
Surjection condition:
Let y be any element in the co-domain (N), such that $f(x)=y$ for some element x in N (domain).
$f(x)=y$
$x^{2}=y$
$x=\sqrt{ } y$, which may not be in N.
For example, if $\mathrm{y}=3$,
$x=\sqrt{ } 3$ is not in N.
So, f is not a surjection.
Also f is not a bijection.
(ii) Given $f: Z \rightarrow Z$, given by $f(x)=x^{2}$

Now we have to check for the given function is injection, surjection and bijection condition.
Injection condition:
Let x and y be any two elements in the domain (Z), such that $f(x)=f(y)$.
$f(x)=f(y)$
$x^{2}=y^{2}$
$x= \pm y$
So, f is not an injection.
Surjection test:
Let y be any element in the co-domain (Z), such that $f(x)=y$ for some element x in Z (domain).
$f(x)=y$
$x^{2}=y$
$x= \pm \sqrt{ } y$ which may not be in Z.
For example, if $y=3$,
$x= \pm \sqrt{ } 3$ is not in Z.
So, f is not a surjection.
Also f is not bijection.
(iii) Given f : $N \rightarrow N$ given by $f(x)=x^{3}$

Now we have to check for the given function is injection, surjection and bijection condition.
Injection condition:
Let x and y be any two elements in the domain (N), such that $f(x)=f(y)$.
$f(x)=f(y)$
$x^{3}=y^{3}$
$x=y$
So, f is an injection
Surjection condition:
Let y be any element in the co-domain (N), such that $f(x)=y$ for some element x in N (domain).
$f(x)=y$
$x^{3}=y$
$x=\sqrt[3]{y}$ which may not be in N.
For example, if $\mathrm{y}=3$,
$x=\sqrt[3]{3}$ is not in N.
So, f is not a surjection and f is not a bijection.
(iv) Given $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}$

Now we have to check for the given function is injection, surjection and bijection condition.
Injection condition:
Let x and y be any two elements in the domain (Z), such that $f(x)=f(y)$
$f(x)=f(y)$
$x^{3}=y^{3}$
$x=y$
So, f is an injection.
Surjection condition:
Let y be any element in the co-domain (Z), such that $f(x)=y$ for some element x in Z (domain).
$f(x)=y$
$x^{3}=y$
$x=\sqrt[3]{y}$ which may not be in Z.
For example, if $y=3$,
$x=\sqrt[3]{3}$ is not in Z.
So, f is not a surjection and f is not a bijection.
(v) Given $f: R \rightarrow R$, defined by $f(x)=|x|$

Now we have to check for the given function is injection, surjection and bijection condition.

Injection test:

Let x and y be any two elements in the domain (R), such that $f(x)=f(y)$
$f(x)=f(y)$
$|x|=|y|$
$x= \pm y$
So, f is not an injection.
Surjection test:
Let y be any element in the co-domain (R), such that $f(x)=y$ for some element x in R (domain).

$$
\begin{aligned}
& f(x)=y \\
& |x|=y
\end{aligned}
$$

$x= \pm y \in Z$
So, f is a surjection and f is not a bijection.
(vi) Given $f: Z \rightarrow Z$, defined by $f(x)=x^{2}+x$

Now we have to check for the given function is injection, surjection and bijection condition.
Injection test:
Let x and y be any two elements in the domain (Z), such that $f(x)=f(y)$.
$f(x)=f(y)$
$x^{2}+x=y^{2}+y$
Here, we cannot say that $x=y$.
For example, $x=2$ and $y=-3$
Then,
$x^{2}+x=2^{2}+2=6$
$y^{2}+y=(-3)^{2}-3=6$
So, we have two numbers 2 and -3 in the domain Z whose image is same as 6 .

So, f is not an injection.
Surjection test:
Let y be any element in the co-domain (Z),
such that $f(x)=y$ for some element x in Z (domain).
$f(x)=y$
$x^{2}+x=y$
Here, we cannot say $x \in Z$.
For example, $y=-4$.
$x^{2}+x=-4$
$x^{2}+x+4=0$
$x=(-1 \pm \vee-5) / 2=(-1 \pm i \sqrt{ } 5) / 2$ which is not in Z.
So, f is not a surjection and f is not a bijection.
(vii) Given $\mathrm{f}: ~ \mathrm{Z} \rightarrow \mathrm{Z}$, defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}-5$

Now we have to check for the given function is injection, surjection and bijection condition.
Injection test:
Let x and y be any two elements in the domain (Z), such that $f(x)=f(y)$.
$f(x)=f(y)$
$x-5=y-5$
$x=y$
So, f is an injection.
Surjection test:
Let y be any element in the co-domain (Z), such that $f(x)=y$ for some element x in Z (domain).
$f(x)=y$
$x-5=y$
$x=y+5$, which is in Z.
So, f is a surjection and f is a bijection
(viii) Given $f: R \rightarrow R$, defined by $f(x)=\sin x$

Now we have to check for the given function is injection, surjection and bijection condition.
Injection test:
Let x and y be any two elements in the domain (R), such that $f(x)=f(y)$.
$f(x)=f(y)$
$\operatorname{Sin} x=\sin y$

Here, x may not be equal to y because $\sin 0=\sin \pi$.
So, 0 and π have the same image 0 .
So, f is not an injection.
Surjection test:
Range of $f=[-1,1]$
Co-domain of $f=R$
Both are not same.
So, f is not a surjection and f is not a bijection.
(ix) Given $f: R \rightarrow R$, defined by $f(x)=x^{3}+1$

Now we have to check for the given function is injection, surjection and bijection condition.
Injection test:
Let x and y be any two elements in the domain (R), such that $f(x)=f(y)$.
$f(x)=f(y)$
$x^{3}+1=y^{3}+1$
$x^{3}=y^{3}$
$x=y$
So, f is an injection.
Surjection test:
Let y be any element in the co-domain (R), such that $f(x)=y$ for some element x in R (domain).
$f(x)=y$
$x^{3}+1=y$
$x=\sqrt[3]{ }(y-1) \in R$
So, f is a surjection.
So, f is a bijection.
(x) Given $f: R \rightarrow R$, defined by $f(x)=x^{3}-x$

Now we have to check for the given function is injection, surjection and bijection condition.
Injection test:
Let x and y be any two elements in the domain (R), such that $f(x)=f(y)$.
$f(x)=f(y)$
$x^{3}-x=y^{3}-y$
Here, we cannot say $x=y$.
For example, $x=1$ and $y=-1$
$x^{3}-x=1-1=0$
$y^{3}-y=(-1)^{3}-(-1)-1+1=0$
So, 1 and -1 have the same image 0 .
So, f is not an injection.
Surjection test:
Let y be any element in the co-domain (R), such that $f(x)=y$ for some element x in R (domain).
$f(x)=y$
$x^{3}-x=y$
By observation we can say that there exist some x in R, such that $x^{3}-x=y$.
So, f is a surjection and f is not a bijection.
(xi) Given $f: R \rightarrow R$, defined by $f(x)=\sin ^{2} x+\cos ^{2} x$

Now we have to check for the given function is injection, surjection and bijection condition.
Injection condition:
$f(x)=\sin ^{2} x+\cos ^{2} x$
We know that $\sin ^{2} x+\cos ^{2} x=1$
So, $f(x)=1$ for every x in R.
So, for all elements in the domain, the image is 1.
So, f is not an injection.
Surjection condition:
Range of $f=\{1\}$
Co-domain of $f=R$
Both are not same.
So, f is not a surjection and f is not a bijection.
(xii) Given $f: Q-\{3\} \rightarrow Q$, defined by $f(x)=(2 x+3) /(x-3)$

Now we have to check for the given function is injection, surjection and bijection condition.
Injection test:
Let x and y be any two elements in the domain $(Q-\{3\})$, such that $f(x)=f(y)$.
$f(x)=f(y)$
$(2 x+3) /(x-3)=(2 y+3) /(y-3)$
$(2 x+3)(y-3)=(2 y+3)(x-3)$
$2 x y-6 x+3 y-9=2 x y-6 y+3 x-9$
$9 x=9 y$
$x=y$
So, f is an injection.
Surjection test:
Let y be any element in the co-domain $(Q-\{3\})$, such that $f(x)=y$ for some element x in Q (domain).
$f(x)=y$
$(2 x+3) /(x-3)=y$
$2 x+3=x y-3 y$
$2 x-x y=-3 y-3$
$x(2-y)=-3(y+1)$
$x=-3(y+1) /(2-y)$ which is not defined at $y=2$.
So, f is not a surjection and f is not a bijection.
(xiii) Given $f: Q \rightarrow Q$, defined by $f(x)=x^{3}+1$

Now we have to check for the given function is injection, surjection and bijection condition.
Injection test:
Let x and y be any two elements in the domain (Q), such that $f(x)=f(y)$.
$f(x)=f(y)$
$x^{3}+1=y^{3}+1$
$x^{3}=y^{3}$
$x=y$
So, f is an injection.
Surjection test:
Let y be any element in the co-domain (Q), such that $f(x)=y$ for some element x in Q (domain).
$f(x)=y$
$x^{3}+1=y$
$x=\sqrt[3]{(y-1)}$, which may not be in Q.
For example, if $y=8$,
$x^{3}+1=8$
$x^{3}=7$
$x=\sqrt[3]{7}$, which is not in Q.
So, f is not a surjection and f is not a bijection.
(xiv) Given $f: R \rightarrow R$, defined by $f(x)=5 x^{3}+4$

Now we have to check for the given function is injection, surjection and bijection
condition.
Injection test:
Let x and y be any two elements in the domain (R), such that $f(x)=f(y)$.
$\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$5 x^{3}+4=5 y^{3}+4$
$5 x^{3}=5 y^{3}$
$x^{3}=y^{3}$
$\mathrm{x}=\mathrm{y}$
So, f is an injection.
Surjection test:
Let y be any element in the co-domain (R), such that $f(x)=y$ for some element x in R (domain).
$f(x)=y$
$5 x^{3}+4=y$
$x^{3}=(y-4) / 5 \in R$
So, f is a surjection and f is a bijection.
($x v$) Given $f: R \rightarrow R$, defined by $f(x)=5 x^{3}+4$
Now we have to check for the given function is injection, surjection and bijection condition.
Injection condition:
Let x and y be any two elements in the domain (R), such that $f(x)=f(y)$.
$\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$5 x^{3}+4=5 y^{3}+4$
$5 x^{3}=5 y^{3}$
$x^{3}=y^{3}$
$x=y$
So, f is an injection.
Surjection test:
Let y be any element in the co-domain (R), such that $f(x)=y$ for some element x in R (domain).
$f(x)=y$
$5 x^{3}+4=y$
$x^{3}=(y-4) / 5 \in R$
So, f is a surjection and f is a bijection.
(xvi) Given $f: R \rightarrow R$, defined by $f(x)=1+x^{2}$

Now we have to check for the given function is injection, surjection and bijection condition.
Injection condition:
Let x and y be any two elements in the domain (R), such that $f(x)=f(y)$.
$f(x)=f(y)$
$1+x^{2}=1+y^{2}$
$x^{2}=y^{2}$
$x= \pm y$
So, f is not an injection.
Surjection test:
Let y be any element in the co-domain (R), such that $f(x)=y$ for some element x in R (domain).
$f(x)=y$
$1+x^{2}=y$
$x^{2}=y-1$
$x= \pm V-1= \pm i^{\prime}$ is not in R.
So, f is not a surjection and f is not a bijection.
(xvii) Given $f: R \rightarrow R$, defined by $f(x)=x /\left(x^{2}+1\right)$

Now we have to check for the given function is injection, surjection and bijection condition.
Injection condition:
Let x and y be any two elements in the domain (R), such that $f(x)=f(y)$.
$f(x)=f(y)$
$x /\left(x^{2}+1\right)=y /\left(y^{2}+1\right)$
$x y^{2}+x=x^{2} y+y$
$x y^{2}-x^{2} y+x-y=0$
$-x y(-y+x)+1(x-y)=0$
$(x-y)(1-x y)=0$
$x=y$ or $x=1 / y$
So, f is not an injection.
Surjection test:
Let y be any element in the co-domain (R), such that $f(x)=y$ for some element x in R (domain).
$f(x)=y$
$x /\left(x^{2}+1\right)=y$
$y x^{2}-x+y=0$
$x=\left(-(-1) \pm V\left(1-4 y^{2}\right)\right) /(2 y)$ if $y \neq 0$
$=\left(1 \pm V\left(1-4 y^{2}\right)\right) /(2 y)$, which may not be in R
For example, if $y=1$, then
$(1 \pm V(1-4)) /(2 y)=(1 \pm i v 3) / 2$, which is not in R
So, f is not surjection and f is not bijection.

6. If $f: A \rightarrow B$ is an injection, such that range of $f=\{a\}$, determine the number of elements in A.

Solution:

Given $f: A \rightarrow B$ is an injection
And also given that range of $f=\{a\}$
So, the number of images of $f=1$
Since, f is an injection, there will be exactly one image for each element of f.
So, number of elements in $A=1$.
7. Show that the function $f: R-\{3\} \rightarrow R-\{2\}$ given by $f(x)=(x-2) /(x-3)$ is a bijection.

Solution:

Given that $\mathrm{f}: \mathrm{R}-\{3\} \rightarrow R-\{2\}$ given by $\mathrm{f}(\mathrm{x})=(\mathrm{x}-2) /(\mathrm{x}-3)$
Now we have to show that the given function is one-one and on-to Injectivity:
Let x and y be any two elements in the domain $(R-\{3\})$, such that $f(x)=f(y)$.
$f(x)=f(y)$
$\Rightarrow(x-2) /(x-3)=(y-2) /(y-3)$
$\Rightarrow(x-2)(y-3)=(y-2)(x-3)$
$\Rightarrow x y-3 x-2 y+6=x y-3 y-2 x+6$
$\Rightarrow \mathrm{x}=\mathrm{y}$
So, f is one-one.
Surjectivity:
Let y be any element in the co-domain $(R-\{2\})$, such that $f(x)=y$ for some element x in $R-\{3\}$ (domain).
$f(x)=y$
$\Rightarrow(x-2) /(x-3)=y$
$\Rightarrow x-2=x y-3 y$
$\Rightarrow x y-x=3 y-2$
$\Rightarrow x(y-1)=3 y-2$
$\Rightarrow x=(3 y-2) /(y-1)$, which is in $R-\{3\}$
So, for every element in the co-domain, there exists some pre-image in the domain.
$\Rightarrow f$ is onto.
Since, f is both one-one and onto, it is a bijection.
8. Let $A=[-1,1]$. Then, discuss whether the following function from A to itself is oneone, onto or bijective:
(i) $f(x)=x / 2$
(ii) $g(x)=|x|$
(iii) $h(x)=x^{2}$

Solution:

(i) Given $f: A \rightarrow A$, given by $f(x)=x / 2$

Now we have to show that the given function is one-one and on-to Injection test:
Let x and y be any two elements in the domain (A), such that $f(x)=f(y)$.
$f(x)=f(y)$
$x / 2=y / 2$
$x=y$
So, f is one-one.
Surjection test:
Let y be any element in the co-domain (A), such that $f(x)=y$ for some element x in A (domain)
$f(x)=y$
$x / 2=y$
$x=2 y$, which may not be in A.
For example, if $y=1$, then
$x=2$, which is not in A.
So, f is not onto.
So, f is not bijective.
(ii) Given $g: A \rightarrow A$, given by $g(x)=|x|$

Now we have to show that the given function is one-one and on-to Injection test:
Let x and y be any two elements in the domain (A), such that $f(x)=f(y)$.
$g(x)=g(y)$
$|x|=|y|$
$x= \pm y$
So, f is not one-one.
Surjection test:
For $y=-1$, there is no value of x in A.
So, g is not onto.
So, g is not bijective.
(iii) Given $h: A \rightarrow A$, given by $h(x)=x^{2}$

Now we have to show that the given function is one-one and on-to
Injection test:
Let x and y be any two elements in the domain (A), such that $h(x)=h(y)$.
$h(x)=h(y)$
$x^{2}=y^{2}$
$x= \pm y$
So, f is not one-one.
Surjection test:
For $y=-1$, there is no value of x in A.
So, h is not onto.
So, h is not bijective.
9. Are the following set of ordered pair of a function? If so, examine whether the mapping is injective or surjective:
(i) $\{(x, y): x$ is a person, y is the mother of $x\}$
(ii) $\{(a, b)$: a is a person, b is an ancestor of $a\}$

Solution:

Let $f=\{(x, y): x$ is a person, y is the mother of $x\}$
As, for each element x in domain set, there is a unique related element y in co-domain set.
So, f is the function.
Injection test:
As, y can be mother of two or more persons
So, f is not injective.
Surjection test:
For every mother y defined by (x, y), there exists a person x for whom y is mother.
So, f is surjective.
Therefore, f is surjective function.
(ii) Let $g=\{(a, b)$: a is a person, b is an ancestor of $a\}$

Since, the ordered map (a, b) does not map 'a' - a person to a living person.
So, g is not a function.
10. Let $A=\{1,2,3\}$. Write all one-one from A to itself.

Solution:

Given $A=\{1,2,3\}$
Number of elements in $A=3$
Number of one-one functions = number of ways of arranging 3 elements $=3!=6$
(i) $\{(1,1),(2,2),(3,3)\}$
(ii) $\{(1,1),(2,3),(3,2)\}$
(iii) $\{(1,2),(2,2),(3,3)\}$
(iv) $\{(1,2),(2,1),(3,3)\}$
(v) $\{(1,3),(2,2),(3,1)\}$
(vi) $\{(1,3),(2,1),(3,2)\}$
11. If $f: R \rightarrow R$ be the function defined by $f(x)=4 x^{3}+7$, show that f is a bijection.

Solution:

Given $f: R \rightarrow R$ is a function defined by $f(x)=4 x^{3}+7$
Injectivity:
Let x and y be any two elements in the domain (R), such that $f(x)=f(y)$
$\Rightarrow 4 x^{3}+7=4 y^{3}+7$
$\Rightarrow 4 x^{3}=4 y^{3}$
$\Rightarrow x^{3}=y^{3}$
$\Rightarrow \mathrm{x}=\mathrm{y}$
So, f is one-one.
Surjectivity:
Let y be any element in the co-domain (R), such that $f(x)=y$ for some element x in R (domain)
$f(x)=y$
$\Rightarrow 4 x^{3}+7=y$
$\Rightarrow 4 x^{3}=y-7$
$\Rightarrow x^{3}=(y-7) / 4$
$\Rightarrow x=\sqrt[3]{(y-7) / 4}$ in R

So, for every element in the co-domain, there exists some pre-image in the domain. f is onto.
Since, f is both one-to-one and onto, it is a bijection.

1. Find gof and fog when $f: R \rightarrow R$ and $g: R \rightarrow R$ is defined by
(i) $f(x)=2 x+3$ and $g(x)=x^{2}+5$.
(ii) $f(x)=2 x+x^{2}$ and $g(x)=x^{3}$
(iii) $f(x)=x^{2}+8$ and $g(x)=3 x^{3}+1$
(iv) $f(x)=x$ and $g(x)=|x|$
(v) $f(x)=x^{2}+2 x-3$ and $g(x)=3 x-4$
(vi) $f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$

Solution:

(i) Given, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$

So, gof: $R \rightarrow R$ and fog: $R \rightarrow R$
Also given that $f(x)=2 x+3$ and $g(x)=x^{2}+5$
Now, (gof) (x) $=g(f(x))$
$=g(2 x+3)$
$=(2 x+3)^{2}+5$
$=4 x^{2}+9+12 x+5$
$=4 x^{2}+12 x+14$
Now, (fog) (x) $=f(\mathrm{~g}(\mathrm{x}))$
$=f\left(x^{2}+5\right)$
$=2\left(x^{2}+5\right)+3$
$=2 x^{2}+10+3$
$=2 x^{2}+13$
(ii) Given, $f: R \rightarrow R$ and $g: R \rightarrow R$
so, gof: $R \rightarrow R$ and fog: $R \rightarrow R$
$f(x)=2 x+x^{2}$ and $g(x)=x^{3}$
(gof) $(x)=g(f(x))$
$=g\left(2 x+x^{2}\right)$
$=\left(2 x+x^{2}\right)^{3}$
Now, $(\mathrm{fog})(x)=\mathrm{f}(\mathrm{g}(\mathrm{x}))$
$=f\left(x^{3}\right)$
$=2\left(x^{3}\right)+\left(x^{3}\right)^{2}$
$=2 x^{3}+x^{6}$
(iii) Given, f: $R \rightarrow R$ and $g: R \rightarrow R$

So, gof: $R \rightarrow R$ and fog: $R \rightarrow R$
$f(x)=x^{2}+8$ and $g(x)=3 x^{3}+1$
(gof) (x) $=\mathrm{g}(\mathrm{f}(\mathrm{x})$)
$=g\left(x^{2}+8\right)$
$=3\left(x^{2}+8\right)^{3}+1$
Now, (fog) (x) $=\mathrm{f}(\mathrm{g}(\mathrm{x}))$
$=\mathrm{f}\left(3 \mathrm{x}^{3}+1\right)$
$=\left(3 x^{3}+1\right)^{2}+8$
$=9 x^{6}+6 x^{3}+1+8$
$=9 x^{6}+6 x^{3}+9$
(iv) Given, f: $R \rightarrow R$ and $g: R \rightarrow R$

So, gof: $R \rightarrow R$ and fog: $R \rightarrow R$
$f(x)=x$ and $g(x)=|x|$
(gof) (x) $=\mathrm{g}(\mathrm{f}(\mathrm{x})$)
$=g(x)$
$=|x|$
Now (fog) (x) = f(g (x))
$=f(|x|)$
$=|x|$
(v) Given, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$

So, gof: $R \rightarrow R$ and fog: $R \rightarrow R$
$f(x)=x^{2}+2 x-3$ and $g(x)=3 x-4$
(gof) $(x)=g(f(x))$
$=g\left(x^{2}+2 x-3\right)$
$=3\left(x^{2}+2 x-3\right)-4$
$=3 x^{2}+6 x-9-4$
$=3 x^{2}+6 x-13$
Now, (fog) (x) $=\mathrm{f}(\mathrm{g}(\mathrm{x}))$
$=f(3 x-4)$
$=(3 x-4)^{2}+2(3 x-4)-3$
$=9 x^{2}+16-24 x+6 x-8-3$
$=9 x^{2}-18 x+5$
(vi) Given, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$

So, gof: $R \rightarrow R$ and fog: $R \rightarrow R$
$f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$
(gof) $(x)=g(f(x))$
$=g\left(8 x^{3}\right)$
$=\left(8 x^{3}\right)^{1 / 3}$
$=\left[(2 x)^{3}\right]^{1 / 3}$
$=2 x$
Now, $(\mathrm{fog})(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$
$=f\left(x^{1 / 3}\right)$
$=8\left(x^{1 / 3}\right)^{3}$
$=8 x$
2. Let $f=\{(3,1),(9,3),(12,4)\}$ and $g=\{(1,3),(3,3)(4,9)(5,9)\}$. Show that gof and fog are both defined. Also, find fog and gof.

Solution:

Given $f=\{(3,1),(9,3),(12,4)\}$ and $g=\{(1,3),(3,3)(4,9)(5,9)\}$
$\mathrm{f}:\{3,9,12\} \rightarrow\{1,3,4\}$ and $\mathrm{g}:\{1,3,4,5\} \rightarrow\{3,9\}$
Co-domain of f is a subset of the domain of g.
So, gof exists and gof: $\{3,9,12\} \rightarrow\{3,9\}$
(gof) (3) $=g(f(3))=g(1)=3$
(gof) (9) $=\mathrm{g}(\mathrm{f}(9))=\mathrm{g}(3)=3$
(gof) (12) $=\mathrm{g}(\mathrm{f}(12))=\mathrm{g}(4)=9$
$\Rightarrow \operatorname{gof}=\{(3,3),(9,3),(12,9)\}$
Co-domain of g is a subset of the domain of f.
So, fog exists and fog: $\{1,3,4,5\} \rightarrow\{3,9,12\}$
$(f o g)(1)=f(g(1))=f(3)=1$
$(f o g)(3)=f(g(3))=f(3)=1$
$(f o g)(4)=f(g(4))=f(9)=3$
$(f o g)(5)=f(g(5))=f(9)=3$
$\Rightarrow \mathrm{fog}=\{(1,1),(3,1),(4,3),(5,3)\}$
3. Let $f=\{(1,-1),(4,-2),(9,-3),(16,4)\}$ and $g=\{(-1,-2),(-2,-4),(-3,-6),(4,8)\}$.

Show that gof is defined while fog is not defined. Also, find gof.

Solution:

Given $f=\{(1,-1),(4,-2),(9,-3),(16,4)\}$ and $g=\{(-1,-2),(-2,-4),(-3,-6),(4,8)\}$
f: $\{1,4,9,16\} \rightarrow\{-1,-2,-3,4\}$ and $g:\{-1,-2,-3,4\} \rightarrow\{-2,-4,-6,8\}$
Co-domain of $f=$ domain of g
So, gof exists and gof: $\{1,4,9,16\} \rightarrow\{-2,-4,-6,8\}$
(gof) (1) $=g(f(1))=g(-1)=-2$
(gof) (4) $=\mathrm{g}(\mathrm{f}(4))=\mathrm{g}(-2)=-4$
(gof) (9) $=\mathrm{g}(\mathrm{f}(9))=\mathrm{g}(-3)=-6$
(gof) (16) $=\mathrm{g}(\mathrm{f}(16))=\mathrm{g}(4)=8$
So, gof $=\{(1,-2),(4,-4),(9,-6),(16,8)\}$
But the co-domain of g is not same as the domain of f.
So, fog does not exist.
4. Let $A=\{a, b, c\}, B=\{u, v, w\}$ and let f and g be two functions from A to B and from B to A, respectively, defined $a s: f=\{(a, v),(b, u),(c, w)\}, g=\{(u, b),(v, a),(w, c)\}$. Show that f and g both are bijections and find fog and gof.

Solution:

Given $f=\{(a, v),(b, u),(c, w)\}, g=\{(u, b),(v, a),(w, c)\}$.
Also given that $A=\{a, b, c\}, B=\{u, v, w\}$
Now we have to show f and g both are bijective.
Consider $\mathrm{f}=\{(\mathrm{a}, \mathrm{v}),(\mathrm{b}, \mathrm{u}),(\mathrm{c}, \mathrm{w})\}$ and $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$
Injectivity of f : No two elements of A have the same image in B.
So, f is one-one.
Surjectivity of f : Co-domain of $\mathrm{f}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$
Range of $f=\{u, v, w\}$
Both are same.
So, f is onto.
Hence, f is a bijection.
Now consider $g=\{(u, b),(v, a),(w, c)\}$ and $g: B \rightarrow A$
Injectivity of g : No two elements of B have the same image in A.
So, g is one-one.
Surjectivity of g : Co-domain of $\mathrm{g}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
Range of $g=\{a, b, c\}$
Both are the same.
So, g is onto.
Hence, g is a bijection.
Now we have to find fog,
we know that Co-domain of g is same as the domain of f.

So, fog exists and fog: $\{\mathrm{u} v, \mathrm{w}\} \rightarrow\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$
$(f o g)(u)=f(g(u))=f(b)=u$
$(f o g)(v)=f(g(v))=f(a)=v$
$(f o g)(w)=f(g(w))=f(c)=w$
So, fog $=\{(u, u),(v, v),(w, w)\}$
Now we have to find gof,
Co-domain of f is same as the domain of g.
So, fog exists and gof: $\{a, b, c\} \rightarrow\{a, b, c\}$
(gof) (a) $=g(f(a))=g(v)=a$
(gof) $(b)=g(f(b))=g(u)=b$
(gof) $(c)=g(f(c))=g(w)=c$
So, $\operatorname{gof}=\{(a, a),(b, b),(c, c)\}$
5. Find fog (2) and gof (1) when $f: R \rightarrow R ; f(x)=x^{2}+8$ and $g: R \rightarrow R ; g(x)=3 x^{3}+1$.

Solution:

Given $f: R \rightarrow R ; f(x)=x^{2}+8$ and $g: R \rightarrow R ; g(x)=3 x^{3}+1$.
Consider (fog) (2) $=\mathrm{f}(\mathrm{g}(2))$
$=f\left(3 \times 2^{3}+1\right)$
$=f(3 \times 8+1)$
$=f(25)$
$=25^{2}+8$
$=633$
(gof) (1) $=g(f(1))$
$=g\left(1^{2}+8\right)$
$=g(9)$
$=3 \times 9^{3}+1$
$=2188$
6. Let R^{+}be the set of all non-negative real numbers. If $f: R^{+} \rightarrow R^{+}$and $g: R^{+} \rightarrow R^{+}$are defined as $f(x)=x^{2}$ and $g(x)=+\sqrt{x}$, find fog and gof. Are they equal functions.

Solution:

Given $f: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$and $\mathrm{g}: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$
So, fog: $\mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$and gof: $\mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$
Domains of fog and gof are the same.
Now we have to find fog and gof also we have to check whether they are equal or not,

Consider (fog) $(x)=f(g(x))$
$=f(\sqrt{x})$
$=V x^{2}$
$=\mathrm{x}$
Now consider (gof) $(x)=g(f(x))$
$=g\left(x^{2}\right)$
$=\sqrt{ } \mathrm{x}^{2}$
$=x$
So, (fog) (x) = (gof) (x), $\forall x \in R^{+}$
Hence, fog = gof
7. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined by $f(x)=x^{2}$ and $g(x)=x+1$. Show that fog \neq gof.

Solution:

Given $f: R \rightarrow R$ and $g: R \rightarrow R$.
So, the domains of f and g are the same.
Consider (fog) $(x)=f(g(x))$
$=f(x+1)=(x+1)^{2}$
$=x^{2}+1+2 x$
Again consider (gof) $(x)=g(f(x))$
$=g\left(x^{2}\right)=x^{2}+1$
So, fog \neq gof

1. Find fog and gof, if
(i) $f(x)=e^{x}, g(x)=\log _{e} x$
(ii) $f(x)=x^{2}, g(x)=\cos x$
(iii) $f(x)=|x|, g(x)=\sin x$
(iv) $f(x)=x+1, g(x)=e^{x}$
(v) $f(x)=\sin ^{-1} x, g(x)=x^{2}$
(vi) $f(x)=x+1, g(x)=\sin x$
(vii) $f(x)=x+1, g(x)=2 x+3$
(viii) $f(x)=c, c \in R, g(x)=\sin x^{2}$
(ix) $f(x)=x^{2}+2, g(x)=1-1 /(1-x)$

Solution:

(i) Given $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}, \mathrm{g}(\mathrm{x})=\log _{\mathrm{e}} \mathrm{x}$

Let $\mathrm{f}: \mathrm{R} \rightarrow(0, \infty)$; and $\mathrm{g}:(0, \infty) \rightarrow \mathrm{R}$
Now we have to calculate fog,
Clearly, the range of g is a subset of the domain of f.
fog: $(0, \infty) \rightarrow R$
(fog) $(x)=f(g(x))$
$=f\left(\log _{e} x\right)$
$=\log _{\mathrm{e}} \mathrm{e}^{\mathrm{x}}$
= x
Now we have to calculate gof,
Clearly, the range of f is a subset of the domain of g.
\Rightarrow fog: $R \rightarrow R$
(gof) $(x)=g(f(x))$
$=g\left(e^{x}\right)$
$=\log _{\mathrm{e}} \mathrm{e}^{\mathrm{x}}$
= x
(ii) $f(x)=x^{2}, g(x)=\cos x$
f: $R \rightarrow[0, \infty) ; g: R \rightarrow[-1,1]$
Now we have to calculate fog,
Clearly, the range of g is not a subset of the domain of f.
\Rightarrow Domain (fog) $=\{\mathrm{x}: \mathrm{x} \in$ domain of g and $\mathrm{g}(\mathrm{x}) \in$ domain of f$\}$
\Rightarrow Domain (fog) $=x: x \in R$ and $\cos x \in R\}$
\Rightarrow Domain of (fog) $=\mathrm{R}$
(fog): $R \rightarrow R$
(fog) $(x)=f(g(x))$
$=f(\cos x)$
$=\cos ^{2} x$
Now we have to calculate gof,
Clearly, the range of f is a subset of the domain of g.
\Rightarrow fog: $R \rightarrow R$
(gof) $(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x})$)
$=g\left(x^{2}\right)$
$=\cos \mathrm{x}^{2}$
(iii) Given $f(x)=|x|, g(x)=\sin x$
f: $R \rightarrow(0, \infty) ; g: R \rightarrow[-1,1]$
Now we have to calculate fog,
Clearly, the range of g is a subset of the domain of f.
\Rightarrow fog: $R \rightarrow R$
$(f o g)(x)=f(g(x))$
$=f(\sin x)$
$=|\sin x|$
Now we have to calculate gof,
Clearly, the range of f is a subset of the domain of g.
$\Rightarrow f o g: R \rightarrow R$
(gof) (x) $=\mathrm{g}(\mathrm{f}(\mathrm{x})$)
$=g(|x|)$
$=\sin |x|$
(iv) Given $f(x)=x+1, g(x)=e^{x}$
f: $R \rightarrow R ; g: R \rightarrow[1, \infty)$
Now we have calculate fog:
Clearly, range of g is a subset of domain of f.
\Rightarrow fog: $R \rightarrow R$
(fog) $(x)=f(g(x))$
$=f\left(e^{x}\right)$
$=\mathrm{e}^{\mathrm{x}}+1$
Now we have to compute gof,
Clearly, range of f is a subset of domain of g.
\Rightarrow fog: $\mathrm{R} \rightarrow \mathrm{R}$
(gof) (x) $=\mathrm{g}(\mathrm{f}(\mathrm{x})$)
$=g(x+1)$
$=\mathrm{e}^{\mathrm{x}+1}$
(v) Given $f(x)=\sin ^{-1} x, g(x)=x^{2}$
$\mathrm{f}:[-1,1] \rightarrow[(-\pi) / 2, \pi / 2] ; \mathrm{g}: \mathrm{R} \rightarrow[0, \infty)$
Now we have to compute fog:
Clearly, the range of g is not a subset of the domain of f.
Domain (fog) $=\{x: x \in$ domain of g and $g(x) \in$ domain of $f\}$
Domain (fog) $=\left\{x: x \in R\right.$ and $\left.x^{2} \in[-1,1]\right\}$
Domain (fog) $=\{x: x \in R$ and $x \in[-1,1]\}$
Domain of (fog) $=[-1,1]$
fog: $[-1,1] \rightarrow R$
$(f o g)(x)=f(g(x))$
$=f\left(x^{2}\right)$
$=\sin ^{-1}\left(x^{2}\right)$
Now we have to compute gof:
Clearly, the range of f is a subset of the domain of g.
fog: $[-1,1] \rightarrow R$
(gof) $(x)=g(f(x))$
$=g\left(\sin ^{-1} x\right)$
$=\left(\sin ^{-1} x\right)^{2}$
(vi) Given $f(x)=x+1, g(x)=\sin x$
$f: R \rightarrow R ; g: R \rightarrow[-1,1]$
Now we have to compute fog
Clearly, the range of g is a subset of the domain of f.
Set of the domain of f.
$\Rightarrow f o g: R \rightarrow R$
$(f o g)(x)=f(g(x))$
$=f(\sin x)$
$=\sin x+1$
Now we have to compute gof,
Clearly, the range of f is a subset of the domain of g.
\Rightarrow fog: $R \rightarrow R$
(gof) $(x)=g(f(x))$
$=g(x+1)$
$=\sin (x+1)$
(vii) Given $f(x)=x+1, g(x)=2 x+3$
$f: R \rightarrow R ; g: R \rightarrow R$
Now we have to compute fog
Clearly, the range of g is a subset of the domain of f.
\Rightarrow fog: $R \rightarrow R$
$(f o g)(x)=f(g(x))$
$=f(2 x+3)$
$=2 x+3+1$
$=2 x+4$
Now we have to compute gof
Clearly, the range of f is a subset of the domain of g.
\Rightarrow fog: $R \rightarrow R$
(gof) $(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x})$)
$=g(x+1)$
$=2(x+1)+3$
$=2 x+5$
(viii) Given $f(x)=c, g(x)=\sin x^{2}$
$\mathrm{f}: \mathrm{R} \rightarrow\{\mathrm{c}\} ; \mathrm{g}: \mathrm{R} \rightarrow[0,1]$
Now we have to compute fog
Clearly, the range of g is a subset of the domain of f.
fog: $R \rightarrow R$
(fog) $(x)=f(g(x))$
$=f\left(\sin x^{2}\right)$
= C
Now we have to compute gof,
Clearly, the range of f is a subset of the domain of g.
\Rightarrow fog: $R \rightarrow R$
(gof) $(x)=g(f(x))$
$=g(c)$
$=\sin \mathrm{c}^{2}$
(ix) Given $f(x)=x^{2}+2$ and $g(x)=1-1 /(1-x)$
f: $R \rightarrow[2, \infty)$

For domain of $\mathrm{g}: 1-\mathrm{x} \neq 0$
$\Rightarrow \mathrm{x} \neq 1$
\Rightarrow Domain of $\mathrm{g}=\mathrm{R}-\{1\}$
$g(x)=1-[1 /(1-x)]=(1-x-1) /(1-x)=-x /(1-x)$
For range of g
$y=(-x) /(1-x)$
$\Rightarrow y-x y=-x$
$\Rightarrow y=x y-x$
$\Rightarrow y=x(y-1)$
$\Rightarrow \mathrm{x}=\mathrm{y} /(\mathrm{y}-1)$
Range of $\mathrm{g}=\mathrm{R}-\{1\}$
So, $\mathrm{g}: \mathrm{R}-\{1\} \rightarrow \mathrm{R}-\{1\}$
Now we have to compute fog
Clearly, the range of g is a subset of the domain of f.
\Rightarrow fog: $\mathrm{R}-\{1\} \rightarrow \mathrm{R}$
$(\mathrm{fog})(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$
$=f(-x /(1-x))$
$=((-x) /(1-x))^{2}+2$
$=\left(x^{2}+2 x^{2}+2-4 x\right) /(1-x)^{2}$
$=\left(3 x^{2}-4 x+2\right) /(1-x)^{2}$
Now we have to compute gof
Clearly, the range of f is a subset of the domain of g.
\Rightarrow gof: $\mathrm{R} \rightarrow \mathrm{R}$
(gof) (x) $=\mathrm{g}(\mathrm{f}(\mathrm{x})$)
$=g\left(x^{2}+2\right)$
$=1-1 /\left(1-\left(x^{2}+2\right)\right)$
$=-1 /\left(1-\left(x^{2}+2\right)\right)$
$=\left(x^{2}+2\right) /\left(x^{2}+1\right)$
2. Let $f(x)=x^{2}+x+1$ and $g(x)=\sin x$. Show that fog \neq gof.

Solution:

Given $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=\sin \mathrm{x}$
Now we have to prove fog \neq gof
(fog) $(x)=f(g(x))$
$=f(\sin x)$
$=\sin ^{2} x+\sin x+1$

And (gof) (x) $=g(f(x))$
$=g\left(x^{2}+x+1\right)$
$=\sin \left(x^{2}+x+1\right)$
So, fog \neq gof.
3. If $f(x)=|x|$, prove that f of $=f$.

Solution:

Given $f(x)=|x|$,
Now we have to prove that $f \circ f$.
Consider (fof) $(x)=f(f(x))$
$=f(|x|)$

$=|x|$
$=f(x)$
So,
(fof) $(x)=f(x), \forall x \in R$
Hence, fof $=f$
4. If $f(x)=2 x+5$ and $g(x)=x^{2}+1$ be two real functions, then describe each of the following functions:
(i) fog
(ii) gof
(iii) fof
(iv) f^{2}

Also, show that fof $\neq \mathbf{f}^{2}$

Solution:

$f(x)$ and $g(x)$ are polynomials.
$\Rightarrow f: R \rightarrow R$ and $g: R \rightarrow R$.
So, fog: $R \rightarrow R$ and gof: $R \rightarrow R$.
(i) $(\mathrm{fog})(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$
$=f\left(x^{2}+1\right)$
$=2\left(x^{2}+1\right)+5$
$=2 x^{2}+2+5$
$=2 x^{2}+7$
(ii) $(\mathrm{gof})(x)=g(f(x))$
$=g(2 x+5)$
$=(2 x+5)^{2}+1$
$=4 x^{2}+20 x+26$
(iii) (fof) (x) $=f(f(x))$
$=f(2 x+5)$
$=2(2 x+5)+5$
$=4 x+10+5$
$=4 x+15$
(iv) $f^{2}(x)=f(x) x f(x)$
$=(2 x+5)(2 x+5)$
$=(2 x+5)^{2}$
$=4 x^{2}+20 x+25$
Hence, from (iii) and (iv) clearly fof $\neq f^{2}$
5. If $f(x)=\sin x$ and $g(x)=2 x$ be two real functions, then describe gof and fog. Are these equal functions?

Solution:

Given $f(x)=\sin x$ and $g(x)=2 x$
We know that
$f: R \rightarrow[-1,1]$ and $g: R \rightarrow R$
Clearly, the range of f is a subset of the domain of g.
gof: $R \rightarrow R$
(gof) $(x)=g(f(x))$
$=g(\sin x)$
$=2 \sin x$
Clearly, the range of g is a subset of the domain of f.
fog: $R \rightarrow R$
So, (fog) $(x)=f(g(x))$
$=f(2 x)$
$=\sin (2 x)$
Clearly, fog \neq gof
Hence they are not equal functions.

6. Let f, g, h be real functions given by $f(x)=\sin x, g(x)=2 x$ and $h(x)=\cos x$. Prove that $\mathrm{fog}=\mathrm{go}(\mathrm{f} h)$.

Solution:

Given that $f(x)=\sin x, g(x)=2 x$ and $h(x)=\cos x$
We know that $f: R \rightarrow[-1,1]$ and $g: R \rightarrow R$
Clearly, the range of g is a subset of the domain of f.
fog: $R \rightarrow R$
Now, $(f h)(x)=f(x) h(x)=(\sin x)(\cos x)=1 / 2 \sin (2 x)$
Domain of $f h$ is R.
Since range of $\sin x$ is $[-1,1],-1 \leq \sin 2 x \leq 1$
$\Rightarrow-1 / 2 \leq \sin x / 2 \leq 1 / 2$
Range of $f \mathrm{~h}=[-1 / 2,1 / 2]$
So, ($\mathrm{f} h$): $\mathrm{R} \rightarrow[(-1) / 2,1 / 2]$
Clearly, range of $f h$ is a subset of g.
\Rightarrow go (f h): $R \rightarrow R$
\Rightarrow Domains of fog and go ($f \mathrm{~h}$) are the same.
So, (fog) $(x)=f(g(x))$
$=f(2 x)$
$=\sin (2 x)$
And (go (fh)) (x) $=g((f(x) . h(x))$
$=g(\sin x \cos x)$
$=2 \sin x \cos x$
$=\sin (2 x)$
$\Rightarrow(f o g)(x)=(g o(f h))(x), \forall x \in R$
Hence, $\mathrm{fog}=$ go (f h)

EXERCISE 2.4
PAGE NO: 2.68

1. State with reason whether the following functions have inverse:
(i) $f:\{1,2,3,4\} \rightarrow\{10\}$ with $f=\{(1,10),(2,10),(3,10),(4,10)\}$
(ii) $g:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ with $g=\{(5,4),(6,3),(7,4),(8,2)\}$
(iii) $h:\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ with $h=\{(2,7),(3,9),(4,11),(5,13)\}$

Solution:

(i) Given $\mathrm{f}:\{1,2,3,4\} \rightarrow\{10\}$ with $\mathrm{f}=\{(1,10),(2,10),(3,10),(4,10)\}$

We have:
$\mathrm{f}(1)=\mathrm{f}(2)=\mathrm{f}(3)=\mathrm{f}(4)=10$
$\Rightarrow f$ is not one-one.
$\Rightarrow f$ is not a bijection.
So, f does not have an inverse.
(ii) Given $\mathrm{g}:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ with $\mathrm{g}=\{(5,4),(6,3),(7,4),(8,2)\}$
from the question it is clear that $\mathrm{g}(5)=\mathrm{g}(7)=4$
$\Rightarrow \mathrm{f}$ is not one-one.
$\Rightarrow \mathrm{f}$ is not a bijection.
So, f does not have an inverse.
(iii) Given h: $\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ with $h=\{(2,7),(3,9),(4,11),(5,13)\}$

Here, different elements of the domain have different images in the co-domain.
$\Rightarrow \mathrm{h}$ is one-one.
Also, each element in the co-domain has a pre-image in the domain.
$\Rightarrow \mathrm{h}$ is onto.
$\Rightarrow \mathrm{h}$ is a bijection.
Therefore h inverse exists.
$\Rightarrow \mathrm{h}$ has an inverse and it is given by
$\mathrm{h}^{-1}=\{(7,2),(9,3),(11,4),(13,5)\}$
2. Find f^{-1} if it exists: $f: A \rightarrow B$, where
(i) $A=\{0,-1,-3,2\} ; B=\{-9,-3,0,6\}$ and $f(x)=3 x$.
(ii) $A=\{1,3,5,7,9\} ; B=\{0,1,9,25,49,81\}$ and $f(x)=x^{2}$

Solution:

(i) Given $A=\{0,-1,-3,2\} ; B=\{-9,-3,0,6\}$ and $f(x)=3 x$.

So, $f=\{(0,0),(-1,-3),(-3,-9),(2,6)\}$

Here, different elements of the domain have different images in the co-domain.
Clearly, this is one-one.
Range of $f=$ Range of $f=B$
so, f is a bijection and,
Thus, f^{-1} exists.
Hence, $f^{-1}=\{(0,0),(-3,-1),(-9,-3),(6,2)\}$
(ii) Given $A=\{1,3,5,7,9\} ; B=\{0,1,9,25,49,81\}$ and $f(x)=x^{2}$

So, $f=\{(1,1),(3,9),(5,25),(7,49),(9,81)\}$
Here, different elements of the domain have different images in the co-domain.
Clearly, f is one-one.
But this is not onto because the element 0 in the co-domain (B) has no pre-image in the domain (A)
$\Rightarrow f$ is not a bijection.
So, f^{-1} does not exist.
3. Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ and $g:\{a, b, c\} \rightarrow\{a p p l e$, ball, cat $\}$ defined as $f(1)$ $=a, f(2)=b, f(3)=c, g(a)=$ apple, $g(b)=b a l l$ and $g(c)=c a t$. Show that f, g and gof are invertible. Find f^{-1}, g^{-1} and gof $^{-1}$ and show that (gof) $)^{-1}=f^{-1} \mathrm{~g}^{-1}$

Solution:

Given $f=\{(1, a),(2, b),(c, 3)\}$ and $g=\{(a$, apple) , (b , ball) , (c , cat) $\}$ Clearly , f and g are bijections.
So, f and g are invertible.
Now,
$\mathrm{f}^{-1}=\{(\mathrm{a}, 1),(\mathrm{b}, 2),(3, \mathrm{c})\}$ and $\mathrm{g}^{-1}=\{($ apple, a$),($ ball , b) $),(\mathrm{cat}, \mathrm{c})\}$
So, $\mathrm{f}^{-1} \mathrm{og}^{-1}=\{$ apple, 1), (ball, 2), (cat, 3)\}......... (1)
$\mathrm{f}:\{1,2,3,\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{g}:\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \rightarrow\{$ apple, ball, cat $\}$
So, gof: $\{1,2,3\} \rightarrow$ \{apple, ball, cat $\}$
\Rightarrow (gof) (1) $=\mathrm{g}(\mathrm{f}(1))=\mathrm{g}(\mathrm{a})=$ apple
(gof) (2) $=\mathrm{g}(\mathrm{f}(2))$
$=g(b)$
= ball,
And (gof) (3) $=\mathrm{g}(\mathrm{f}(3))$
= g (c)
= cat
\therefore gof $=\{(1$, apple $),(2$, ball $),(3$, cat $)\}$

Clearly, gof is a bijection.
So, gof is invertible.
$(\text { gof })^{-1}=\{($ apple, 1$),($ ball, 2$),($ cat, 3$)\} \ldots . .$. .
Form (1) and (2), we get
$(\text { gof })^{-1}=f^{-1} \circ$ g $^{-1}$
4. Let $A=\{1,2,3,4\} ; B=\{3,5,7,9\} ; C=\{7,23,47,79\}$ and $f: A \rightarrow B, g: B \rightarrow C$ be defined as $f(x)=2 x+1$ and $g(x)=x^{2}-2$. Express (gof) ${ }^{-1}$ and $f^{-1} \mathrm{og}^{-1}$ as the sets of ordered pairs and verify that (gof) ${ }^{-1}=f^{-1} \mathrm{og}^{-1}$.

Solution:

Given that $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$
$\Rightarrow \mathrm{f}=\{(1,2(1)+1),(2,2(2)+1),(3,2(3)+1),(4,2(4)+1)\}$
$=\{(1,3),(2,5),(3,7),(4,9)\}$
Also given that $g(x)=x^{2}-2$
$\Rightarrow g=\left\{\left(3,3^{2}-2\right),\left(5,5^{2}-2\right),\left(7,7^{2}-2\right),\left(9,9^{2}-2\right)\right\}$
$=\{(3,7),(5,23),(7,47),(9,79)\}$
Clearly f and g are bijections and, hence, $f^{-1}: B \rightarrow A$ and $g^{-1}: C \rightarrow B$ exist.
So, $f^{-1}=\{(3,1),(5,2),(7,3),(9,4)\}$
And $\mathrm{g}^{-1}=\{(7,3),(23,5),(47,7),(79,9)\}$
Now, $\left(f^{-1} \circ^{-1}\right): C \rightarrow A$
$f^{-1} \circ g^{-1}=\{(7,1),(23,2),(47,3),(79,4)\}$.
Also, f: $A \rightarrow B$ and g: $B \rightarrow C$,
\Rightarrow gof: $A \rightarrow C$, (gof) ${ }^{-1}: C \rightarrow A$
So, $f^{-1} \circ \mathrm{~g}^{-1}$ and (gof) ${ }^{-1}$ have same domains.
(gof) $(x)=g(f(x))$
$=g(2 x+1)$
$=(2 x+1)^{2}-2$
\Rightarrow (gof) $(x)=4 x^{2}+4 x+1-2$
\Rightarrow (gof) $(x)=4 x^{2}+4 x-1$
Then, (gof) (1) $=g(f(1))$
$=4+4-1$
$=7$,
(gof) (2) $=\mathrm{g}(\mathrm{f}(2))$
$=4(2)^{2}+4(2)-1=23$,
(gof) (3) $=g(f(3))$
$=4(3)^{2}+4(3)-1=47$ and
(gof) (4) $=g(f(4))$
$=4(4)^{2}+4(4)-1=79$
So, gof $=\{(1,7),(2,23),(3,47),(4,79)\}$
$\Rightarrow(\text { gof })^{-1}=\{(7,1),(23,2),(47,3),(79,4)\}$
From (1) and (2), we get:
$\left(\right.$ gof) ${ }^{-1}=f^{-1} \mathrm{og}^{-1}$
5. Show that the function $f: Q \rightarrow Q$, defined by $f(x)=3 x+5$, is invertible. Also, find f^{-1}

Solution:

Given function $\mathrm{f}: \mathrm{Q} \rightarrow \mathrm{Q}$, defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}+5$
Now we have to show that the given function is invertible.

Injection of f :

Let x and y be two elements of the domain (Q),
Such that $f(x)=f(y)$
$\Rightarrow 3 x+5=3 y+5$
$\Rightarrow 3 x=3 y$
$\Rightarrow x=y$
so, f is one-one.
Surjection of f :
Let y be in the co-domain (Q),
Such that $f(x)=y$
$\Rightarrow 3 x+5=y$
$\Rightarrow 3 x=y-5$
$\Rightarrow x=(y-5) / 3$ belongs to Q domain
$\Rightarrow \mathrm{f}$ is onto.
So, f is a bijection and, hence, it is invertible.
Now we have to find f^{-1} :
Let $f^{-1}(x)=y$
$\Rightarrow \mathrm{x}=\mathrm{f}(\mathrm{y})$
$\Rightarrow x=3 y+5$
$\Rightarrow x-5=3 y$
$\Rightarrow y=(x-5) / 3$
Now substituting this value in (1) we get
So, $f^{-1}(x)=(x-5) / 3$
6. Consider $f: R \rightarrow R$ given by $f(x)=4 x+3$. Show that f is invertible. Find the inverse
of f.

Solution:

Given $f: R \rightarrow$ R given by $f(x)=4 x+3$
Now we have to show that the given function is invertible.
Consider injection of f :
Let x and y be two elements of domain (R),
Such that $f(x)=f(y)$
$\Rightarrow 4 x+3=4 y+3$
$\Rightarrow 4 x=4 y$
$\Rightarrow x=y$
So, f is one-one.
Now surjection of f :
Let y be in the co-domain (R),
Such that $f(x)=y$.
$\Rightarrow 4 \mathrm{x}+3=\mathrm{y}$
$\Rightarrow 4 x=y-3$
$\Rightarrow x=(y-3) / 4$ in R (domain)
$\Rightarrow \mathrm{f}$ is onto.
So, f is a bijection and, hence, it is invertible.
Now we have to find f^{-1}
Let $f^{-1}(x)=y$
$\Rightarrow \mathrm{x}=\mathrm{f}(\mathrm{y})$
$\Rightarrow x=4 y+3$
$\Rightarrow x-3=4 y$
$\Rightarrow y=(x-3) / 4$
Now substituting this value in (1) we get
So, $f^{-1}(x)=(x-3) / 4$
7. Consider $f: R \rightarrow R^{+} \rightarrow[4, \infty)$ given by $f(x)=x^{2}+4$. Show that f is invertible with inverse f^{-1} of f given by $f^{-1}(x)=V(x-4)$ where R^{+}is the set of all non-negative real numbers.

Solution:

Given $f: R \rightarrow R^{+} \rightarrow[4, \infty)$ given by $f(x)=x^{2}+4$.
Now we have to show that f is invertible,
Consider injection of f :

Let x and y be two elements of the domain (Q),
Such that $f(x)=f(y)$
$\Rightarrow x^{2}+4=y^{2}+4$
$\Rightarrow x^{2}=y^{2}$
$\Rightarrow x=y \quad$ (as co-domain as $R+$)
So, f is one-one
Now surjection of f :
Let y be in the co-domain (Q),
Such that $f(x)=y$
$\Rightarrow x^{2}+4=y$
$\Rightarrow x^{2}=y-4$
$\Rightarrow x=V(y-4)$ in R
$\Rightarrow \mathrm{f}$ is onto.
So, f is a bijection and, hence, it is invertible.
Now we have to find f^{-1} :
Let $\mathrm{f}^{-1}(\mathrm{x})=\mathrm{y} . . .$. (1)
$\Rightarrow \mathrm{x}=\mathrm{f}(\mathrm{y})$
$\Rightarrow x=y^{2}+4$
$\Rightarrow x-4=y^{2}$
$\Rightarrow y=V(x-4)$
So, $f^{-1}(x)=V(x-4)$
Now substituting this value in (1) we get,
So, $f^{-1}(x)=V(x-4)$
8. If $f(x)=(4 x+3) /(6 x-4), x \neq(2 / 3)$ show that $f o f(x)=x$, for all $x \neq(2 / 3)$. What is the inverse of f ?

Solution:

It is given that $f(x)=(4 x+3) /(6 x-4), x \neq 2 / 3$
Now we have to show $f \circ f(x)=x$
$(f \circ f)(x)=f(f(x))$
$=f((4 x+3) /(6 x-4))$
$=(4((4 x+3) /(6 x-4))+3) /(6((4 x+3) /(6 x-4))-4)$
$=(16 x+12+18 x-12) /(24 x+18-24 x+16)$
$=(34 x) /(34)$
$=x$
Therefore, fof $(x)=x$ for all $x \neq 2 / 3$
\Rightarrow fof $=1$
Hence, the given function f is invertible and the inverse of f is f itself.
9. Consider $f: R^{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible with $f^{-1}(x)=(V(x+6)-1) / 3$

Solution:

Given $f: R^{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$
We have to show that f is invertible.
Injectivity of f :
Let x and y be two elements of domain $\left(R^{+}\right)$,
Such that $f(x)=f(y)$
$\Rightarrow 9 x^{2}+6 x-5=9 y^{2}+6 y-5$
$\Rightarrow 9 x^{2}+6 x=9 y^{2}+6 y$
$\Rightarrow x=y\left(A s, x, y \in R^{+}\right)$
So, f is one-one.

Surjectivity of f :

Let y is in the co domain (Q)
Such that $f(x)=y$
$\Rightarrow 9 x^{2}+6 x-5=y$
$\Rightarrow 9 x^{2}+6 x=y+5$
$\Rightarrow 9 x^{2}+6 x+1=y+6$ (By adding 1 on both sides)
$\Rightarrow(3 x+1)^{2}=y+6$
$\Rightarrow 3 x+1=v(y+6)$
$\Rightarrow 3 x=V(y+6)-1$
$\Rightarrow x=(V(y+6)-1) / 3$ in R^{+}(domain)
f is onto.
So, f is a bijection and hence, it is invertible.
Now we have to find f^{-1}
Let $f^{-1}(x)=y$
$\Rightarrow \mathrm{x}=\mathrm{f}(\mathrm{y})$
$\Rightarrow x=9 y^{2}+6 y-5$
$\Rightarrow x+5=9 y^{2}+6 y$
$\Rightarrow x+6=9 y^{2}+6 y+1 \quad$ (adding 1 on both sides)
$\Rightarrow x+6=(3 y+1)^{2}$
$\Rightarrow 3 y+1=v(x+6)$
$\Rightarrow 3 y=V(x+6)-1$
$\Rightarrow y=(v(x+6)-1) / 3$
Now substituting this value in (1) we get,
So, $f^{-1}(x)=(v(x+6)-1) / 3$
10. If $f: R \rightarrow R$ be defined by $f(x)=x^{3}-3$, then prove that f^{-1} exists and find a formula for f^{-1}. Hence, find $f^{-1}(24)$ and $f^{-1}(5)$.

Solution:

Given $f: R \rightarrow R$ be defined by $f(x)=x^{3}-3$
Now we have to prove that f^{-1} exists
Injectivity of f :
Let x and y be two elements in domain (R),
Such that, $x^{3}-3=y^{3}-3$
$\Rightarrow x^{3}=y^{3}$
$\Rightarrow \mathrm{x}=\mathrm{y}$
So, f is one-one.
Surjectivity of f :
Let y be in the co-domain (R)
Such that $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow x^{3}-3=y$
$\Rightarrow x^{3}=y+3$
$\Rightarrow x=\sqrt[3]{(} y+3)$ in R
$\Rightarrow f$ is onto.
So, f is a bijection and, hence, it is invertible.
Finding f^{-1} :
Let $f^{-1}(x)=y$
$\Rightarrow \mathrm{x}=\mathrm{f}(\mathrm{y})$
$\Rightarrow x=y^{3}-3$
$\Rightarrow \mathrm{x}+3=\mathrm{y}^{3}$
$\Rightarrow y=\sqrt[3]{(x+3)}=\mathrm{f}^{-1}(\mathrm{x}) \quad$ [from (1)]
So, $f^{-1}(x)=\sqrt[3]{(x+3)}$
Now, $f^{-1}(24)=\sqrt[3]{(24+3)}$
$=\sqrt[3]{27}$
$=\sqrt[3]{3^{3}}$
$=3$
And $f^{-1}(5)=\sqrt[3]{(5+3)}$
$=\sqrt[3]{8}$
$=\sqrt[3]{2^{3}}$
$=2$
11. A function $f: R \rightarrow R$ is defined as $f(x)=x^{3}+4$. Is it a bijection or not? In case it is a bijection, find $f^{-1}(3)$.

Solution:

Given that $f: R \rightarrow R$ is defined as $f(x)=x^{3}+4$
Injectivity of f :
Let x and y be two elements of domain (R),
Such that $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$\Rightarrow x^{3}+4=y^{3}+4$
$\Rightarrow x^{3}=y^{3}$
$\Rightarrow \mathrm{x}=\mathrm{y}$
So, f is one-one.
Surjectivity of f :
Let y be in the co-domain (R),
Such that $\mathrm{f}(\mathrm{x})=\mathrm{y}$.
$\Rightarrow x^{3}+4=y$
$\Rightarrow x^{3}=y-4$
$\Rightarrow x=\sqrt[3]{(y-4)}$ in R (domain)
$\Rightarrow \mathrm{f}$ i onto.
So, f is a bijection and, hence, it is invertible.
Finding f^{-1} :
Let $f^{-1}(x)=y$.
$\Rightarrow \mathrm{x}=\mathrm{f}(\mathrm{y})$
$\Rightarrow x=y^{3}+4$
$\Rightarrow \mathrm{x}-4=\mathrm{y}^{3}$
$\Rightarrow y=\sqrt[3]{(x-4)}$
So, $f^{-1}(x)=\sqrt[3]{(x-4) \quad[f r o m ~(1)] ~}$
$f^{-1}(3)=\sqrt[3]{(3-4)}$
$=\sqrt[3]{-1}$
$=-1$

