

SECTION 1 (Maximum Marks: 18)

- This section contains **SIX (06)** questions.
- Each question has **FOUR** options. **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.

	· · ·		· .		.11.1	•	1.	1 1	. Ŭ	.1 . 1 . 1			1. 1		
٠	Answer to each question will be evaluated <u>according to the following marking scheme</u> :														
	Full Marks	<i>Full Marks</i> : +3 If ONLY the correct option is chosen;													
	Zero Marks	:	0	If	none	of	the	options	is	chosen	(i.e.	the	questions	is	
	unanswered);														
	<i>Negative Marks</i> : -1 In all other cases.														

1. Suppose *a*, *b* denote the distinct real roots of the quadratic polynomial $x^2 + 20x - 2020$ and suppose *c*, *d* denote the distinct complex roots of the quadratic polynomial $x^2 - 20x + 2020$. Then the value of

ac(a-c) + ad(a-d) + bc(b-c) + bd(b-d)

is

- (A) 0
- (B) 8000
- (C) 8080
- (D) 16000

Answer: D

Solution:

 $x^2 + 20x - 2020 = 0$ has two roots a, $b \in \mathbb{R}$.

a + b = – 20 & a.b = – 2020

 $x^2 - 20x + 2020 = 0 < 0$

```
has two roots c, d \in \text{complex.}

c + d = 20 \& c.d = 2020

Now

= ac(a - c) + ad(a - d) + bc(b - c) + bd(b - d)

= a^2c - ac^2 + a^2d - ad^2 + b^2c - bc^2 + b^2d - bd^2

= a^2(c+d) + b^2(c+d) - c^2(a+b) - d^2(a+b)

= (a^2 + b^2)(c+d) - (a+b)(c^2 + d^2)

= \{(a+b)^2 - 2ab\}(c+d) - \{(c+d)^2 - 2cd\}(a+b)

Put value a, b, c & d then,

= \{(-20)^2 - 2(-2020)\}(20) - \{(20)^2 - 2(2020)\}(-20)

= ((400 + 4040)(20) - (-20)((20)^2 - 4040))

= 20[4440 - 3640]

20[800] = 16000
```

- 2. If the function $f: \mathbb{R} \to \mathbb{R}$ is defined by $(x) = |x|(x \sin x)$, then which of the following statements is **TRUE**?
 - (A) *f* is one-one, but **NOT** onto
 - (B) *f* is onto, but **NOT** one-one
 - (C) f is BOTH one-one and onto
 - (D) f is NEITHER one-one NOR onto

Answer: C

Solution:

 $f(x) = |x|(x - \sin x)$ Given, $f(-x) = -(|x|(x - \sin x))$ $f(-x) = -f(x) \Rightarrow f(x)$ is odd, non-periodic and continuous function. Now $f(x) = \begin{bmatrix} x^2 - x \sin x, x \ge 0 \\ -x^2 + x \sin x, x < 0 \end{bmatrix}$ $\therefore f(\infty) = \lim_{x \to \infty} (x^2) \left(1 - \frac{\sin x}{x} \right) = \infty$ $f(-\infty) = \lim_{x \to -\infty} (-x^2) \left(1 - \frac{\sin x}{x} \right) = -\infty$ \Rightarrow Range of f(x) = R \Rightarrow f(x) is an onto function(A) $f'(x) = \begin{bmatrix} 2x - \sin x - x \cos x & x \ge 0 \\ -2x + \sin x + x \cos x & x < 0 \end{bmatrix}$ $f'(x) = (x - \sin x) + x(1 - \cos x)$ \Rightarrow f'(x) > 0 \forall x \in ($-\infty,\infty$) \Rightarrow f (x) is one - one function(B) From equation (A) & (B), f(x) is both one – one & onto.

3. Let the functions: $R \rightarrow R$ and $g : R \rightarrow R$ be defined by

$$f(x) = e^{x-1} - e^{-|x-1|}$$
 and $g(x) = \frac{1}{2}(e^{x-1} + e^{1-x})$

Then, the area of the region in the first quadrant bounded by the curves y = (x), y = g(x) and x = 0 is

(A) $(2 - \sqrt{3}) + \frac{1}{2}(e - e^{-1})$ (B) $(2 + \sqrt{3}) + \frac{1}{2}(e - e^{-1})$ (C) $(2 - \sqrt{3}) + \frac{1}{2}(e + e^{-1})$ (D) $(2 + \sqrt{3}) + \frac{1}{2}(e + e^{-1})$

Answer: A Solution:

$$f(x) = e^{x-1} - e^{-|x-1|}$$

$$f(x) = \begin{bmatrix} e^{x-1} - e^{-(x-1)} & x \ge 1 \\ e^{x-1} - e^{(x-1)} = 0 & x < 1 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} e^{x-1} - \frac{1}{e^{x-1}} & x \ge 1 \\ 0 & x < 1 \end{bmatrix}$$

$$g(x) = \frac{1}{2} \left(e^{x-1} + \frac{1}{e^{x-1}} \right) = \frac{1}{2} \left(e^{x-1} + e^{1-x} \right)$$
Now $f(x) = g(x)$

$$e^{x-1} - \frac{1}{e^{x-1}} = \frac{1}{2} \left(e^{x-1} + \frac{1}{e^{x-1}} \right)$$

$$2e^{x-1} - \frac{2}{e^{x-1}} = e^{x-1} + \frac{1}{e^{x-1}} c$$

$$e^{x-1} - \frac{3}{e^{x-1}} = 0 \Longrightarrow e^{x-1} = \sqrt{3}$$

$$x = 1 + \frac{\ln 3}{2} = 1 + \ln \sqrt{3}$$

4. Let *a*, *b* and λ be positive real numbers. Suppose P is an end point of the latus rectum of the parabola $y^2 = 4\lambda x$, and suppose the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passes through the point *P*. If the tangents to the parabola and the ellipse at the point P are perpendicular to each other, then the eccentricity of the ellipse is

27th September 2020 | Mathematics

.....(1)

Now E: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Passes through P $\frac{\lambda^2}{a^2} + \frac{4\lambda^2}{b^2} = 1 \Rightarrow \left(\frac{dy}{dx}\right)_A = \frac{-b^2}{2a^2} = m_2$ $\frac{2\lambda}{2\lambda}x - \frac{\lambda}{a^2} \cdot \frac{b^2}{2\lambda} = -1$ (2) From eq. (1) and (2) $m_1 \cdot m_2 = -1 \Rightarrow b^2 = 2a^2$ $\frac{a^2}{b^2} = \frac{1}{2}$ for eccentricity of ellipse $e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{1}{2}} = \frac{1}{\sqrt{2}}$

5. Let C₁ and C₂ be two biased coins such that the probabilities of getting head in a single toss are ²/₃ and ¹/₃, respectively. Suppose α is the number of heads that appear when C₁ is tossed twice, independently, and suppose β is the number of heads that appear when C₂ is tossed twice, independently. Then the probability that the roots of the quadratic polynomial x² - αx + β are real and equal, is

(A) ⁴⁰/₈₁
(B) ²⁰/₈₁
(C) ¹/₂
(D) ¹/₄

Answer: B Solution:

P(H) =2/3
P(T) = 1/3; C₂
P(T) = 2/3
Now roots of equation x²-
$$\alpha$$
x + β = 0 are real & equal
 \therefore D = 0
 $\alpha^{2} - 4\beta = 0$
 $\alpha^{2} - 4\beta = 0$
 $\alpha^{2} = 4\beta$
 $\Rightarrow (\alpha = 0, \beta = 0) \text{ or } (\alpha = 2, \beta = 1)$
P(E) = ${}^{2}C_{0}\left(\frac{1}{3}\right)^{2} \cdot {}^{2}C_{0}\left(\frac{2}{3}\right)^{2} + {}^{2}C_{2}\left(\frac{2}{3}\right)^{2} \cdot {}^{2}C_{1}\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)$
 $\Rightarrow \frac{1}{9} \times \frac{4}{9} + \frac{4}{9} \times \frac{4}{9} = \frac{20}{81}$

SECTION 2 (Maximum Marks: 24)

- This section contains **SIX (06)** questions.
- Each question has **FOUR** options. **ONE OR MORE THAN ONE** of these four option(s) is(are) the correct answer(s).
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:
 - *Full Marks* : +4 If only (all) the correct option(s) is(are) chosen;
 - *Partial Marks* : +3 If all four options is correct but ONLY three options are chosen;
 - *Partial Marks* : +2 If three or more options are correct but ONLY two options are chosen; both of which are correct;
 - Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the questions is unanswered);

Negative Marks : -2 In all other cases.

6. Consider all rectangles lying in the region

$$\left\{ (x,y) \in \mathbb{R} \times \mathbb{R} : 0 \le x \le \frac{\pi}{2} \text{ and } 0 \le y \le 2\sin(2x) \right\}$$

and having one side on the x-axis. The area of the rectangle which has the maximum perimeter among all such rectangles, is

(A)
$$\frac{3\pi}{2}$$

(B) π
(C) $\frac{\pi}{2\sqrt{3}}$

(D)
$$\frac{\pi\sqrt{3}}{2}$$

Solution:

Let sides of rectangle are a & b

Then, perimeter = 2a + 2b

p = 2(a + b)

Now, b = $2\sin 2x \& b = 2\sin(2x + 2a) \Longrightarrow 2x + 2x + 2a = \pi$

$$\left\{x=\frac{\pi}{4}-\frac{a}{2}\right\}$$

For perimeter maximum

$$P = 2a + 2b$$

$$P = \pi - 4x + 4\sin 2x$$

$$\frac{dP}{dx} = -4 + 8\cos 2x = 8\left\{\cos 2x - \frac{1}{2}\right\}$$

$$\frac{dP}{dx} + \frac{1}{\pi/6}$$

$$P_{max} \text{ at } x = \pi/6$$
Now, Area at $x = \frac{\pi}{6}$

$$Area = \left(\frac{\pi}{2} - 2x\right).(2\sin 2x)$$

$$\left(\frac{\pi}{2} - \frac{\pi}{3}\right)\left(2.\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}\sqrt{3} = \frac{\pi}{2\sqrt{3}}$$

=

7. Let the function $f: \mathbb{R} \to \mathbb{R}$ be defined by $(x) = x^3 - x^2 + (x - 1) \sin x$ and let $g: \mathbb{R} \to \mathbb{R}$ be an arbitrary function. Let $fg: \mathbb{R} \to \mathbb{R}$ be the product function defined by (fg)(x) = f(x)g(x). Then which of the following statements is/are TRUE?

(A) If g is continuous at x = 1, then fg is differentiable at x = 1

(B) If fg is differentiable at x = 1, then g is continuous at x = 1

(C) If g is differentiable at x = 1, then fg is differentiable at x = 1

(D) If fg is differentiable at x = 1, then g is differentiable at x = 1

Answer: A, C

$$\begin{split} f: R \to R \\ (A) f(x) &= x^{3} - x^{2} + (x - 1) \sin x; g: R \to R \\ h(x) &= f(x). g(x) = \{x^{3} - x^{2} + (x - 1) \sin x\}. g(x) \\ h'(1^{+}) &= \lim_{h \to 0} \frac{\{(1 + h)^{3} - (1 + h)^{2} + h. \sin(1 + h)\}g(1 + h)}{h} \\ &= \lim_{h \to 0} \frac{(1 + h^{3} + 3h + 3h^{2} - 1 - h^{2} - 2h + h\sin(1 + h))g(1 + h)}{h} \\ &= \lim_{h \to 0} \frac{(h^{3} + 2h^{2} + h + h\sin(1 + h))g(1 + h)}{h} \\ &= \lim_{h \to 0} \frac{(h^{3} + 2h^{2} + h + h\sin(1 + h))g(1 + h)}{h} \\ h'(1^{-}) &= \lim_{h \to 0} \frac{((1 - h)^{3} - (1 - h)^{2} + (-h)\sin(1 - h))g(1 - h)}{-h} \\ &= \lim_{h \to 0} \frac{(-h^{3} - 3h + 3h^{2} - h^{2} + 2h - h\sin(1 - h))g(1 - h)}{-h} \\ &= \lim_{h \to 0} \frac{(-h^{3} - 3h + 3h^{2} - h^{2} + 2h - h\sin(1 - h))g(1 - h)}{-h} \\ &= \lim_{h \to 0} (1 + \sin(1 - h))g(1 - h) \\ as g(x) is constant at x = 1 \\ \therefore g(1 + h) = g(1 - h) = g(1) \\ h'(1^{+}) = h'(1^{-}) = (1 + \sin 1) g(1) \\ 'A' is Correct. \end{split}$$

8. Let M be a 3 × 3 invertible matrix with real entries and let I denote the 3 × 3 identity matrix. If M⁻¹ = adj (adj M), then which of the following statements is/are ALWAYS TRUE?
(A) M = I

(B) $\det M = 1$

(C) $M^2 = I$

(D) $(adj M)^2 = I$

```
Answer: B, C, D
```

Solution:

```
M^{-1} = adj(adj(M))
(adj M)M^{-1} = (adjM)(adj(adj(M)))
(adj M)M^{-1} = N. adj(N)
(adj M)M^{-1} = |N|I
(adjM)M^{-1} = |adj(M)|I_3
(adjM) = |M|^2 .M
|adj M| = ||M|^2.M|
|M|^2 = |M^6|.|M|
|M|=1, |M|\neq 0
From equation (1)
adj.M = M
Multiply by matrix M
M.adj M = M^2
|M|I_3 = M^2
M^2 = I
From (2) adj M = M
 (adj M)^2 = M^2 = I
```

{ Let adj(M) = N }

```
.....(1)
```

.....(2)

- 9. Let S be the set of all complex numbers z satisfying $|z^2 + z + 1| = 1$. Then which of the following statements is/are TRUE?
 - (A) $\left|z + \frac{1}{2}\right| \le \frac{1}{2}$ for all $z \in S$ (B) $|z| \le 2$ for all $z \in S$

(C)
$$\left|z + \frac{1}{2}\right| \ge \frac{1}{2}$$
 for all $z \in S$

(D) The set S has exactly four elements

Answer: B, C

Solution:

$$|z^{2}+z+1| = 1$$

$$\Rightarrow \left| \left(z+\frac{1}{2}\right)^{2} + \frac{3}{4} \right| = 1$$

$$\Rightarrow \left| \left(z+\frac{1}{2}\right)^{2} + \frac{3}{4} \right| \le \left|z+\frac{1}{2}\right|^{2} + \frac{3}{4}$$

$$\Rightarrow 1 \le \left|z+\frac{1}{2}\right|^{2} + \frac{3}{4} \Rightarrow \left| \left(z+\frac{1}{2}\right) \right|^{2} \ge \frac{1}{4}$$

$$\Rightarrow \left|z+\frac{1}{2}\right| \ge \frac{1}{2} \text{ Option (C) is correct}$$
Also $\left| (z^{2}+z)+1 \right| = 1 \ge \left| |z^{2}+z| - 1 |$

$$\Rightarrow \left|z^{2}+z\right| - 1 \le 1$$

$$\Rightarrow \left|z^{2}+z\right| \le 2$$

$$\Rightarrow \left| |z^{2}| - |z| \right| \le \left| |z^{2}+z| \le 2$$

$$\Rightarrow \left| |z^{2}-r| \le 2$$

$$\Rightarrow |r^{2}-r| \le 2$$

Also we can always fine root of the equation $z^2 + z + 1 = e^{i\theta}$; $\forall \theta \in \mathbb{R}$ Hence set 'S' is infinite.

10. Let x, *y* and z be positive real numbers. Suppose *x*, *y* and z are the lengths of the sides of a triangle opposite to its angles *X*, *Y* and Z, respectively. If

$$\tan\frac{X}{2} + \tan\frac{Z}{2} = \frac{2y}{x+y+z},$$

then which of the following statements is/are TRUE?

- (A) 2Y = X + Z
- (B) Y = X + Z
- (C) $\tan \frac{X}{2} = \frac{x}{y+z}$
- (D) $x^2 + z^2 y^2 = xz$

Answer: B, C

$$\Rightarrow (x+z)^{2} + (x-z)^{2} = 2y^{2}$$

$$\Rightarrow x^{2} + z^{2} = y^{2} \qquad \Rightarrow \angle Y = \frac{\pi}{2}$$

$$\Rightarrow \angle Y = \angle X + \angle Z$$

$$\tan \frac{X}{2} = \frac{\Delta}{S(S-x)}$$

$$\tan \frac{X}{2} = \frac{\frac{1}{2}xz}{\frac{(y+z)^{2} - x^{2}}{4}}$$

$$\tan \frac{X}{2} = \frac{2xz}{y^{2} + z^{2} + 2yz - x^{2}}$$

$$\tan \frac{X}{2} = \frac{2xz}{2z^{2} + 2yz} \qquad (\text{using } y^{2} = x^{2} + z^{2})$$

$$\tan \frac{X}{2} = \frac{x}{y + z}$$

11. Let L_1 and L_2 be the following straight lines.

$$L_1: \frac{x-1}{1} = \frac{y}{-1} = \frac{z-1}{3}$$
 and $L_2: \frac{x-1}{-3} = \frac{y}{-1} = \frac{z-1}{1}$

Suppose the straight line

$$L: \frac{x-\alpha}{l} = \frac{y-1}{m} = \frac{z-\gamma}{-2}$$

Lies in the plane containing L_1 and L_2 , and passes through the point of intersection of L_1 and L_2 . If the line L bisects the acute angle between the lines L_1 and L_2 , then which of the following statements is/are TRUE?

(A)
$$\alpha - \gamma = 3$$

- (B) l + m = 2
- (C) $\alpha \gamma = 1$
- (D) l + m = 0

L₁:
$$\frac{x-1}{1} = \frac{y}{-1} = \frac{z-1}{3} = \lambda$$
 (let)
L₂: $\frac{x-1}{-3} = \frac{y}{-1} = \frac{z-1}{1} = \mu$ (let)
P(λ +1, $-\lambda$, 3λ +1), Q(-3μ +1, $-\mu$, μ +1)
For point of Intersection
 λ + 1 = -3μ + 1 ($\lambda = \mu$)
 $\lambda = \mu = 0$
Point of Intersection (1,0,1)
 $\therefore \frac{x-\alpha}{l} = \frac{y-1}{m} = \frac{z-\gamma}{-2}$ passes through (1,0,1)
 $\frac{1-\alpha}{l} = \frac{-1}{m} = \frac{1-\gamma}{-2}$...(1)
Direction ratio of L₁(1, -1, 3),direction ratio of L₂(-3 , -1, 1)
 $\bar{V}_1 = \text{direction cosine of L}_1\left(\frac{1}{\sqrt{11}}, \frac{-1}{\sqrt{11}}, \frac{3}{\sqrt{11}}\right)$;
 $\bar{V}_2 = \text{direction cosine of L}_2\left(\frac{-3}{\sqrt{11}}, \frac{-1}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right)$
 $\bar{V}_1, \bar{V}_2 > 0$
 \therefore direction ratio of \angle bisector of L₁ and L₂
 $= \left(\frac{-2}{\sqrt{11}}, \frac{-2}{\sqrt{11}}, \frac{4}{\sqrt{11}}\right)$
Or $\frac{1}{-2} = \frac{m}{-2} = \frac{n}{4}$
 $\frac{1}{-1} = \frac{m}{-1} = \frac{n}{2} \Rightarrow 1 = m = 1$
From eq.(1)
 $\frac{1-\alpha}{-2} = -1 \Rightarrow \alpha = 2$
 $\otimes \frac{1-\gamma}{-2} = -1 \Rightarrow \gamma = -1$

(A) $\int_0^1 x \cos x \, dx \ge \frac{3}{8}$ (B) $\int_0^1 x \sin x \, dx \ge \frac{3}{10}$ (C) $\int_0^1 x^2 \cos x \, dx \ge \frac{1}{2}$ (D) $\int_0^1 x^2 \sin x \, dx \ge \frac{2}{9}$

Answer: A, B, D Solution:

(A)

Expansion of $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ $\therefore \cos x \ge 1 - \frac{x^2}{2!}$ Multiply x both side $x\cos x \ge x - \frac{x^3}{2!}$ Integration both side $\int_0^1 x\cos x \, dx \ge \int_0^1 \left(x - \frac{x^3}{2}\right) dx$ $\int_0^1 x\cos x \, dx \ge \left(\frac{x^2}{2} - \frac{x^4}{8}\right)_0^1$ $\int_0^1 x\cos x \, dx \ge \frac{1}{2} - \frac{1}{8}$ $\int_0^1 x\cos x \, dx \ge \frac{3}{8}$ Similarly (B) expansion of $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} \dots$ $\sin x \ge x - \frac{x^3}{3!}$

Multiply x both side $x \sin x \ge x^2 - \frac{x^4}{6}$ Integration both side $\int_{0}^{1} x \sin x \, dx \ge \int_{0}^{1} \left(x^2 - \frac{x^4}{6} \right) dx$ $\int_{0}^{1} x \sin x dx \ge \left(\frac{x^{3}}{3} - \frac{x^{5}}{6 \cdot 5}\right)_{0}^{1}$ $\int_{0}^{1} x \sin x \, dx \ge \left(\frac{x^{3}}{3} - \frac{x^{5}}{30}\right)_{0}^{1}$ $\int_{0}^{1} x \sin x \, dx \ge \frac{1}{3} - \frac{1}{30}$ $\int_{-\infty}^{1} x \sin x \, dx \ge \frac{3}{10}$ (C) $\cos x < 1$ Multiply x² both side $x^2 \cos x < x^2$ Integration both side $\int_{0}^{1} x^2 \cos x \, dx < \int_{0}^{1} x^2 \, dx$ $\int_{0}^{1} x^2 \cos x \, dx < \frac{1}{3}$ (D) $\int_{0}^{1} x^{2} \sin x \, dx \ge \int_{0}^{1} x^{2} \left(x - \frac{x^{3}}{6} \right) dx$ $\left(\frac{x^4}{2}-\frac{x^6}{25}\right)^2$

$$\int_{0}^{1} x^{2} \sin x \, dx \ge \left(\frac{x}{4} - \frac{x}{36}\right)^{1}$$
$$\int_{0}^{1} x^{2} \sin x \, dx \ge \frac{1}{4} - \frac{1}{36}$$
$$\int_{0}^{1} x^{2} \sin x \, dx \ge \frac{2}{9}$$

SECTION 3 (Maximum Marks: 24)

- This section contains **SIX (06)** questions. The answer to each question is a **NUMERICAL VALUE**.
- For Each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numerical keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>: *Full Marks* : +4 If ONLY the correct numerical value is entered; *Zero Marks* : 0 In all other cases.
- 13. Let m be the minimum possible value of $\log_3(3^{y_1} + 3^{y_2} + 3^{y_3})$, where y_1 , y_2 , y_3 are real numbers for which $y_1 + y_2 + y_3 = 9$. Let M be the maximum possible value of $(\log_3 x_1 + \log_3 x_2 + \log_3 x_3)$, where x_1 , x_2 , x_3 are positive real numbers for which $x_1 + x_2 + x_3 = 9$. Then the value of $\log_2(m^3) + \log_3(M^2)$ is ____

Answer: 8.00

Solution:

Using A.M ≥ G.M.

$$\frac{3^{y_1} + 3^{y_2} + 3^{y_3}}{3} \ge (3^{y_1} \cdot 3^{y_2} \cdot 3^{y_3})^{\frac{1}{3}}$$

$$3^{y_1} + 3^{y_2} + 3^{y_3} \ge 3 \cdot (3^{y_1 + y_2 + y_3})^{\frac{1}{3}} \qquad \{ \because y_1 + y_2 + y_3 = 9 \}$$

$$3^{y_1} + 3^{y_2} + 3^{y_3} \ge 3 \cdot (3^9)^{\frac{1}{3}}$$

$$3^{y_1} + 3^{y_2} + 3^{y_3} \ge 81$$

$$\Rightarrow m = \log_3 81 = \log_3 3^4 = 4 \log_3 3 = 4$$
Again, using A.M ≥ G.M.

$$\frac{x_1 + x_2 + x_3}{3} \ge (x_1 \cdot x_2 \cdot x_3)^{\frac{1}{3}}$$

$$= \frac{9}{3} \ge (x_1 \cdot x_2 \cdot x_3)^{\frac{1}{3}} \qquad \{\because x_1 + x_2 + x_3 = 9 \}$$

$$\Rightarrow 27 \ge x_1 x_2 x_3$$

$$M = \log_3 (x_1 + \log_3 x_2 + \log_3 x_3)$$

$$M = \log_3 (x_1 x_2 x_3) = \log_3 (27) = 3$$

$$\therefore \log_2(m)^3 + \log_3(M)^2 \Rightarrow \log_2(2^6) + \log_3(3^2) = 6 + 2 = 8$$

27th September 2020 | Mathematics

14. Let a_1 , a_2 , a_3 ,... be a sequence of positive integers in arithmetic progression with common difference 2. Also, let b_1 , b_2 , b_3 ,... be a sequence of positive integers in geometric progression with common ratio 2. If $a_1 = b_1 = c$, then the number of all possible values of c, for which the equality

$$2(a_1 + a_2 + \dots + a_n) = b_1 + b_2 + \dots + b_n$$

holds for some positive integer n, is _____

Answer: 1.00

Solution:

$$2(a_{1}+a_{2}+....+a_{n}) = b_{1} + b_{2} + ... + b_{n}$$

$$\Rightarrow 2\left[\frac{n}{2}(2a_{1}+(n-1)2)\right] = \frac{b_{1}(2^{n}-1)}{2-1}$$

$$\Rightarrow 2n[a_{1}+(n-1)] = b_{1}(2^{n}-1)$$

$$\Rightarrow 2na_{1}+2n^{2} - 2n = a_{1}(2^{n}-1)$$

$$\Rightarrow 2n^{2} - 2n = a_{1}(2-1-2n)$$

$$a_{1} = \frac{2(n^{2}-n)}{(2^{n}-1-2n)} = c$$

 $\{\because a_1 = b_1\}$

 $\{ \because a_1 = c\}$

 $\{:: n^2 - n \ge 0 \text{ for } n \ge 1\}$

∵c≥1

$$\Rightarrow \frac{2(n^2 - n)}{2^n - 1 - 2n} \ge 1$$

$$2(n^2 - n) \ge 2^n - 1 - 2n$$

$$= 2n^2 + 1 \ge 2^n$$

Therefore, n =1, 2,3,4,5,6
n = 1 \Rightarrow c = 0 (rejected)
n = 2 \Rightarrow c < 0 (rejected)
n = 3 \Rightarrow c = 12 (correct)
n = 4 \Rightarrow c = not Integer
n = 5 \Rightarrow c = not Integer
n = 6 \Rightarrow c = not Integer
 \therefore c = 12 for n = 3

Hence, no. of such c = 1

15. Let $f: [0, 2] \rightarrow \mathbb{R}$ be the function defined by

$$f(x) = (3 - \sin(2\pi x))\sin\left(\pi x - \frac{\pi}{4}\right) - \sin\left(3\pi x + \frac{\pi}{4}\right).$$

If $\alpha, \beta \in [0,2]$ are such that $\{x \in [0,2] : f(x) \ge 0\} = [\alpha, \beta]$, then the value of $\beta - \alpha$ is _____ Answer: 1.00

$$f(x) = (3 - \sin(2\pi x))\sin\left(\pi x - \frac{\pi}{4}\right) - \sin\left(3\pi x + \frac{\pi}{4}\right)$$

Let $\pi x - \pi/4 = \theta$
 $f(x) \ge 0$
 $\Rightarrow (3 - \sin 2(\theta + \pi/4))\sin\theta - \sin\left[3\left(\frac{\pi}{4} + \theta\right) + \frac{\pi}{4}\right] \ge 0$
 $\Rightarrow 3\sin\theta - \sin\theta.\sin\left(\frac{\pi}{2} + 2\theta\right) - \sin(\pi + 3\theta) \ge 0$
 $\Rightarrow 3\sin\theta - \sin\theta \cos 2\theta + \sin 3\theta \ge 0$
 $\Rightarrow \left[3\sin\theta - \sin\theta(1 - 2\sin^2\theta) + (3\sin\theta - 4\sin^3\theta)\right] \ge 0$
 $\Rightarrow \sin\theta \left[3 - (1 - 2\sin^2\theta) + 3 - 4\sin^2\theta\right] \ge 0$
 $\Rightarrow \sin\theta \left[5 - 2\sin^2\theta\right] \ge 0$
 $\sin\theta \left[4 + \cos 2\theta\right] \ge 0$
 $\therefore \sin\theta \ge 0$
 $\Rightarrow \theta \in [0,\pi]$
 $0 \le \theta \le \pi$
 $0 \le \pi x - \frac{\pi}{4} \le \pi$
 $\frac{1}{4} \le x \le \frac{5}{4}$
 $x \in \left[\frac{1}{4}, \frac{5}{4}\right]$
 $\alpha = 1/4; \beta = 5/4$
 $\beta - \alpha = 1$

16. In a triangle PQR, let $\vec{a} = \overrightarrow{QR}$, $\vec{b} = \overrightarrow{RP}$ and $\vec{c} = \overrightarrow{PQ}$. If

$$|\vec{a}| = 3$$
, $|\vec{b}| = 4$ and $\frac{\vec{a} \cdot (\vec{c} - \vec{b})}{\vec{c} \cdot (\vec{a} - \vec{b})} = \frac{|\vec{a}|}{|\vec{a}| + |\vec{b}|}$

Then the value of $\left|\vec{a} \times \vec{b}\right|^2$ is _____

Answer: 108.00

$$\vec{a} + \vec{b} + \vec{c} = 0 \qquad \dots \dots (1)$$

$$\Rightarrow \vec{c} = -\vec{a} - \vec{b} \qquad \dots \dots (2)$$
Now,
$$\frac{\vec{a}.(\vec{c} - \vec{b})}{\vec{c}.(\vec{a} - \vec{b})} = \frac{|\vec{a}|}{|\vec{a}| + |\vec{b}|}$$

$$\Rightarrow \frac{\vec{a}.(-\vec{a} - 2\vec{b})}{(-\vec{a} - \vec{b})(\vec{a} - \vec{b})} = \frac{3}{3 + 4}$$

$$\Rightarrow \frac{\vec{a}.(\vec{a} + 2\vec{b})}{(\vec{a} + \vec{b})(\vec{a} - \vec{b})} = \frac{3}{7}$$

$$\Rightarrow \frac{|\vec{a}|^2 + 2\vec{a} \cdot \vec{b}}{|\vec{a}|^2 - |\vec{b}|^2} = \frac{3}{7}$$

$$\Rightarrow \frac{(3)^2 + 2\vec{a}.\vec{b}}{(3)^2 - (4)^2} = \frac{3}{7}$$

$$\Rightarrow 2\vec{a} \cdot \vec{b} = -12$$

$$\Rightarrow \vec{a} \cdot \vec{b} = -6$$

$$P$$

$$\vec{c} \qquad \vec{b} = R$$
Now, $|\vec{a} \times \vec{b}|^2 = a^2b^2 - (\vec{a} \cdot \vec{b})^2$

$$= 9 \times 16 - (-6)^2$$

$$= 108$$

17. For a polynomial g(x) with real coefficients, let m_g denote the number of distinct real

roots of g(x).Suppose S is the set of polynomials with real coefficients defined by

 $S = \{(x^2 - 1)^2(a_0 + a_1x + a_2x^2 + a_3x^3) : a_0, a_1, a_2, a_3 \in R\}$

For a polynomial f, let f'and f'' denote its first and second order derivatives,

respectively. Then the minimum possible value of $(m_{f'} + m_{f''})$, where $f \in S$, is _____

Answer: 5.00

Solution:

 $f(x) = (x^2 - 1)^2 h(x); h(x) = a_0 + a_1x + a_2x^2 + a_3x^3$

Now, f(1) = f(-1) = 0

 \Rightarrow f'(α) = 0, $\alpha \in$ (-1,1)

[Rolle's Theorem]

Also, $f'(1) = f'(-1) = 0 \Rightarrow f'(x) = 0$ has at least 3 root -1, α , 1 with -1 < α < 1

 \Rightarrow f"(x) = 0 will have at least 2 root, say β , γ such that

 $-1 < \beta < \alpha < \gamma < 1$ [Rolle's Theorem]

So, $\min(m_{f''}) = 2$

and we find $(m_{f'} + m_{f''}) = 5$ for $f(x) = (x^2 - 1)^2$

Thus, Ans = 5

18. Let e denote the base of the natural logarithm. The value of the real number a for which the right hand limit

is equal to a nonzero real number, is ____

Answer: 1.00

