

Exercise 17(A)

Page No: 257

1. In the given figure, O is the center of the circle. ∠OAB and ∠OCB are 30° and 40° respectively. Find ∠AOC Show your steps of working.

Solution:

Firstly, let's join AC. В And, let $\angle OAC = \angle OCA = x$ [Angles opposite to equal sides are equal] So, $\angle AOC = 180^{\circ} - 2x$ Also, 40° $\angle BAC = 30^{\circ} + x$ С $\angle BCA = 40^{\circ} + x$ Now, in $\triangle ABC$ $\angle ABC = 180^{\circ} - \angle BAC - \angle BCA$ [Angles sum property of a triangle] $= 180^{\circ} - (30^{\circ} + x) - (40^{\circ} + x)$ $= 110^{\circ} - 2x$ And, $\angle AOC = 2 \angle ABC$ [Angle at the center is double the angle at the circumference subtend by the same chord] $180^{\circ} - 2x = 2(110^{\circ} - 2x)$ $2x = 40^{\circ}$ $x = 20^{\circ}$

Thus, $\angle AOC = 180^{\circ} - 2x20^{\circ} = 140^{\circ}$

2. In the given figure, $\angle BAD = 65^\circ$, $\angle ABD = 70^\circ$, $\angle BDC = 45^\circ$

(i) Prove that AC is a diameter of the circle.(ii) Find ∠ACB.Solution:

(i) In $\triangle ABD$, $\angle DAB + \angle ABD + \angle ADB = 180^{\circ}$

 $65^{\circ} + 70^{\circ} + \angle ADB = 180^{\circ}$ $135^{\circ} + \angle ADB = 180^{\circ}$ $\angle ADB = 180^{\circ} - 135^{\circ} = 45^{\circ}$ Now, $\angle ADC = \angle ADB + \angle BDC = 45^{\circ} + 45^{\circ} = 90^{\circ}$ As $\angle ADC$ is the angle of semi-circle for AC as the diameter of the circle.

- (ii) $\angle ACB = \angle ADB$ [Angles in the same segment of a circle] Hence, $\angle ACB = 45^{\circ}$
- **3.** Given O is the centre of the circle and $\angle AOB = 70^{\circ}$.


```
Calculate the value of:
(i) ∠OCA,
(ii) ∠OAC.
Solution:
```

```
Here, \angle AOB = 2 \angle ACB
```

[Angle at the center is double the angle at the circumference subtend by the same chord] $\angle ACB = 70^{\circ}/2 = 35^{\circ}$ Now, OC = OA [Radii of same circle] Thus, $\angle OCA = \angle OAC = 35^{\circ}$

4. In each of the following figures, O is the centre of the circle. Find the values of a, b and c. Solution:

(i) Here, $b = \frac{1}{2} \times 130^{\circ}$

[Angle at the center is double the angle at the circumference subtend by the same chord] Thus, $b = 65^{\circ}$

Now,

 $a + b = 180^{\circ}$ [Opposite angles of a cyclic quadrilateral are supplementary] $a = 180^{\circ} - 65^{\circ} = 115^{\circ}$

(ii) Here, $c = \frac{1}{2} x$ Reflex (112°)

[Angle at the center is double the angle at the circumference subtend by the same chord] Thus, $c = \frac{1}{2} x (360^{\circ} - 112^{\circ}) = 124^{\circ}$

5. In each of the following figures, O is the center of the circle. Find the values of a, b, c and d.

(iii) $\angle AOB = 2 \angle AOB = 2 \ge 50^{\circ} = 100^{\circ}$

[Angle at the center is double the angle at the circumference subtend by the same chord] Also, OA = OB

 $\angle OBA = \angle OAB = c$ $c = (180^{\circ} - 100^{\circ})/2 = 40^{\circ}$

(iv) We have, $\angle APB = 90^{\circ}$ [Angle in a semicircle] $\angle BAP = 90^{\circ} - 45^{\circ} = 45^{\circ}$ Now, d = $\angle BCP = \angle BAP = 45^{\circ}$ [Angles subtended by the same chord on the circle are equal]

6. In the figure, AB is common chord of the two circles. If AC and AD are diameters; prove that D, B and C are in a straight line. O₁ and O₂ are the centers of two circles.

Solution:

It's seen that, $\angle DBA = \angle CBA = 90^{\circ}$ [Angle in a semi-circle is a right angle] So, adding both $\angle DBA + \angle CBA = 180^{\circ}$ Thus, DBC is a straight line i.e. D, B and C form a straight line.

7. In the figure, given below, find:
(i) ∠BCD,
(ii) ∠ADC,
(iii) ∠ABC.
Show steps of your working.
Solution:

From the given fig, it's seen that In cyclic quadrilateral ABCD, DC || AB And given, $\angle DAB = 105^{\circ}$

(i) So,

 $\angle BCD = 180^{\circ} - 105^{\circ} = 75^{\circ}$ [Sum of opposite angles in a cyclic quadrilateral is 180°]

(ii) Now,

 \angle ADC and \angle DAB are corresponding angles.

So, $\angle ADC + \angle DAB = 180^{\circ}$ $\angle ADC = 180^{\circ} - 105^{\circ}$ Thus, $\angle ADC = 75^{\circ}$

(iii) We know that, the sum of angles in a quadrilateral is 360° So, $\angle ADC + \angle DAB + \angle BCD + \angle ABC = 360^{\circ}$ $75^{\circ} + 105^{\circ} + 75^{\circ} + \angle ABC = 360^{\circ}$ $\angle ABC = 360^{\circ} - 255^{\circ}$ Thus.

 $\angle ABC = 105^{\circ}$

8. In the figure, given below, O is the centre of the circle. If $\angle AOB = 140^{\circ}$ and $\angle OAC = 50^{\circ}$; find:

(i) ∠ACB,
(ii) ∠OBC,
(iii) ∠OAB,
(iv) ∠CBA.
Solution:

(i)

Given, $\angle AOB = 140^{\circ}$ and $\angle OAC = 50^{\circ}$

Now, $\angle ACB = \frac{1}{2} \text{ Reflex } (\angle AOB) = \frac{1}{2} (360^{\circ} - 140^{\circ}) = 110^{\circ}$ [Angle at the center is double the angle at the circumference subtend by the same

chord]

- (ii) In quadrilateral OBCA, $\angle OBC + \angle ACB + \angle OCA + \angle AOB = 360^{\circ}$ $\angle OBC + 110^{\circ} + 50^{\circ} + 140^{\circ} = 360^{\circ}$ Thus, $\angle OBC = 360^{\circ} - 300^{\circ} = 60^{\circ}$
- (iii) In $\triangle AOB$, we have OA = OB (radii) So, $\angle OBA = \angle OAB$ Hence, by angle sum property of a triangle $\angle OBA + \angle OAB + \angle AOB = 180^{\circ}$ $2\angle OBA + 140^{\circ} = 180^{\circ}$ $2\angle OBA = 40^{\circ}$ $\angle OBA = 20^{\circ}$
- (iv) We already found, $\angle OBC = 60^{\circ}$ And, $\angle OBC = \angle CBA + \angle OBA$ $60^{\circ} = \angle CBA + 20^{\circ}$

[Angle sum property of a quadrilateral]

140°

50

С

Therefore, $\angle CBA = 40^{\circ}$

Selina Solutions For Class 10 Maths Unit 4 – Geometry Chapter 17: Circles

9. Calculate: (i) ∠CDB, (ii) ∠ABC, (iii) ∠ACB. Solution:

Here, we have $\angle CDB = \angle BAC = 49^{\circ}$ $\angle ABC = \angle ADC = 43^{\circ}$

[Angles subtended by the same chord on the circle are equal] Now, by angle sum property of a triangle we have $\angle ACB = 180^{\circ} - 49^{\circ} - 43^{\circ} = 88^{\circ}$

10. In the figure given below, ABCD is a cyclic quadrilateral in which ∠BAD = 75°; ∠ABD = 58° and ∠ADC = 77°.
Find:

(i) ∠BDC,
(ii) ∠BCD,
(iii) ∠BCA.

(i) By angle sum property of triangle ABD, $\angle ADB = 180^{\circ} - 75^{\circ} - 58^{\circ} = 47^{\circ}$ Thus, $\angle BDC = \angle ADC - \angle ADB = 77^{\circ} - 47^{\circ} = 30^{\circ}$

(ii) $\angle BAD + \angle BCD = 180^{\circ}$

[Sum of opposite angles of a cyclic quadrilateral is 180°] Thus, $\angle BCD = 180^{\circ} - 75^{\circ} = 105^{\circ}$

(iii) $\angle BCA = \angle ADB = 47^{\circ}$

[Angles subtended by the same chord on the circle are equal]

11. In the figure given below, O is the centre of the circle and triangle ABC is equilateral.

Find: (i) ∠ADB, (ii) ∠AEB Solution:

- (i) As, it's seen that $\angle ACB$ and $\angle ADB$ are in the same segment, So, $\angle ADB = \angle ACB = 60^{\circ}$
- (ii) Now, join OA and OB. And, we have
 ∠AEB = ½ Reflex (∠AOB) = ½ (360° - 120°) = 120° [Angle at the center is double the angle at the circumference subtend by the same chord]

12. Given: $\angle CAB = 75^{\circ}$ and $\angle CBA = 50^{\circ}$. Find the value of $\angle DAB + \angle ABD$. Solution:

Given, $\angle CAB = 75^{\circ}$ and $\angle CBA = 50^{\circ}$ In $\triangle ABC$, by angle sum property we have $\angle ACB = 180^{\circ} - (\angle CBA + \angle CAB)$ $= 180^{\circ} - (50^{\circ} + 75^{\circ}) = 180^{\circ} - 125^{\circ}$ $= 55^{\circ}$ And, $\angle ADB = \angle ACB = 55^{\circ}$ [Angles subtended by the same chord on the circle are equal] Now, taking $\triangle ABD$ $\angle DAB + \angle ABD + \angle ADB = 180^{\circ}$ $\angle DAB + \angle ABD + 55^{\circ} = 180^{\circ}$ $\angle DAB + \angle ABD = 180^{\circ} - 55^{\circ}$ $\angle DAB + \angle ABD = 125^{\circ}$

13. ABCD is a cyclic quadrilateral in a circle with centre O. If ∠ADC = 130°, find ∠BAC.

Solution:

From the fig. its seem that, $\angle ACB = 90^{\circ}$ [Angle in a semi-circle is 90°] Also, $\angle ABC = 180^{\circ} - \angle ADC = 180^{\circ} - 130^{\circ} = 50^{\circ}$ [Pair of opposite angles in a cyclic quadrilateral are supplementary] By angle sum property of the right triangle ACB, we have $\angle BAC = 90^{\circ} - \angle ABC$ $= 90^{\circ} - 50^{\circ}$ Thus, $\angle BAC = 40^{\circ}$

14. In the figure given alongside, AOB is a diameter of the circle and $\angle AOC = 110^{\circ}$, find $\angle BDC$.

Solution:

Let's join AD first. So, we have $\angle ADC = \frac{1}{2} \angle AOC = \frac{1}{2} \times 110^{\circ} = 55^{\circ}$ [Angle at the centre is double the angle at the circumference subtended by the same chord] Also, we know that $\angle ADB = 90^{\circ}$ [Angle in the semi-circle is a right angle] Therefore, $\angle BDC = 90^{\circ} - \angle ADC = 90^{\circ} - 55^{\circ}$ $\angle BDC = 35^{\circ}$

15. In the following figure, O is the centre of the circle; $\angle AOB = 60^{\circ}$ and $\angle BDC = 100^{\circ}$, find $\angle OBC$. Solution:

Form the figure, we have $\angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$ [Angle at the centre is double the angle at the circumference subtended by the same chord] Now, by applying angle sum property in $\triangle BDC$, $\angle DBC = 180^{\circ} - 100^{\circ} - 30^{\circ} = 50^{\circ}$ Therefore, $\angle OBC = 50^{\circ}$

16. In ABCD is a cyclic quadrilateral in which $\angle DAC = 27^{\circ}$, $\angle DBA = 50^{\circ}$ and $\angle ADB = 33^{\circ}$. Calculate (i) $\angle DBC$, (ii) $\angle DCB$, (iii) $\angle CAB$. Solution:

(i) It's seen that, $\angle DBC = \angle DAC = 27^{\circ}$ [Angles subtended by the same chord on the circle are equal]

(ii) It's seen that, $\angle ACB = \angle ADB = 33^{\circ}$ And, $\angle ACD = \angle ABD = 50^{\circ}$ [Angles subtended by the same chord on the circle are equal] Thus, $\angle DCB = \angle ACD + \angle ACB = 50^{\circ} + 33^{\circ} = 83^{\circ}$

(iii) In quad. ABCD, $\angle DAB + \angle DCB = 180^{\circ}$ $27^{\circ} + \angle CAB + 83^{\circ} = 180^{\circ}$ Thus, $\angle CAB = 180^{\circ} - 110^{\circ} = 70^{\circ}$ D 33° 27° 50° B

17. In the figure given alongside, AB and CD are straight lines through the centre O of a circle. If $\angle AOC = 80^{\circ}$ and $\angle CDE = 40^{\circ}$. Find the number of degrees in: (i) $\angle DCE$; (ii) $\angle ABC$. Solution:

(i) Form the fig. its seen that, $\angle DCE = 90^{\circ} - \angle CDE = 90^{\circ} - 40^{\circ} = 50^{\circ}$ Therefore, $\angle DEC = \angle OCB = 50^{\circ}$

E

С

(ii) In $\triangle BOC$, we have $\angle AOC = \angle OCB + \angle OBC$ [Exterior angle property of a triangle] $\angle OBC = 80^{\circ} - 50^{\circ} = 30^{\circ}$ [Given $\angle AOC = 80^{\circ}$] Therefore, $\angle ABC = 30^{\circ}$

18. In the figure given below, AC is a diameter of a circle, whose centre is O. A circle is described on AO as diameter. AE, a chord of the larger circle, intersects the smaller circle at B. Prove that AB = BE.

Solution:

Firstly, join OB.

Then, $\angle OBA = 90^{\circ}$ [Angle in a semi-circle is a right angle]

That is, OB is perpendicular to AE.

Now, we know that the perpendicular draw from the centre to a chord bisects the chord.

Therefore,

AB = BE

19. (a) In the following figure,

(i) if ∠BAD = 96°, find ∠BCD and ∠BFE.
(ii) Prove that AD is parallel to FE.
(b) ABCD is a parallelogram. A circle Solution:

(i) ABCD is a cyclic quadrilateral So, $\angle BAD + \angle BCD = 180^{\circ}$ [Pair of opposite angles in a cyclic quadrilateral are supplementary] $\angle BCD = 180^{\circ} - 96^{\circ} = 84^{\circ}$

And, $\angle BCE = 180^{\circ} - 84^{\circ} = 96^{\circ}$ [Linear pair of angles] Similarly, BCEF is a cyclic quadrilateral So, $\angle BCE + \angle BFE = 180^{\circ}$ [Pair of opposite angles in a cyclic quadrilateral are supplementary] $\angle BFE = 180^{\circ} - 96^{\circ} = 84^{\circ}$

(ii) Now, $\angle BAD + \angle BFE = 96^{\circ} + 84^{\circ} = 180^{\circ}$ But these two are interior angles on the same side of a pair of lines AD and FE. Therefore, AD || FE.

20. Prove that:

(i) the parallelogram, inscribed in a circle, is a rectangle.(ii) the rhombus, inscribed in a circle, is a square.Solution:

(i) Let's assume that ABCD is a parallelogram which is inscribed in a circle.

So, we have

 $\angle BAD = \angle BCD$ [Opposite angles of a parallelogram are equal] And $\angle BAD + \angle BCD = 180^{\circ}$

[Pair of opposite angles in a cyclic

quadrilateral are supplementary]

So, $2\angle BAD = 180^{\circ}$

Thus, $\angle BAD = \angle BCD = 90^{\circ}$

Similarly, the remaining two angles are 90° each and pair of opposite sides are equal.

Therefore, ABCD is a rectangle.

- Hence Proved

(ii) Let's assume that ABCD is a rhombus which is inscribed in a circle.

So, we have $\angle BAD = \angle BCD$ [Opposite angles of a rhombus are equal] And $\angle BAD + \angle BCD = 180^{\circ}$

[Pair of opposite angles in a cyclic quadrilateral are supplementary]

So, $2 \angle BAD = 180^{\circ}$ Thus, $\angle BAD = \angle BCD = 90^{\circ}$

Similarly, the remaining two angles are 90° each and all the sides are equal.

Therefore,

ABCD is a square. - Hence Proved

D

С

21. In the following figure, **AB** = **AC**. Prove that **DECB** is an isosceles trapezium.

Solution:

Give. AB = ACSo, $\angle B = \angle C \dots (1)$ [Angles opposite to equal sides are equal] And, DECB is a cyclic quadrilateral. So, $\angle B + \angle DEC = 180^{\circ}$ [Pair of opposite angles in a cyclic quadrilateral are supplementary] $\angle C + \angle DEC = 180^{\circ} \dots (Using 1)$ But this is the sum of interior angles on one side of a transversal. DE || BC. But, $\angle ADE = \angle B$ and $\angle AED = \angle C$ [Corresponding angles] Thus, $\angle ADE = \angle AED$ AD = AEAB - AD = AC = AE [As AB = AC]BD = CEHence, we have $DE \parallel BC$ and BD = CETherefore, DECB is an isosceles trapezium.

22. Two circles intersect at P and Q. Through P diameters PA and PB of the two circles are drawn. Show that the points A, Q and B are collinear. Solution:

Let O and O' be the centres of two intersecting circles, where points of the intersection are P and Q and PA and PB are their diameters respectively. Join PQ, AQ and QB. Thus, $\angle AQP = 90^{\circ}$ and $\angle BQP = 90^{\circ}$ [Angle in a semicircle is a right angle] Now, adding both these angles we get $\angle AQP + \angle BQP = 180^{\circ}$ $\angle AQB = 180^{\circ}$ Therefore, the points A, Q and B are collinear.

23. The figure given below, shows a circle with centre O. Given: $\angle AOC = a$ and $\angle ABC = b$.

(i) Find the relationship between a and b

(ii) Find the measure of angle OAB, if OABC is a parallelogram.

Solution:

(i) It's seen that,

 $\angle ABC = \frac{1}{2} \text{ Reflex} (\angle COA)$

[Angle at the centre is double the angle at the circumference subtended by the same chord]

So, $b = \frac{1}{2} (360^{\circ} - a)$ $a + 2b = 180^{\circ} \dots (1)$

(ii) As OABC is a parallelogram, the opposite angles are equal.

```
So, a = b
Now, using the above relationship in (1)
3a = 180^{\circ}
a = 60^{\circ}
Also, OC || BA
\angle COA + \angle OAB = 180^{\circ}
60^{\circ} + \angle OAB = 180^{\circ}
Therefore,
\angle OAB = 120^{\circ}
```

24. Two chords AB and CD intersect at P inside the circle. Prove that the sum of the angles subtended by the arcs AC and BD as the center O is equal to twice the angle APC Solution:

```
Required to prove: \angle AOC + \angle BOD = 2\angle APC
OA, OB, OC and OD are joined.
Also, AD is joined.
Now, it's seen that
\angle AOC = 2\angle ADC \dots (1)
[Angle at the centre is double the angle at the circumference
subtended by the same chord]
Similarly,
\angle BOD = 2\angle BAD \dots (2)
Adding (1) and (2), we have
\angle AOC + \angle BOD = 2\angle ADC + 2\angle BAD
= 2(\angle ADC + \angle BAD) \dots (3)
```


And in $\triangle PAD$, Ext. $\angle APC = \angle PAD + \angle ADC$ $= \angle BAD + \angle ADC \dots$ (4) So, from (3) and (4) we have $\angle AOC + \angle BOD = 2 \angle APC$

25. In the figure given RS is a diameter of the circle. NM is parallel to RS and \angle MRS = 29° Calculate: (i) \angle RNM; (ii) \angle NRM.

Solution:

(i) Join RN and MS $\angle RMS = 90^{\circ}$ [Angle in a semi-circle is a right Μ angle] So, by angle sum property of ΔRMS 29° $\angle RMS = 90^{\circ} - 29^{\circ} = 61^{\circ}$ S R And. $\angle RNM = 180^{\circ} - \angle RSM = 180^{\circ} - 61^{\circ} = 119^{\circ}$ [Pair of opposite angles in a cyclic quadrilateral are supplementary] (ii) Now as RS || NM, $\angle NMR = \angle MRS = 29^{\circ}$ [Alternate angles] $\angle NMS = 90^{\circ} + 29^{\circ} = 119^{\circ}$ Also, we know that $\angle NRS + \angle NMS = 180^{\circ}$ [Pair of opposite angles in a cyclic quadrilateral are supplementary] $\angle NRM + 29^{\circ} + 119^{\circ} = 180^{\circ}$ $\angle NRM = 180^{\circ} - 148^{\circ}$ Therefore, $\angle NRM = 32^{\circ}$

26. In the figure given alongside, AB || CD and O is the center of the circle. If $\angle ADC = 25^{\circ}$; find the angle AEB. Give reasons in support of your answer.

D

Solution:

Join AC and BD. в So, we have \angle CAD = 90° and \angle CBD = 90° [Angle is a semicircle is a right angle] Ŏ And, AB || CD So, $\angle BAD = \angle ADC = 25^{\circ}$ [Alternate angles] $\angle BAC = \angle BAD + \angle CAD = 25^{\circ} + 90^{\circ} = 115^{\circ}$ Ε Thus, $\angle ADB = 180^{\circ} - 25^{\circ} - \angle BAC = 180^{\circ} - 25^{\circ} - 115^{\circ} = 40^{\circ}$ [Pair of opposite angles in a cyclic quadrilateral are supplementary] Finally, $\angle AEB = \angle ADB = 40^{\circ}$ [Angles subtended by the same chord on the circle are equal]

27. Two circles intersect at P and Q. Through P, a straight line APB is drawn to meet the circles in A and B. Through Q, a straight line is drawn to meet the circles at C and D. Prove that AC is parallel to BD.

Solution:

```
Let's join AC, PQ and BD.

As ACQP is a cyclic quadrilateral

\angle CAP + \angle PQC = 180^{\circ} \dots (i)

[Pair of opposite angles in a cyclic quadrilateral are

supplementary]

Similarly, as PQDB is a cyclic quadrilateral

\angle PQD + \angle DBP = 180^{\circ} \dots (ii)

Again, \angle PQC + \angle PQD = 180^{\circ} \dots (iii) [Linear pair of angles]

Using (i), (ii) and (iii) we have
```


 $\angle CAP + \angle DBP = 180^{\circ}$ Or $\angle CAB + \angle DBA = 180^{\circ}$ We know that, if the sum of interior angles between two lines when intersected by a transversal are supplementary. Then, AC || BD.

28. ABCD is a cyclic quadrilateral in which AB and DC on being produced, meet at P such that PA = PD. Prove that AD is parallel to BC. Solution:

Let's assume that ABCD be the given cyclic quadrilateral. Also, PA = PD[Given] So, $\angle PAD = \angle PDA$ (1) [Angles opposite to equal sides are equal] And, $\angle BAD = 180^{\circ} - \angle PAD$ [Linear pair of angles] Similarly, $\angle CDA = 180^{\circ} - \angle PDA = 180^{\circ} - \angle PAD$ [From (1)] As the opposite angles of a cyclic quadrilateral are supplementary, $\angle ABC = 180^{\circ} - \angle CDA = 180^{\circ} - (180^{\circ} - \angle PAD) = \angle PAD$ And, $\angle DCB = 180^\circ - \angle BAD = 180^\circ - (180^\circ - \angle PAD) = \angle PAD$ Thus. $\angle ABC = \angle DCB = \angle PAD = \angle PDA$ Which is only possible when AD || BC.

Exercise 17(B)

Page No: 265

В

С

1. In a cyclic-trapezium, the non-parallel sides are equal and the diagonals are also equal. Prove it. Solution:

Let ABCD be the cyclic trapezium in which AB || DC, AC and BD Α are the diagonals. Required to prove: (i) AD = BC(ii) AC = BDProof: It's seen that chord AD subtends ∠ABD and chord BC subtends D \angle BDC at the circumference of the circle. But, $\angle ABD = \angle BDC$ [Alternate angles, as AB || DC with BD as the transversal] So, Chord AD must be equal to chord BC AD = BCNow, in $\triangle ADC$ and $\triangle BCD$ DC = DC[Common] $\angle CAD = \angle CBD$ [Angles in the same segment are equal] AD = BC[Proved above] Hence, by SAS criterion of congruence $\triangle ADC \cong \triangle BCD$ Therefore, by CPCT AC = BD

2. In the following figure, AD is the diameter of the circle with centre O. Chords AB, BC and CD are equal. If ∠DEF = 110°, calculate:
(i) ∠AFE, (ii) ∠FAB.

Solution:

Join AE, OB and OC.

(i) As AOD is the diameter $\angle AED = 90^{\circ}$ [Angle in a semi-circle is a right angle] But, given $\angle DEF = 110^{\circ}$

Ε

D

110°

So. $\angle AEF = \angle DEF - \angle AED = 110^{\circ} - 90^{\circ} = 20^{\circ}$ E (ii) Also given, Chord AB = Chord BC = Chord CDSo, Ο $\angle AOB = \angle BOC = \angle COD$ [Equal chords subtends equal angles at the centre] But. $\angle AOB + \angle BOC + \angle COD = 180^{\circ}$ [Since, AOD is a straight B line] Thus, $\angle AOB = \angle BOC = \angle COD = 60^{\circ}$ Now, in $\triangle OAB$ we have OA = OB[Radii of same circle] So, $\angle OAB = \angle OBA$ [Angles opposite to equal sides] But, by angle sum property of $\triangle OAB$ $\angle OAB + \angle OBA = 180^{\circ} - \angle AOB$ $= 180^{\circ} - 60^{\circ}$ $= 120^{\circ}$ Therefore, $\angle OAB = \angle OBA = 60^{\circ}$ Now, in cyclic quadrilateral ADEF $\angle DEF + \angle DAF = 180^{\circ}$ $\angle DAF = 180^{\circ} - \angle DEF$ $= 180^{\circ} - 110^{\circ}$ $= 70^{\circ}$ Thus, $\angle FAB = \angle DAF + \angle OAB$ $=70^{\circ}+60^{\circ}=130^{\circ}$ 3. If two sides of a cycli-quadrilateral are parallel; prove that:

(i) its other two sides are equal.(ii) its diagonals are equal.

Solution:

Let ABCD is a cyclic quadrilateral in which AB || DC. AC and BD are its diagonals. Required to prove:

(i) AD = BC(ii) AC = BDProof: (i) As $AB \parallel DC$ (given) $\angle DCA = \angle CAB$ [Alternate angles] Now, chord AD subtends $\angle DCA$ and chord BC subtends $\angle CAB$ at the circumference of the circle. So, $\angle DCA = \angle CAB$

Hence, chord AD = chord BC or AD = BC.

- (ii) Now, in $\triangle ABC$ and $\triangle ADB$ AB = AB [Common] $\angle ACB = \angle ADB$ [Angles in the same segment are equal] BC = AD [Proved above] Hence, by SAS criterion of congruence $\triangle ACB \cong \triangle ADB$ Therefore, by CPCT AC = BD
- 4. The given figure show a circle with centre O. Also, PQ = QR = RS and $\angle PTS = 75^{\circ}$.

С

Similarly, we can prove that In $\triangle OQR$, $\angle OQR = \angle ORQ = 65^{\circ}$ And in $\triangle ORS$, $\angle ORS = \angle OSR = 65^{\circ}$ Hence, (i) $\angle POS = 150^{\circ}$ (ii) $\angle QOR = 50^{\circ}$ and (iii) $\angle PQR = \angle PQO + \angle OQR = 65^{\circ} + 65^{\circ} = 130^{\circ}$

5. In the given figure, AB is a side of a regular six-sided polygon and AC is a side of a regular eight-sided polygon inscribed in the circle with centre O. calculate the sizes of:
(i) ∠AOB,
(ii) ∠ACB,
(iii) ∠ABC.
Solution:

(i) Arc AB subtends $\angle AOB$ at the centre and $\angle ACB$ at the remaining part of the circle. $\angle ACB = \frac{1}{2} \angle AOB$ And as AB is the side of a regular hexagon, we have $\angle AOB = 60^{\circ}$

(ii) Now,

 $\angle ACB = \frac{1}{2} (60^{\circ}) = 30^{\circ}$

(iii) Since AC is the side of a regular octagon, $\angle AOC = 360^{\circ}/8 = 45^{\circ}$ Again, arc AC subtends $\angle AOC$ at the centre and $\angle ABC$ at the remaining part of the circle. $\angle ABC = \frac{1}{2} \angle AOC$ $\angle ABC = 45^{\circ}/2 = 22.5^{\circ}$

Exercise I7(C)

Page No: 265

1. In the given circle with diameter AB, find the value of x.

Solution:

Now,

 $\angle ABD = \angle ACD = 30^{\circ}$ [Angles in the same segment] In $\triangle ADB$, by angle sum property we have $\angle BAD + \angle ADB + \angle ABD = 180^{\circ}$ But, we know that angle in a semi-circle is 90° $\angle ADB = 90^{\circ}$ So, $x + 90^{\circ} + 30^{\circ} = 180^{\circ}$ $x = 180^{\circ} - 120^{\circ}$ Hence, $x = 60^{\circ}$

2. In the given figure, ABC is a triangle in which $\angle BAC = 30^{\circ}$. Show that BC is equal to the radius of the circum-circle of the triangle ABC, whose center is O.

Solution:

Firstly, join OB and OC. Proof: $\angle BOC = 2 \angle BAC = 2 \times 30^\circ = 60^\circ$ Now, in $\triangle OBC$ OB = OC [Radii of same circle]

So, $\angle OBC = \angle OCB$ [Angles opposite to equal sides] And in $\triangle OBC$, by angle sum property we have $\angle OBC + \angle OCB + \angle BOC = 180^{\circ}$ $\angle OBC + \angle OBC + 60^{\circ} = 180^{\circ}$ $2 \angle OBC = 180^{\circ} - 60^{\circ} = 120^{\circ}$ $\angle OBC = 120^{\circ}/2 = 60^{\circ}$ So, $\angle OBC = \angle OCB = \angle BOC = 60^{\circ}$ Thus, $\triangle OBC$ is an equilateral triangle. So, BC = OB = OC But, OB and OC are the radii of the circum-circle. Therefore, BC is also the radius of the circum-circle.

3. Prove that the circle drawn on any one of the equal sides of an isosceles triangle as diameter bisects the base. Solution:

Let's consider $\triangle ABC$, AB = AC and circle with AB as diameter is drawn which intersects the side BC and D.

And, join AD Proof: Α It's seen that, $\angle ADB = 90^{\circ}$ [Angle in a semi-circle] And. $\angle ADC + \angle ADB = 180^{\circ}$ [Linear pair] Thus, $\angle ADC = 90^{\circ}$ 2 Now, in right $\triangle ABD$ and $\triangle ACD$ D B AB = AC[Given] AD = AD[Common] $\angle ADB = \angle ADC = 90^{\circ}$ Hence, by R.H.S criterion of congruence. $\triangle ABD \cong \triangle ACD$ Now, by CPCT BD = DCTherefore, D is the mid-point of BC.

4. In the given figure, chord ED is parallel to diameter AC of the circle. Given $\angle CBE = 65^{\circ}$, calculate $\angle DEC$.

Solution:

Join OE. Arc EC subtends ∠EOC at the centre and ∠EBC at the remaining part of the circle. $\angle EOC = 2 \angle EBC = 2 \times 65^{\circ} = 130^{\circ}$ Now, in $\triangle OEC$ OE = OC[Radii of the same circle] So, $\angle OEC = \angle OCE$ But, in $\triangle EOC$ by angle sum property $\angle OEC + \angle OCE + \angle EOC = 180^{\circ}$ [Angles of a triangle] $\angle OCE + \angle OCE + \angle EOC = 180^{\circ}$ $2 \angle OCE + 130^{\circ} = 180^{\circ}$ $2 \angle OCE = 180^{\circ} - 130^{\circ}$ $\angle OCE = 50^{\circ}/2 = 25^{\circ}$ And, AC || ED [Given] $\angle DEC = \angle OCE$ [Alternate angles] Thus. $\angle DEC = 25^{\circ}$

5. The quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic. Prove it. Solution:

Let ABCD be a cyclic quadrilateral and PQRS be the quadrilateral formed by the angle bisectors of angle $\angle A$, $\angle B$, $\angle C$ and $\angle D$.

Required to prove: PQRS is a cyclic quadrilateral. Proof: By angle sum property of a triangle In $\triangle APD$. $\angle PAD + \angle ADP + \angle APD = 180^{\circ} \dots (i)$ And, in $\triangle BQC$ $\angle QBC + \angle BCQ + \angle BQC = 180^{\circ} \dots$ (ii) Adding (i) and (ii), we get $\angle PAD + \angle ADP + \angle APD + \angle QBC + \angle BCQ + \angle BQC = 180^{\circ} + 180^{\circ} = 360^{\circ}$ (iii) But, $\angle PAD + \angle ADP + \angle QBC + \angle BCQ = \frac{1}{2} [\angle A + \angle B + \angle C + \angle D]$ $= \frac{1}{2} \times 360^{\circ} = 180^{\circ}$ Therefore, $\angle APD + \angle BQC = 360^{\circ} - 180^{\circ} = 180^{\circ}$ [From (iii)] But, these are the sum of opposite angles of quadrilateral PRQS. Therefore, Quadrilateral PQRS is also a cyclic quadrilateral.

6. In the figure, ∠DBC = 58°. BD is a diameter of the circle. Calculate: (i) ∠BDC

(ii) ∠BEC (iii) ∠BAC

Solution:

(i) Given that BD is a diameter of the circle. And, the angle in a semicircle is a right angle. So, $\angle BCD = 90^{\circ}$ Also given that, $\angle DBC = 58^{\circ}$ In $\triangle BDC$, $\angle DBC + \angle BCD + \angle BDC = 180^{\circ}$ $58^{\circ} + 90^{\circ} + \angle BDC = 180^{\circ}$ $148^{\circ} + \angle BDC = 180^{\circ}$ $\angle BDC = 180^{\circ} - 148^{\circ}$ Thus, $\angle BDC = 32^{\circ}$

(ii) We know that, the opposite angles of a cyclic quadrilateral are supplementary. So, in cyclic quadrilateral BECD $\angle BEC + \angle BDC = 180^{\circ}$ $\angle BEC + 32^{\circ} = 180^{\circ}$ $\angle BEC = 148^{\circ}$

(iii) In cyclic quadrilateral ABEC, $\angle BAC + \angle BEC = 180^{\circ}$ [Opposite angles of a cyclic quadrilateral are supplementary] $\angle BAC + 148^{\circ} = 180^{\circ}$ $\angle BAC = 180^{\circ} - 148^{\circ}$ Thus, $\angle BAC = 32^{\circ}$

7. D and E are points on equal sides AB and AC of an isosceles triangle ABC such that AD = AE. Prove that the points B, C, E and D are concyclic. Solution:

Given, $\triangle ABC$, AB = AC and D and E are points on AB and AC such that AD = AE.

And, DE is joined. Required to prove: Points B, C, E and D are concyclic Proof: In ΔABC, AB = AC[Given] So, $\angle B = \angle C$ [Angles opposite to equal sides] Similarly, In $\triangle ADE$, AD = AE[Given] So, $\angle ADE = \angle AED$ [Angles opposite to equal sides] Now, in $\triangle ABC$ we have AD/AB = AE/AC[Converse of BPT] Hence, $DE \parallel BC$ So, $\angle ADE = \angle B$ [Corresponding angles] $(180^{\circ} - \angle EDB) = \angle B$ $\angle B + \angle EDB = 180^{\circ}$ But, it's proved above that $\angle B = \angle C$ So. $\angle C + \angle EDB = 180^{\circ}$ Thus, opposite angles are supplementary. Similarly, $\angle B + \angle CED = 180^{\circ}$ Hence, B, C, E and D are concyclic.

8. In the given figure, ABCD is a cyclic quadrilateral. AF is drawn parallel to CB and DA is produced to point E. If $\angle ADC = 92^{\circ}$, $\angle FAE = 20^{\circ}$; determine $\angle BCD$. Given reason in support of your answer.

Solution:

Given, In cyclic quad. ABCD AF || CB and DA is produced to E such that $\angle ADC = 92^{\circ}$ and $\angle FAE = 20^{\circ}$ So, $\angle B + \angle D = 180^{\circ}$

 $\angle B + 92^{\circ} = 180^{\circ}$ $\angle B = 88^{\circ}$ As AF || CB, \angle FAB = $\angle B = 88^{\circ}$ But, \angle FAD = 20° [Given] Ext. \angle BAE = \angle BAF + \angle FAE $= 88^{\circ} + 22^{\circ} = 108^{\circ}$ But, Ext. \angle BAE = \angle BCD Therefore, \angle BCD = 108°

9. If I is the incentre of triangle ABC and AI when produced meets the circumcircle of triangle ABC in point D. If $\angle BAC = 66^{\circ}$ and $\angle ABC = 80^{\circ}$. Calculate:

(i) ∠DBC, (ii) ∠IBC, (iii) ∠BIC

Solution:

Join DB and DC, IB and IC.

Given, if $\angle BAC = 66^{\circ}$ and $\angle ABC = 80^{\circ}$, I is the incentre of the $\triangle ABC$.

- (i) As it's seen that $\angle DBC$ and $\angle DAC$ are in the same segment, So, $\angle DBC = \angle DAC$ But, $\angle DAC = \frac{1}{2} \angle BAC = \frac{1}{2} \times 66^{\circ} = 33^{\circ}$
 - Thus, $\angle DBC = 33^{\circ}$
- (ii) And, as I is the incentre of $\triangle ABC$, IB bisects $\angle ABC$. Therefore, $\angle IBC = \frac{1}{2} \angle ABC = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$
- (iii) In $\triangle ABC$, by angle sum property $\angle ACB = 180^{\circ} - (\angle ABC + \angle BAC)$ $\angle ACB = 180^{\circ} - (80^{\circ} + 66^{\circ})$ $\angle ACB = 180^{\circ} - 156^{\circ}$ $\angle ACB = 34^{\circ}$ And since, IC bisects $\angle C$ Thus, $\angle ICB = \frac{1}{2} \angle C = \frac{1}{2} \times 34^{\circ} = 17^{\circ}$

Now, in \triangle IBC \angle IBC + \angle ICB + \angle BIC = 180° 40° + 17° + \angle BIC = 180° 57° + \angle BIC = 180° \angle BIC = 180° - 57° Therefore, \angle BIC = 123°

10. In the given figure, AB = AD = DC = PB and ∠DBC = x^o. Determine, in terms of x: (i) ∠ABD, (ii) ∠APB.

Hence or otherwise, prove that AP is parallel to DB.

Solution:

```
Given, AB = AD = DC = PB and \angle DBC = x^{\circ}
Join AC and BD.
Proof:
\angle DAC = \angle DBC = x^{\circ}
                                     [Angles in the same segment]
                                     [As AD = DC]
And, \angle DCA = \angle DAC = x^{\circ}
Also, we have
\angle ABD = \angle DAC
                                     [Angles in the same segment]
And, in \triangle ABP
Ext. \angle ABD = \angle BAP + \angle APB
But, \angle BAP = \angle APB
                                     [Since, AB = BP]
2 x^{o} = \angle APB + \angle APB = 2 \angle APB
2 \angle APB = 2x^{\circ}
So, \angle APB = x^{\circ}
Thus, \angle APB = \angle DBC = x^{\circ}
But these are corresponding angles,
Therefore, AP || DB.
```


11. In the given figure; ABC, AEQ and CEP are straight lines. Show that ∠APE and ∠CQE are supplementary.

Solution:

Join EB.

Then, in cyclic quad.ABEP $\angle APE + \angle ABE = 180^{\circ} \dots (i)$ [Opposite angles of a cyclic quad. are supplementary] Similarly, in cyclic quad.BCQE [Opposite angles of a cyclic $\angle CQE + \angle CBE = 180^{\circ} \dots$ (ii) quad. are supplementary] Adding (i) and (ii), we have $\angle APE + \angle ABE + \angle CQE + \angle CBE = 180^{\circ} + 180^{\circ} = 360^{\circ}$ $\angle APE + \angle ABE + \angle CQE + \angle CBE = 360^{\circ}$ But, $\angle ABE + \angle CBE = 180^{\circ}$ [Linear pair] $\angle APE + \angle CQE + 180^\circ = 360^\circ$ $\angle APE + \angle CQE = 180^{\circ}$ Therefore, $\angle APE$ and $\angle CQE$ are supplementary.

12. In the given, AB is the diameter of the circle with centre O. If $\angle ADC = 32^{\circ}$, find angle BOC.

Solution:

Arc AC subtends \angle AOC at the centre and \angle ADC at the remaining part of the circle.

Thus, $\angle AOC = 2 \angle ADC$ $\angle AOC = 2 \times 32^\circ = 64^\circ$ As $\angle AOC$ and $\angle BOC$ are linear pair, we have $\angle AOC + \angle BOC = 180^\circ$

 $64^{\circ} + \angle BOC = 180^{\circ}$ $\angle BOC = 180^{\circ} - 64^{\circ}$ Therefore, $\angle BOC = 116^{\circ}$

