

EXERCISE 4.3

PAGE NO: 4.14

1. Find the principal value of each of the following:

- (i) $tan^{-1} (1/\sqrt{3})$
- (ii) tan-1 (-1/v3)
- (iii) $tan^{-1} (cos (\pi/2))$
- (iv) $tan^{-1} (2 cos (2\pi/3))$

Solution:

(i) Given $tan^{-1}(1/\sqrt{3})$

We know that for any $x \in R$, tan^{-1} represents an angle in $(-\pi/2, \pi/2)$ whose tangent is x.

So, $tan^{-1}(1/\sqrt{3}) = an$ angle in $(-\pi/2, \pi/2)$ whose tangent is $(1/\sqrt{3})$

But we know that the value is equal to $\pi/6$

Therefore $tan^{-1}(1/\sqrt{3}) = \pi/6$

Hence the principal value of $tan^{-1}(1/\sqrt{3}) = \pi/6$

(ii) Given $tan^{-1} (-1/\sqrt{3})$

We know that for any $x \in R$, tan^{-1} represents an angle in $(-\pi/2, \pi/2)$ whose tangent is x.

So, $tan^{-1}(-1/\sqrt{3}) = an$ angle in $(-\pi/2, \pi/2)$ whose tangent is $(1/\sqrt{3})$

But we know that the value is equal to $-\pi/6$

Therefore $tan^{-1}(-1/\sqrt{3}) = -\pi/6$

Hence the principal value of $tan^{-1}(-1/\sqrt{3}) = -\pi/6$

(iii) Given that $tan^{-1} (cos (\pi/2))$

But we know that $\cos (\pi/2) = 0$

We know that for any $x \in R$, tan^{-1} represents an angle in $(-\pi/2, \pi/2)$ whose tangent is x.

Therefore $tan^{-1}(0) = 0$

Hence the principal value of tan^{-1} ($cos(\pi/2)$ is 0.

(iv) Given that tan^{-1} (2 cos (2 π /3))

But we know that $\cos \pi/3 = 1/2$

So, $\cos(2\pi/3) = -1/2$

Therefore $tan^{-1} (2 cos (2\pi/3)) = tan^{-1} (2 \times - \frac{1}{2})$

= tan⁻¹(-1)

 $= - \pi/4$

Hence, the principal value of tan^{-1} (2 cos (2 π /3)) is - π /4