Exercise IO(B)

Page No: 140

1. In an A.P., ten times of its tenth term is equal to thirty times of its 30^{th} term. Find its 40^{th} term. Solution:

Given condition, $10 t_{10} = 30 t_{30} in an A.P.$ To find: $t_{40} = ?$ We know that, $t_n = a + (n - 1)d$ So, $10 t_{10} = 30 t_{30}$ 10(a + (10 - 1)d) = 30(a + (30 - 1)d) 10(a + 9d) = 30(a + 29d) a + 9d = 3(a + 29d) a + 9d = 3a + 87d 2a + 78d = 0 2(a + 39d) = 0 $a + 39d = a + (40 - 1)d = t_{40} = 0$ Therefore, the 40^{th} term of the A.P. is 0

2. How many two-digit numbers are divisible by 3? Solution:

The 2-digit numbers divisible by 3 are as follows: 12, 15, 18, 21,, 99
It's seen that the above forms an A.P. with $a=12,\,d=3$ and last $term(n^{th}\ term)=99$ We know that, $t_n=a+(n-1)d$ So,

99 = 12 + (n - 1)399 = 12 + 3n - 3

99 = 9 + 3n

3n = 90

n = 90/3 = 30

Hence, the number of 2-digit numbers divisible by 3 is 30

3. Which term of A.P. 5, 15, 25 will be 130 more than its 31st term? Solution:

Given A.P. is 5, 15, 25, a = 5, d = 10From the question, we have $t_n = t_{31} + 130$ We know that,

$$\begin{split} t_n &= a + (n-1)d \\ So, \\ 5 + (n-1)10 &= 5 + (31-1)10 + 130 \\ 10n - 10 &= 300 + 130 \\ 10n &= 430 + 10 = 440 \\ n &= 440/10 = 44 \end{split}$$

Thus, the 44th term of the given A.P. is 130 more than its 31st term.

4. Find the value of p, if x, 2x + p and 3x + 6 are in A.P Solution:

Given that,

x, 2x + p and 3x + 6 are in A.P

So, the common difference between the terms must be the same.

Hence,

$$2x + p - x = 3x + 6 - (2x + p)$$

$$x + p = x + 6 - p$$

$$2p = 6$$

$$p = 3$$

5. If the 3^{rd} and the 9^{th} terms of an arithmetic progression are 4 and -8 respectively, which term of it is zero?

Solution:

Given in an A.P.

$$t_3 = 4$$
 and $t_9 = -8$

We know that,

$$t_n = a + (n - 1)d$$

So,

$$a + (3 - 1)d = 4$$
 and $a + (9 - 1)d = -8$

$$a + 2d = 4$$
 and $a + 8d = -8$

Subtracting both the equations we get,

$$6d = -12$$

$$d = -2$$

Using the value of d,

$$a + 2(-2) = 4$$

$$a - 4 = 4$$

$$a = 8$$

$$t_n = 0$$

$$8 + (n - 1)(-2) = 0$$

$$8 - 2n + 2 = 0$$

$$10 - 2n = 0$$

$$10 = 2n$$

$$n = 5$$

Thus, the 5th term of the A.P. is zero.

6. How many three-digit numbers are divisible by 87? Solution:

The 3-digit numbers divisible by 87 are starting from: 174, 261,, 957

This forms an A.P. with a = 174 and d = 87

And we know that,

$$t_n = a + (n - 1)d$$

So,

$$957 = 174 + (n - 1)87$$

$$783 = (n - 1)87$$

$$(n-1)=9$$

$$n = 10$$

Thus, 10 three-digit numbers are divisible by 87.

7. For what value of n, the nth term of A.P 63, 65, 67, and nth term of A.P. 3, 10, 17,...... are equal to each other? Solution:

Given,

$$A.P._1 = 63, 65, 67, \dots$$

$$a = 63$$
, $d = 2$ and $t_n = 63 + (n - 1)2$

$$A.P._2 = 3, 10, 17, \dots$$

$$a = 3$$
, $d = 7$ and $t_n = 3 + (n - 1)7$

Then according to the question,

$$n^{th}$$
 of A.P.₁ = n^{th} of A.P.₂

$$63 + (n-1)2 = 3 + (n-1)7$$

$$60 + 2n - 2 = 7n - 7$$

$$58 + 7 = 5n$$

$$n = 65/5 = 13$$

Therefore, the 13th term of both the A.P.s is equal to each other.

8. Determine the A.P. whose 3rd term is 16 and the 7th term exceeds the 5th term by 12. Solution:

Given,

$$t_3$$
 of an A.P. = 16 and

$$t_7 = t_5 + 12$$

We know that,

$$t_n = a + (n - 1)d$$

So,

$$t_3 = a + (3 - 1)d = 16$$

$$a + 2d = 16 \dots (i)$$

And,

$$a + (7 - 1)d = a + (5 - 1)d + 12$$

$$6d = 4d + 12$$

2d = 12 d = 6Using 'd' in (i) we get, a + 2(6) = 16 a + 12 = 16a = 4

Hence, after finding the first term =4 and common difference =6 the A.P. can be formed. i.e. $4, 10, 16, 22, 28, \ldots$

