JEE Advanced 2020 Chemistry| Paper-2 | Code-E

SECTION1 (Maximum Marks: 18)

- This section contains SIX (06) questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 TO 9, BOTH INCLUSIVE.
- For Each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct numerical value is entered;
Zero Marks : 0 If the question is unanswered;
Negative Marks : -1 In all other cases.

1. The $1^{\text {st }}, 2^{\text {nd }}$, and the $3^{\text {rd }}$ ionization enthalpies, I_{1}, I_{2}, and I_{3}, of four atoms with atomic numbers $n, n+1, n+2$, and $n+3$, where $n<10$, are tabulated below. What is the value of n ?

Atomic number	Ionization Enthalpy (kJ/mol)		
	I_{1}	I_{2}	I_{3}
n	1681	3374	6050
$n+1$	2081	3952	6122
$n+2$	496	4562	6910
$n+3$	738	1451	7733

Answer: 9
Solution:
According to the tabulated data,
Element with Atomic number ($\mathrm{n}+2$), should be an alkali metal
As we see, first ionization enthalpy (I_{1}) is very less but second ionization enthalpy (I_{2}) is very large.

Hence, atomic number can be $=11$
That is

$$
\begin{gathered}
=(n+2)=11 \\
n=9
\end{gathered}
$$

Note: 'n' can't be '1'.

JEE Advanced 2020 | Paper-2 | Code-E

2. Consider the following compounds in the liquid form:
O_{2}, $\mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CCl}_{4}, \mathrm{CHCl}_{3}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$.
When a charged comb is brought near their flowing stream, how many of them show deflection as per the following figure?

Answer: 6
Solution:
Only polar molecules are deflected by charged comb.
Polar molecules: $\mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CHCl}_{3}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
Non-polar molecules: $\mathrm{O}_{2}, \mathrm{CCl}_{4}$, Benzene
3. In the chemical reaction between stoichiometric quantities of KMnO_{4} and KI in weakly basic solution, what is the number of moles of I_{2} released for 4 moles of KMnO_{4} consumed?
Answer: 6
Solution:
Chemical reaction of KMnO_{4} and KI in weakly basic solution is given as
$\mathrm{KMnO}_{4}+\mathrm{KI} \xrightarrow[\text { Basic }]{\text { weak }} \mathrm{MnO}_{2}+\mathrm{I}_{2}$

$$
\mathrm{KMnO}_{4} \longrightarrow \mathrm{MnO}_{2}
$$

Oxidation state of Mn

$$
+7 \quad+4
$$

So n -factor of $\mathrm{KMnO}_{4}=3$

$$
2 \mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}
$$

n-factor of I_{2} is $=2$
$\mathrm{KMnO}_{4}+\mathrm{KI} \longrightarrow \mathrm{MnO}_{4}+\mathrm{I}_{2}$
n-factor $=3$

$$
\mathrm{n} \text {-factor }=2
$$

Equivalents of $\mathrm{KMnO}_{4}=$ Equivalents of I_{2}
n -factor \times Number of moles (n) $=\mathrm{n}$-factor \times Number of moles (n)
$3 \times$ moles of $\mathrm{KMnO}_{4}=2 \times$ moles of I_{2}
$3 \times 4=2 \times$ moles of I_{2}
Moles of $\mathrm{I}_{2}=6$ moles

JEE Advanced 2020 | Paper-2 | Code-E

4. An acidified solution of potassium chromate was layered with an equal volume of amyl alcohol. When it was shaken after the addition of 1 mL of $3 \% \mathrm{H}_{2} \mathrm{O}_{2}$, a blue alcohol layer was obtained. The blue color is due to the formation of a chromium (VI) compound ' \mathbf{X} '. What is the number of oxygen atoms bonded to chromium through only single bonds in a molecule of \mathbf{X} ?

Answer: 4

Solution:

Blue colour compound of ' Cr ' is CrO_{5}.

Oxygen atoms bonded to chromium through only single bonds $=4$
5. The structure of a peptide is given below.

If the absolute values of the net charge of the peptide at $\mathrm{pH}=2, \mathrm{pH}=6$, and $\mathrm{pH}=11$ are $\left|z_{1}\right|,\left|z_{2}\right|$, and $\left|z_{3}\right|$, respectively, then what is $\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|$?

Answer: 5

Solution:
(i) At $\mathrm{pH}=2$ (Highly acidic)

JEE Advanced 2020 | Paper-2 | Code-E

In highly acidic medium, the given tripeptide exist as cationic form.

Net charge +2
$\left|\mathrm{Z}_{1}\right|=2$ at $\mathrm{pH}=2$
(ii) At $\mathrm{pH}=6$ (neutral solution)

In neutral medium, the given tripeptide exist as Zwitter ion.

net charge $=0$
$\left|\mathrm{Z}_{2}\right|=0$ at $\mathrm{pH}=6$
(iii) At $\mathrm{pH}=11$ (basic medium)

In basic medium the given tripeptide exist in anionic form.

Net charge = -3
$\left|\mathrm{Z}_{3}\right|=3$
Therefore $\left|\mathrm{Z}_{1}\right|+\left|\mathrm{Z}_{2}\right|+\left|\mathrm{Z}_{3}\right|=2+0+3=5$

JEE Advanced 2020 | Paper-2 | Code-E

6. An organic compound $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}\right)$ rotates plane-polarized light. It produces pink color with neutral FeCl_{3} solution. What is the total number of all the possible isomers for this compound?

Answer: 6

Solution:

DBE (Double bond equivalent) of $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$ is
$=$ Number of carbon atoms $-($ Number of monovalent atoms $) / 2+1$
$=8-10 / 2+1=4$

It gives pink colour with neutral FeCl_{3} solution.It means phenolic group should be present in the compound.

Note: C* represent chiral carbon. So it will have (d and l) optically active isomers.

$(d+1)$

$(d+1)$

Total optically active isomer $=6$

JEE Advanced 2020 | Paper-2 | Code-E

SECTION 2 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONE OR MORE THAN ONE of these four option(s) is(are) the correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all four options is correct but ONLY three options are chosen; chosen; both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If none of the options is chosen (i.e. the questions is unanswered);
Negative Marks : -2 In all other cases.
7. In an experiment, m grams of a compound \mathbf{X} (gas/liquid/solid) taken in a container is loaded in a balance as shown in figure I below. In the presence of a magnetic field, the pan with \mathbf{X} is either deflected upwards (figure II), or deflected downwards (figure III), depending on the compound \mathbf{X}. Identify the correct statement(s).

(A) If \mathbf{X} is $\mathrm{H}_{2} \mathrm{O}(I)$, deflection of the panis upwards.
(B) If \mathbf{X} is $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](s)$, deflection of the panis upwards.
(C) If \mathbf{X} is $\mathrm{O}_{2}(g)$, deflection of the panis downwards.
(D) If \mathbf{X} is $\mathrm{C}_{6} \mathrm{H}_{6}(I)$, deflection of the panis downwards.

JEE Advanced 2020 | Paper-2 | Code-E

Answer: A, B, C
Solution:
Paramagnetic substances are attracted by magnetic fields \& diamagnetic substances are repelled by magnetic field.
O_{2} - is paramagnetic
$\mathrm{H}_{2} \mathrm{O}$ \& $\mathrm{C}_{6} \mathrm{H}_{6}(I)$ - are Diamagnetic
\& $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is also Diamagnetic
(A) $\mathrm{x}=\mathrm{H}_{2} \mathrm{O} \rightarrow$ Diamagnetic
(B) $\mathrm{x}=\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightarrow$ Diamagnetic

Here, Fe^{+2} strong field ligand.
$\rightarrow 3 d^{6} \Rightarrow\left[\mathrm{t}_{2} \mathrm{~g}^{6}, \mathrm{eg}^{0}\right]$
(C) $\mathrm{x}=\mathrm{O}_{2} \rightarrow$ Paramagnetic

Here, $\mathrm{O}_{2}(\mathrm{~g})$ is paramagnetic due to two unpaired electrons present in π^{*} (antibonding orbitals)
(D) $\mathrm{x}=\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l}) \rightarrow$ diamagnetic (incorrect)

It is due to presence of 0 unpaired electrons.
8. Which of the following plots is (are) correct for the given reaction?
($[\mathrm{P}]_{0}$ is the initial concentration of \mathbf{P})

P
(A) $t_{1 / 2} \underbrace{\overbrace{\square}}_{[\mathrm{P}]_{0}}$
P
Q
(B)

(C)

(D) $\ln \left(\frac{[\mathrm{P}]}{[\mathrm{P}]_{0}}\right) \underbrace{\text { (}}_{\text {time }}$

JEE Advanced 2020 | Paper-2 | Code-E

Answer: A
Solution:
Given Reaction: $\mathrm{H}_{3} \mathrm{C} \xrightarrow[\mathrm{CH}_{3}]{\mathrm{CH}_{3}} \mathrm{Br}+\mathrm{NaOH} \underset{\text { first order }}{\mathrm{s}_{\mathrm{N}} 1} \mathrm{H}_{3} \mathrm{C} \xrightarrow[\mathrm{CH}_{3}]{\mathrm{CH}_{3}} \mathrm{OH}+\mathrm{NaBr}$

At $t=0$
At $\mathrm{t}=\mathrm{t}$
Po
P

0
Po-P

We know,
Rate $=\mathrm{k}\left[X^{\mathrm{Br}}\right]$
and, $\quad \ln \frac{P_{o}}{P}=-k t$
here, $\quad \mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{k}}$

$$
\ln \frac{P_{o}}{P}=-k t
$$

$\frac{[\mathrm{Q}]}{\left[\mathrm{P}_{\mathrm{o}}\right]}=\frac{\left[\mathrm{P}_{\mathrm{o}}\right]-[\mathrm{P}]}{\left[\mathrm{P}_{\mathrm{o}}\right]}$
Solving, $\frac{[\mathrm{Q}]}{\left[\mathrm{P}_{\mathrm{o}}\right]}=1-\frac{[\mathrm{P}]}{\left[\mathrm{P}_{\mathrm{o}}\right]}$

$$
=1-\mathrm{e}^{-\mathrm{kt}}
$$

As there is no inversion. Hence should be
$\mathrm{S}_{\mathrm{N}} 1 \rightarrow 1^{\text {st }}$ order

conc.

(C) $\mathrm{x}=\mathrm{a}\left\{1-\mathrm{e}^{-\mathrm{kt}}\right\}$

$$
\mathrm{x} / \mathrm{a}=1-\mathrm{e}^{-\mathrm{kt}}
$$

$$
\frac{x}{a}=\frac{Q}{P_{0}}
$$

JEE Advanced 2020 | Paper-2 | Code-E

9. Which among the following statement(s) is(are) true for the extraction of aluminium from bauxite?
(A) Hydrated $\mathrm{Al}_{2} \mathrm{O}_{3}$ precipitates, when CO_{2} is bubbled through a solution of sodium aluminate.
(B) Addition of $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ lowers the melting point of alumina.
(C) CO_{2} is evolved at the anode during electrolysis.
(D) The cathode is a steel vessel with a lining of carbon.

Answer: A, B, C, D
Solution:
Refer topic metallurgy
(A) Extraction of aluminium (Hall's process and Hall Heroult's electrolytic cell):

The process involved in extraction of aluminium is Hall Heroult's process.
During process, $\mathrm{Al}_{2} \mathrm{O}_{3}$ is obtained as precipitate.
When CO_{3} is bubbled through a solution of sodium aluminate.
The reaction is given as:
$2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]($ aq. $)+\mathrm{CO}_{2} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{Al}(\mathrm{OH})_{3}(\downarrow)$ or $\mathrm{Al}_{2} \mathrm{O}_{3} .2 \mathrm{H}_{2} \mathrm{O}(\mathrm{ppt})$
(B) Electrolytic reduction of pure alumina takes place in steel box with lining of carbon (cathode) with cryolite ($\mathrm{Na}_{3} \mathrm{AlF}_{6}$) and fluorspar (CaF_{2}) which lowers the melting point and increases the conductivity of electrolyte.
(C) Electrolysis process in Hall's process:

Graphite rods acts as anode:
At cathode:
$\mathrm{Al}^{+3}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}$
At anode: The oxygen liberated at anode reacts with the carbon of anode to produce CO and CO_{2}.
$\mathrm{C}+\mathrm{O}^{2-} \longrightarrow \mathrm{CO}+2 \mathrm{e}^{-}$
$\mathrm{C}+\mathrm{CO}^{2-} \longrightarrow \mathrm{CO}_{2}+4 \mathrm{e}^{-}$
(D) Here the cathode is a steel vessel with a lining of carbon.

JEE Advanced 2020 | Paper-2 | Code-E

10. Choose the correct statement(s) among the following.
(A) $\mathrm{SnCl}_{2} 2 \mathrm{H}_{2} \mathrm{O}$ is a reducing agent.
(B) SnO_{2} reacts with KOH to form $\mathrm{K}_{2}\left[\mathrm{Sn}(\mathrm{OH})_{6}\right]$.
(C) A solution of PbCl_{2} in HCl contains Pb^{2+} and Cl^{-}ions.
(D) The reaction of $\mathrm{Pb}_{3} \mathrm{O}_{4}$ with hot dilute nitric acid to give PbO_{2} is a redox reaction.

Answer: A, B
Solution:
(A) $\mathrm{SnCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ is a reducing agent since Sn^{2+} tends to convert into Sn^{4+}

$$
\mathrm{SnO}_{2}+\mathrm{KOH} \longrightarrow \mathrm{~K}_{2} \mathrm{SnO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

or
Amphoteric $\quad \mathrm{K}_{2}\left[\mathrm{Sn}(\mathrm{OH})_{6}\right]$
(B) First group cations $\left(\mathrm{Pb}^{2+}\right)$ form insoluble chloride with HCl that is PbCl_{2} however it is slightlysoluble in water and therefore lead +2 ion is never completely precipitated on adding hydrochloricacid in test sample of Pb^{2+}, rest of the Pb^{2+} ions are quantitatively precipitated with $\mathrm{H}_{2} \mathrm{~S}$ in acidicmedium.

So that we can say that filtrate of first group contain solution of PbCl_{2} in HCl which contains Pb^{2+} and Cl^{-}.

However in the presence of conc. HCl or excess HCl it can produce $\mathrm{H}_{2}\left[\mathrm{PbCl}_{4}\right]$.
So, we can conclude A, B or A,B,C should be answers

$$
\mathrm{PbCl}_{2}+\mathrm{HCl} \longrightarrow \mathrm{H}_{2}\left[\mathrm{PbCl}_{4}\right]
$$

$$
\mathrm{Pb}_{3} \mathrm{O}_{4}+\mathrm{HNO}_{3} \longrightarrow \mathrm{PbO}_{2}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}
$$

or
$2 \mathrm{PbO} . \mathrm{PbO}_{2} \quad$ (Non redox reaction)

JEE Advanced 2020 | Paper-2 | Code-E

11. Consider the following four compounds I, II, III, and IV.

I

II

III

IV

Choose the correct statement(s).
(A) The order of basicity is II $>\mathbf{I}>$ III $>\mathbf{I} \mathbf{V}$.
(B) The magnitude of $\mathrm{p} K_{\mathrm{b}}$ difference between I and II is more than that between III and IV.
(C) Resonance effect is more in III than in IV.
(D) Steric effect makes compound IV more basic than I
III.

Answer: C, D
Solution:
(A) Correct basic strength order of given compound is

$$
(\text { IV })>(\text { II })>(\text { I })>(\text { III })
$$

(B) Compound IV is a stronger base than III due to SIR effect, which basic strength difference between I \& II is very less.
(C) In compound IV due to SIR (steric inhibition due to resonance) effect both $-\mathrm{NO}_{2}$ and $-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ group will be out of plane hence resonance effect in compound IV is less.

JEE Advanced 2020 | Paper-2 | Code-E

12. Consider the following transformations of a compound \mathbf{P}.

Choose the correct option(s).
(A) P is

(B) X is $\mathrm{Pd}-\mathrm{C} /$ quinoline $/ \mathrm{H}_{2}$
(C) P is

(D) R is

Answer: B, C
Solution:

- NaNH_{2} acts as a base for the double elimination of geminal or vicinal dihalides to give alkynes.
- $\mathrm{Pd}-\mathrm{C}$ / quinoline $+\mathrm{H}_{2} \Rightarrow$ a lindlar's catalyst that reduce only alkynes not alkenes.

JEE Advanced 2020 | Paper-2 | Code-E

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For Each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numerical keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme: Full Marks : +4 If ONLY the correct numerical value is entered;

Zero Marks : $0 \quad$ In all other cases.
13. A solution of 0.1 M weak base (B) is titrated with 0.1 M of a strong acid (HA). The variation of pH of the solution with the volume of HA added is shown in the figure below. What is the $\mathrm{p} K_{\mathrm{b}}$ of the base? The neutralization reaction is given by $\mathrm{B}+\mathrm{HA} \rightarrow \mathrm{BH}^{+}+\mathrm{A}^{-}$.

Answer: 3.3
Solution:
$\mathrm{B}+\mathrm{HA} \longrightarrow \mathrm{BH}^{\oplus}+\mathrm{A}^{-}$
$0.1 \mathrm{M} \quad 0.1 \mathrm{M}$
$0 \mathrm{~mL} \quad \mathrm{pH}=13$
$3 \mathrm{~mL} \rightarrow 50 \%$ Neutralization $\quad \mathrm{pH}=11$
$6 \mathrm{~mL} \rightarrow$ equivalence point $\quad \mathrm{pH}=3$ to 9
Equivalence point
$\mathrm{B}+\mathrm{HA} \longrightarrow \mathrm{BH}^{+}+\mathrm{A}^{-}$
$0.1 \times 6 \quad 0.1 \times 6$
$=0.6 \mathrm{~m} \mathrm{~mol} \quad=0.6 \mathrm{~m} \mathrm{~mol}$
$0 \quad 0 \quad 0.6 \mathrm{~m} \mathrm{~mol}$
Total volume $=12 \mathrm{ml}$

JEE Advanced 2020 | Paper-2 | Code-E

Concentration of Salt $=\frac{0.6}{12}$
$\mathrm{pH}=6=\sqrt{\frac{\mathrm{k}_{\mathrm{w}}}{\mathrm{k}_{\mathrm{b}}} \times \mathrm{c}}=\sqrt{\frac{10^{-14} \times 0.6}{\mathrm{k}_{\mathrm{b}} \times 12}} \quad\left\{\mathrm{pH}=0.6,\left[\mathrm{H}^{+}\right]=10^{-6}\right\}$
$\Rightarrow\left[\mathrm{H}^{+}\right]=10^{-6}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}} \times \frac{0.1 \times 6}{12}}$
$10^{-12}=\frac{10^{-14} \times 10^{-1}}{\mathrm{~K}_{\mathrm{b}}} \times \frac{1}{2}$
$\mathrm{k}_{\mathrm{b}}=5 \times 10^{-4}$
$\mathrm{pk}_{\mathrm{b}}=-\log \mathrm{k}_{\mathrm{b}}=-\log \left(5 \times 10^{-4}\right)=-\log 5+4 \log 10$
$\mathrm{pkb}=4-0.7$
$\mathrm{pk} b=3.3$
14. Liquids \mathbf{A} and \mathbf{B} form ideal solution for all compositions of \mathbf{A} and \mathbf{B} at $25^{\circ} \mathrm{C}$. Two such solutions with 0.25 and 0.50 mole fractions of \mathbf{A} have the total vapor pressures of 0.3 and 0.4 bar, respectively. What is the vapor pressure of pure liquid \mathbf{B} in bar?
Answer: 0.2
Solution:

$$
\begin{align*}
& \mathrm{P}_{\text {Total }}=0.3 \quad \text { where } \mathrm{x}_{\mathrm{A}}=\frac{1}{4} \\
& \mathrm{X}_{\mathrm{A}}+\mathrm{X}_{\mathrm{B}}=1 \\
& \Rightarrow \mathrm{XB}_{\mathrm{B}}=0.75=\frac{3}{4} \\
& \Rightarrow \quad 0.3=\frac{1}{4} \mathrm{P}_{\mathrm{A}}^{0}+\frac{3}{4} \mathrm{P}_{\mathrm{B}}^{0} \tag{1}\\
& \mathrm{P}_{\text {Total }}=0.4 \quad \text { where } \mathrm{X}_{\mathrm{A}}=\frac{1}{2}, \mathrm{XB}_{\mathrm{B}}=\frac{1}{2} \\
& \Rightarrow 0.4=\frac{1}{2} \mathrm{P}_{\mathrm{A}}^{0}+\frac{1}{2} \mathrm{P}_{\mathrm{B}}^{0} \tag{2}\\
& \text { eq.(1) } \times 2-\text { eq.(2) } \\
& 0.6=\frac{1}{2} \mathrm{P}_{\mathrm{A}}^{0}+\frac{3}{2} \mathrm{P}_{\mathrm{B}}^{0} \\
& 0.4=\frac{1}{2} \mathrm{P}_{\mathrm{A}}^{0}+\frac{1}{2} \mathrm{P}_{\mathrm{B}}^{0} \\
& \text { - - } \\
& \mathrm{P}_{\mathrm{B}}^{0}=0.2 \mathrm{bar}
\end{align*}
$$

JEE Advanced 2020 | Paper-2 | Code-E

15. The figure below is the plot of potential energy versus internuclear distance (d) of H_{2} molecule in the electronic ground state. What is the value of the net potential energy E_{0} (as indicated in the figure) in $\mathrm{kJ} \mathrm{mol}^{-1}$, for $d=d_{0}$ at which the electron-electron repulsion and the nucleus-nucleus repulsion energies are absent? As reference, the potential energy of H atom is taken as zero when its electron and the nucleus are infinitely far apart.

Use Avogadro constant as $6.023 \times 10^{23} \mathrm{~mol}^{-1}$.

Answer: -5242.42

Solution:
P. E of 2 H -atoms

Total eng $=\frac{P . E}{2}$
\Rightarrow Potential Energy $=2$ Total Energy

$$
\begin{aligned}
& E=-13.6 \times \frac{z^{2}}{n^{2}} \mathrm{ev} / \text { atom } \\
& =-2 \times 13.6 \times \frac{\mathrm{z}^{2}}{n^{2}} \mathrm{ev} / \text { atom }+\left(-2 \times 13.6 \times \frac{\mathrm{z}^{2}}{\mathrm{n}^{2}}\right) \mathrm{ev} / \text { atom }
\end{aligned}
$$

JEE Advanced 2020 | Paper-2 | Code-E

$=-2 \times 2 \times 13.6 \times \frac{(1)^{2}}{(1)^{2}} \mathrm{ev} /$ atom
$=-4 \times 13.6 \times 1.6 \times 10^{-19} \mathrm{~J} /$ atom $\times 6.023 \times 10^{23}$ atom $/ \mathrm{mole}$
$=-4 \times 13.6 \times 1.6 \times 6.023 \times 10^{4} \mathrm{~J} / \mathrm{mole}$
$=-5242.42 \mathrm{KJ} / \mathrm{mol}$

16. Consider the reaction sequence from \mathbf{P} to \mathbf{Q} shown below. The overall yield of the major product \mathbf{Q} from \mathbf{P} is 75%. What is the amount in grams of \mathbf{Q} obtained from 9.3 mL of \mathbf{P} ? (Use density of $\mathbf{P}=1.00 \mathrm{~g} \mathrm{~mL}^{-1}$; Molar mass of $\mathrm{C}=12.0, \mathrm{H}=1.0,0=16.0$ and $\left.\mathrm{N}=14.0 \mathrm{~g} \mathrm{~mol}^{-1}\right)$

(iii) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} / \mathrm{H}_{2} \mathrm{O}$

Answer: 18.6
Solution:

Molecular weight of aniline $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)=77+14+2=93$
Density of $\mathrm{P}=1 \mathrm{gm} \mathrm{ml}^{-1}$
$\mathrm{d}=\frac{\mathrm{m}}{\mathrm{v}}$
$\Rightarrow \mathrm{m}=\mathrm{d} \times \mathrm{v}$
Mass of $\mathrm{P}=9.3 \times 1=9.3 \mathrm{~g}$
9.3 ml of $\mathrm{P}=9.3 \mathrm{gm}$
$\mathrm{P}=\frac{9.3}{93}=0.1$ mole of P

JEE Advanced 2020 | Paper-2 | Code-E

The mole ratio $\mathrm{PhNH}_{2}: \mathrm{PhN}_{2}{ }^{+}$:

$$
=1: 1: 1
$$

So,the mole of Q formed will be 0.1 mole and extent of reaction is 100% but if it is 75% yield.
Then amount of $\mathrm{Q}=0.1 \times \frac{75}{100}=0.075 \mathrm{~mol}$
The molecular formula of $\mathrm{Q}=\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ON}_{2}$
So, M. wt. of $\mathrm{Q}=16 \times 12+12 \times 1+16+2 \times 14$

$$
\begin{aligned}
& =192+12+16+28 \\
& =248 \mathrm{gm} / \mathrm{mol}
\end{aligned}
$$

So, amount of $\mathrm{Q}=248 \times 0.075=18.6 \mathrm{gm}$
17. Tin is obtained from cassiterite by reduction with coke. Use the data given below to determine the minimum temperature (in K) at which the reduction of cassiterite by coke would take place.

At $298 \mathrm{~K}: \Delta_{f} H^{0}\left(\mathrm{SnO}_{2}(s)\right)=-581.0 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{f} H^{0}\left(\mathrm{CO}_{2}(g)\right)=-394.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$,
$S^{0}\left(\mathrm{SnO}_{2}(s)\right)=56.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S^{0}(\mathrm{Sn}(s))=52.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$,
$S^{0}(\mathrm{C}(s))=6.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S^{0}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)=210.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.

Assume that the enthalpies and the entropies are temperature independent.
Answer: 935
Solution:

$$
\begin{aligned}
& \mathrm{SnO}_{2}(\mathrm{~s})+\mathrm{C}(\mathrm{~s}) \longrightarrow \mathrm{CO}_{2}+\mathrm{Sn} \\
& \begin{aligned}
\Delta \mathrm{H} & =\left(\Delta_{\mathrm{f}} \mathrm{H}\right)_{\mathrm{P}}-\left(\Delta_{\mathrm{f}} \mathrm{H}\right)_{\mathrm{R}} \\
& =-394+581 \\
& =+187 \mathrm{KJ} / \mathrm{mol} \\
\Delta \mathrm{~S} & =(\Delta \mathrm{S})_{\mathrm{P}}-(\Delta \mathrm{S})_{\mathrm{R}}
\end{aligned}
\end{aligned}
$$

JEE Advanced 2020 | Paper-2 | Code-E

$=210+52-56-6$
$=200 \mathrm{~J} / \mathrm{k} \mathrm{mol}$

$$
\begin{array}{r}
\Delta \mathrm{G}=187 \times 1000-200 \times \mathrm{T} \\
\mathrm{~T}=\frac{187 \times 1000}{200}=935 \mathrm{~K}
\end{array}
$$

JEE Advanced 2020 | Paper-2 | Code-E

18. An acidified solution of $0.05 \mathrm{MZn}^{2+}$ is saturated with $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$. What is the minimum molar concentration (M) of H^{+}required to prevent the precipitation of ZnS ?

Use $K_{\text {sp }}(\mathrm{ZnS})=1.25 \times 10^{-22}$ and overall dissociation constant of $\mathrm{H}_{2} \mathrm{~S}$,
$\mathrm{K}_{\mathrm{NET}}=K_{1} K_{2}=1 \times 10^{-21}$.
Answer: 0.2
Solution:

$$
\begin{aligned}
& {\left[\mathrm{Zn}^{+2}\right]\left[\mathrm{S}^{2-}\right] \leq \mathrm{K}_{\mathrm{sp}}(\mathrm{ZnS})} \\
& {\left[\mathrm{S}^{2-}\right] \leq \frac{5}{4} \times \frac{10^{-22}}{0.05}} \\
& \mathrm{H}_{2} \mathrm{~S} \Leftrightarrow 2 \mathrm{H}^{+}+\mathrm{s}^{2-} \\
& {\left[\mathrm{S}^{2-}\right]=\frac{\mathrm{K}_{\mathrm{net}} \times\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\left[\mathrm{H}^{+}\right]^{2}}} \\
& \frac{\mathrm{~K}_{\text {net }} \times\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\left[\mathrm{H}^{+}\right]^{2}} \leq \frac{5}{4} \times \frac{10^{-22}}{10^{-2} \times 5} \\
& {\left[\mathrm{H}^{+}\right]^{2} \geq \frac{10^{-21} \times 10^{-1} \times 4}{10^{-20}}}
\end{aligned}
$$

$$
\left[\mathrm{H}^{+}\right]^{2} \geq 4 \times 10^{-2}
$$

$\left[\mathrm{H}^{+}\right] \geq 2 \times 10^{-1}=0.2$

Alternate:

$$
\left[\mathrm{Zn}^{+2}\right]\left[\mathrm{S}^{2-}\right] \leq \mathrm{K}_{\mathrm{sp}}
$$

$$
\left[\mathrm{S}^{2-}\right] \leq \frac{5}{4} \times \frac{10^{-22}}{0.05}=\frac{1}{4} \times 10^{-20}
$$

$$
\mathrm{H}_{2} \mathrm{~S} \Leftrightarrow \quad \Leftrightarrow \quad 2 \mathrm{H}^{+}+\mathrm{S}^{2-}
$$

$$
\left[\mathrm{H}^{+}\right]^{2}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2} \times\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\left[\mathrm{S}^{2-}\right]}=\frac{10^{-21} \times 0.1}{\left[\mathrm{~S}^{2-}\right]}
$$

$$
\left[\mathrm{S}^{2-}\right]=\frac{10^{-22}}{\left[\mathrm{H}^{+}\right]^{2}} \leq \frac{1}{4} \times 10^{-20}
$$

$$
\left[\mathrm{H}^{+}\right]^{2} \geq 4 \times 10^{-2}
$$

$$
\left[\mathrm{H}^{+}\right] \geq 0.2
$$

