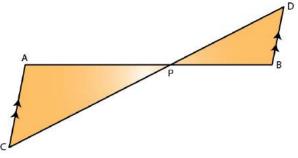


## Exercise 15(A)

# Page No: 213

1. In the figure, given below, straight lines AB and CD intersect at P; and AC || BD. Prove that: (i)  $\triangle$ APC and  $\triangle$ BPD are similar.

(ii) If BD = 2.4 cm, AC = 3.6 cm, PD = 4.0 cm and PB = 3.2 cm; find the lengths of PA and PC.

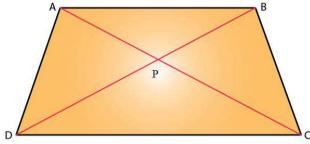


#### Solution:

- (i) In  $\triangle APC$  and  $\triangle BPD$ , we have  $\angle APC = \angle BPD$  [Vertically opposite angles]  $\angle ACP = \angle BDP$  [Alternate angles as, AC || BD] Thus,  $\triangle APC \sim \triangle BPD$  by AA similarity criterion
- (ii) So, by corresponding parts of similar triangles, we have PA/PB = PC/PD = AC/BDGiven, BD = 2.4 cm, AC = 3.6 cm, PD = 4.0 cm and PB = 3.2 cm PA/(3.2) = PC/4 = 3.6/2.4 PA/3.2 = 3.6/2.4 and PC/4 = 3.6/2.4Thus,  $PA = (3.6 \times 3.2)/2.4 = 4.8$  cm and  $PC = (3.6 \times 4)/2.4 = 6$  cm

2. In a trapezium ABCD, side AB is parallel to side DC; and the diagonals AC and BD intersect each other at point P. Prove that:
(i) Δ APB is similar to Δ CPD.

(i)  $\triangle$  APB is similar to  $\triangle$  CPI (ii) PA x PD = PB x PC. Solution:



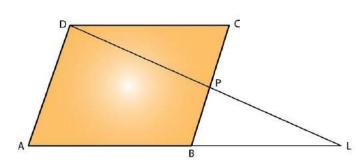
(i) In  $\triangle APB$  and  $\triangle CPD$ , we have  $\angle APB = \angle CPD$  [Vertically opposite angles]  $\angle ABP = \angle CDP$  [Alternate angles as,  $AB \parallel DC$ ] Thus,  $\triangle APB \sim \triangle CPD$  by AA similarity criterion.



(ii) As  $\triangle APB \sim \triangle CPD$ Since the corresponding sides of similar triangles are proportional, we have PA/PC = PB/PDThus,  $PA \ge PB \ge PB \ge PC$ 

3. P is a point on side BC of a parallelogram ABCD. If DP produced meets AB produced at point L, prove that:
(i) DP : PL = DC : BL.
(ii) DL : DP = AL : DC.

Solution:

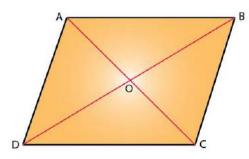


- (i) As AD||BC, we have AD|| BP also.
  So, by BPT
  DP/PL = AB/BL
  And, since ABCD is a parallelogram, AB = DC
  Hence,
  DP/PL = DC/BL
  i.e., DP : PL = DC : BL
- (ii) As AD||BC, we have AD|| BP also. So, by BPT DL/DP = AL/AB And, since ABCD is a parallelogram, AB = DC Hence, DL/DP = AL/AB i.e., DL : DP = AL : DC

4. In quadrilateral ABCD, the diagonals AC and BD intersect each other at point O. If AO = 2CO and BO = 2DO; show that:
(i) Δ AOB is similar to Δ COD.
(ii) OA x OD = OB x OC.
Solution:

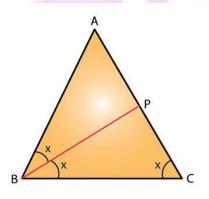






- (i) Given, AO = 2CO and BO = 2DO, AO/CO = 2/1 = BO/DOAnd,  $\angle AOB = \angle DOC$  [Vertically opposite angles] Hence,  $\triangle AOB \sim \triangle COD$  [SAS criterion for similarity]
- (ii) As, AO/CO = 2/1 = BO/DO [Given] Thus,  $OA \times OD = OB \times OC$

5. In Δ ABC, angle ABC is equal to twice the angle ACB, and bisector of angle ABC meets the opposite side at point P. Show that :
(i) CB : BA = CP : PA
(ii) AB x BC = BP x CA
Solution:



(i) In ∆ ABC, we have
∠ABC = 2 ∠ACB [Given]
Now, let ∠ACB = x
So, ∠ABC = 2x
Also given, BP is bisector of ∠ABC
Thus, ∠ABP = ∠PBC = x
By using the angle bisector theorem,
i.e. the bisector of an angle divides the side opposite to it in the ratio of other two sides.
Therefore, CB: BA = CP: PA.

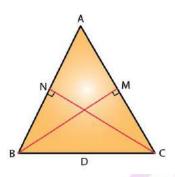


(ii) In  $\triangle$  ABC and  $\triangle$  APB,  $\angle$ ABC =  $\angle$ APB [Exterior angle property]  $\angle$ BCP =  $\angle$ ABP [Given] Thus,  $\triangle$ ABC ~  $\triangle$ APB by AA criterion for similarity Now, since corresponding sides of similar triangles are proportional we have CA/AB = BC/BP Therefore, AB x BC = BP x CA

6. In  $\triangle$  ABC, BM  $\perp$  AC and CN  $\perp$  AB; show that:

 $\frac{AB}{AC} = \frac{BM}{CN} = \frac{AM}{AN}$ 

Solution:





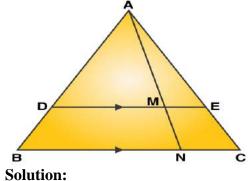
In  $\triangle$  ABM and  $\triangle$  ACN,  $\angle$ AMB =  $\angle$ ANC [Since, BM  $\perp$  AC and CN  $\perp$  AB]  $\angle$ BAM =  $\angle$ CAN [Common angle]

Hence,  $\triangle ABM \sim \triangle ACN$  by AA criterion for similarity

So, by corresponding sides of similar triangles we have

 $\frac{AB}{AC} = \frac{BM}{CN} = \frac{AM}{AN}$ 

- 7. In the given figure, DE || BC, AE = 15 cm, EC = 9 cm, NC = 6 cm and BN = 24 cm.
- (i) Write all possible pairs of similar triangles.
- (ii) Find the lengths of ME and DM.



(i) In  $\triangle$  AME and  $\triangle$  ANC,



 $\angle AME = \angle ANC \qquad [Since DE || BC so, ME || NC] \\ \angle MAE = \angle NAC \qquad [Common angle] \\ Hence, \Delta AME \sim \Delta ANC by AA criterion for similarity$ 

In  $\triangle$  ADM and  $\triangle$  ABN,  $\angle$ ADM =  $\angle$ ABN [Since DE || BC so, DM || BN]  $\angle$ DAM =  $\angle$ BAN [Common angle] Hence,  $\triangle$ ADM ~  $\triangle$ ABN by AA criterion for similarity

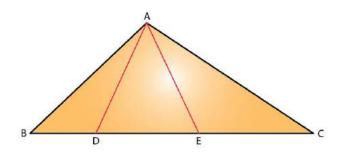
In  $\triangle$  ADE and  $\triangle$  ABC,  $\angle$ ADE =  $\angle$ ABC [Since DE || BC so, ME || NC]  $\angle$ AED =  $\angle$ ACB [Since DE || BC] Hence,  $\triangle$ ADE ~  $\triangle$ ABC by AA criterion for similarity

(ii) Proved above that, ΔAME ~ ΔANC
 So as corresponding sides of similar triangles are proportional, we have
 ME/NC = AE/AC
 ME/ 6 = 15/ 24
 ME = 3.75 cm

And,  $\triangle ADE \sim \triangle ABC$  [Proved above] So as corresponding sides of similar triangles are proportional, we have  $AD/AB = AE/AC = 15/24 \dots (1)$ 

Also,  $\triangle ADM \sim \triangle ABN$  [Proved above] So as corresponding sides of similar triangles are proportional, we have DM/BN = AD/AB = 15/24 .... From (1) DM/ 24 = 15/ 24 DM = 15 cm

8. In the given figure, AD = AE and  $AD^2 = BD \times EC$ . Prove that: triangles ABD and CAE are similar.



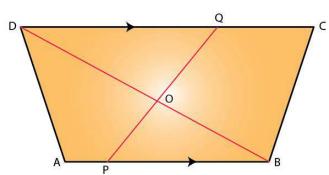
Solution:

In  $\triangle$  ABD and  $\triangle$  CAE,  $\angle$ ADE =  $\angle$ AED [Angles opposite to equal sides are equal.] So,  $\angle$ ADB =  $\angle$ AEC [As  $\angle$ ADB +  $\angle$ ADE = 180° and  $\angle$ AEC +  $\angle$ AED = 180°]



And,  $AD^2 = BD \times EC$  [Given] AD/ BD = EC/ AD AD/ BD = EC/ AE Thus,  $\triangle ABD \sim \triangle CAE$  by SAS criterion for similarity.

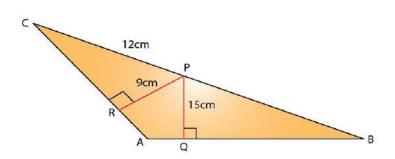
9. In the given figure, AB || DC, BO = 6 cm and DQ = 8 cm; find: BP x DO.



Solution:

In  $\triangle$  DOQ and  $\triangle$  BOP,  $\angle$ QDO =  $\angle$ PBO [As AB || DC so, PB || DQ.] So,  $\angle$ DOQ =  $\angle$ BOP [Vertically opposite angles] Hence,  $\triangle$ DOQ ~  $\triangle$ BOP by AA criterion for similarity Since, corresponding sides of similar triangles are proportional we have DO/BO = DQ/BP DO/6 = 8/BP BP x DO = 48 cm<sup>2</sup>

10. Angle BAC of triangle ABC is obtuse and AB = AC. P is a point in BC such that PC = 12 cm. PQ and PR are perpendiculars to sides AB and AC respectively. If PQ = 15 cm and PR = 9 cm; find the length of PB. Solution:



In  $\triangle$  ABC, AC = AB [Given] So,  $\angle$ ABC =  $\angle$ ACB [Angles opposite to equal sides are equal.] In  $\triangle$  PRC and  $\triangle$  PQB,



 $\angle ABC = \angle ACB$   $\angle PRC = \angle PQB$  [Both are right angles.] Hence,  $\triangle PRC \sim \triangle PQB$  by AA criterion for similarity Since, corresponding sides of similar triangles are proportional we have PR/PQ = RC/QB = PC/PB PR/PQ = PC/PB 9/15 = 12/PBThus, PB = 20 cm

11. State, true or false:

(i) Two similar polygons are necessarily congruent.

(ii) Two congruent polygons are necessarily similar.

(iii) All equiangular triangles are similar.

(iv) All isosceles triangles are similar.

(v) Two isosceles-right triangles are similar.

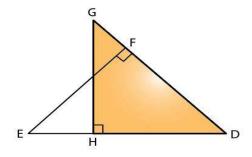
(vi) Two isosceles triangles are similar, if an angle of one is congruent to the corresponding angle of the other.

(vii) The diagonals of a trapezium, divide each other into proportional segments. Solution:

(i) False

- (ii) True
- (iii) True
- (iv) False
- (v) True
- (vi) True
- (vii) True

12. Given:  $\angle GHE = \angle DFE = 90^\circ$ , DH = 8, DF = 12, DG = 3x - 1 and DE = 4x + 2. Find: the lengths of segments DG and DE.



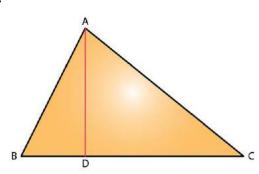
#### Solution:

In  $\triangle$  DHG and  $\triangle$  DFE,  $\angle$ GHD =  $\angle$ DFE = 90°  $\angle$ D =  $\angle$ D [Common]



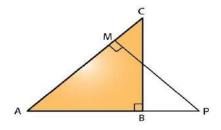
Thus,  $\Delta DHG \sim \Delta DFE$  by AA criterion for similarity So, we have DH/DF = DG/DE8/12 = (3x - 1)/(4x + 2)32x + 16 = 36x - 1228 = 4xx = 7Hence,  $DG = 3 \times 7 - 1 = 20$  $DE = 4 \times 7 + 2 = 30$ 

**13.** D is a point on the side BC of triangle ABC such that angle ADC is equal to angle BAC. Prove that: CA<sup>2</sup> = CB x CD. Solution:



In  $\triangle$  ADC and  $\triangle$  BAC,  $\angle$ ADC =  $\angle$ BAC [Given]  $\angle$ ACD =  $\angle$ ACB [Common] Thus,  $\triangle$ ADC ~  $\triangle$ BAC by AA criterion for similarity So, we have CA/CB = CD/CA Therefore, CA<sup>2</sup> = CB x CD

14. In the given figure, △ ABC and △ AMP are right angled at B and M respectively. Given AC = 10 cm, AP = 15 cm and PM = 12 cm.
(i) △ ABC ~ △ AMP.
(ii) Find AB and BC. Solution:





- (i) In  $\triangle$  ABC and  $\triangle$  AMP, we have  $\angle$ BAC =  $\angle$ PAM [Common]  $\angle$ ABC =  $\angle$ PMA [Each = 90°] Hence,  $\triangle$ ABC ~  $\triangle$ AMP by AA criterion for similarity
- (ii) Now, in right triangle AMP By using Pythagoras theorem, we have  $AM = \sqrt{(AP^2 - PM^2)} = \sqrt{(15^2 - 12^2)} = 9$ As  $\triangle ABC \sim \triangle AMP$ , AB/AM = BC/PM = AC/APAB/9 = BC/12 = 10/15So, AB/9 = 10/15 $AB = (10 \times 9)/15 = 6 \text{ cm}$ BC/12 = 10/15BC = 8 cm