JEE Advanced 2020 Maths | Paper-1 | Code-E

SECTION 1 (Maximum Marks: 18)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme: Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the questions is unanswered);
Negative Marks : -1 In all other cases.

1. Suppose a, b denote the distinct real roots of the quadratic polynomial $x^{2}+20 x-2020$ and suppose c, d denote the distinct complex roots of the quadratic polynomial $x^{2}-20 x+2020$. Then the value of

$$
a c(a-c)+a d(a-d)+b c(b-c)+b d(b-d)
$$

is
(A) 0
(B) 8000
(C) 8080
(D) 16000

Answer: D
Solution:

has two roots $a, b \in R$.
$a+b=-20 \& a \cdot b=-2020$
$\& x^{2}-20 x+2020=0$
has two roots $\mathrm{c}, \mathrm{d} \in$ complex.
$\mathrm{c}+\mathrm{d}=20$ \& c. $\mathrm{d}=2020$
Now
$=a c(a-c)+a d(a-d)+b c(b-c)+b d(b-d)$
$=a^{2} c-a c^{2}+a^{2} d-a d^{2}+b^{2} c-b c^{2}+b^{2} d-b d^{2}$
$=a^{2}(c+d)+b^{2}(c+d)-c^{2}(a+b)-d^{2}(a+b)$
$=\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)(\mathrm{c}+\mathrm{d})-(\mathrm{a}+\mathrm{b})\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)$
$=\left\{(a+b)^{2}-2 a b\right\}(c+d)-\left\{(c+d)^{2}-2 c d\right\}(a+b)$
Put value $a, b, c \& d$ then,
$=\left\{(-20)^{2}-2(-2020)\right\}(20)-\left\{(20)^{2}-2(2020)\right\}(-20)$
$=\left((400+4040)(20)-(-20)\left((20)^{2}-4040\right)\right.$
$=20[4440-3640]$
$20[800]=16000$

JEE Advanced 2020 | Paper-1 | Code-E

2. If the function $f: \mathrm{R} \rightarrow \mathrm{R}$ is defined by $(x)=|x|(x-\sin x)$, then which of the following statements is TRUE?
(A) f is one-one, but NOT onto
(B) f is onto, but NOT one-one
(C) f is BOTH one-one and onto
(D) f is NEITHER one-one NOR onto

Answer: C
Solution:
Given,

$$
f(x)=|x|(x-\sin x)
$$

$f(-x)=-(|x|(x-\sin x))$
$\mathrm{f}(-\mathrm{x})=-\mathrm{f}(\mathrm{x}) \Rightarrow \mathrm{f}(\mathrm{x})$ is odd, non-periodic and continuous function.
Now
$f(x)=\left[\begin{array}{l}x^{2}-x \sin x, x \geq 0 \\ -x^{2}+x \sin x, x<0\end{array}\right]$

$$
\therefore f(\infty)=\operatorname{Lim}_{x \rightarrow \infty}\left(x^{2}\right)\left(1-\frac{\sin x}{x}\right)=\infty \quad f(-\infty)=\operatorname{Lim}_{x \rightarrow-\infty}\left(-x^{2}\right)\left(1-\frac{\sin x}{x}\right)=-\infty
$$

\Rightarrow Range of $\mathrm{f}(\mathrm{x})=\mathrm{R}$
$\Rightarrow f(x)$ is an onto function
$f^{\prime}(x)=\left[\begin{array}{cc}2 x-\sin x-x \cos x & x \geq 0 \\ -2 x+\sin x+x \cos x & x<0\end{array}\right.$
$f^{\prime}(x)=\underset{\substack{\text { always } \\ \text { oro }}}{(x-\operatorname{sine} x)}+\underset{\substack{\text { always tive } \\ \text { or }}}{x(1-\cos x)}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0 \forall \mathrm{x} \in(-\infty, \infty)$
$\Rightarrow f(x)$ is one - one function
From equation $(\mathrm{A}) \&(\mathrm{~B}), \mathrm{f}(\mathrm{x})$ is both one - one $\&$ onto.

JEE Advanced 2020 | Paper-1 | Code-E

3. Let the functions: $\mathrm{R} \longrightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \longrightarrow \mathrm{R}$ be defined by

$$
f(x)=e^{x-1}-e^{-|x-1|} \text { and } g(x)=\frac{1}{2}\left(e^{x-1}+e^{1-x}\right)
$$

Then, the area of the region in the first quadrant bounded by the curves $y=(x), y=$ $g(x)$ and $x=0$ is
(A) $(2-\sqrt{3})+\frac{1}{2}\left(\mathrm{e}-\mathrm{e}^{-1}\right)$
(B) $(2+\sqrt{3})+\frac{1}{2}\left(\mathrm{e}-\mathrm{e}^{-1}\right)$
(C) $(2-\sqrt{3})+\frac{1}{2}\left(\mathrm{e}+\mathrm{e}^{-1}\right)$
(D) $(2+\sqrt{3})+\frac{1}{2}\left(\mathrm{e}+\mathrm{e}^{-1}\right)$

Answer: A
Solution:

$$
\begin{aligned}
& f(x)=e^{x-1}-e^{-|x-1|} \\
& f(x)=\left[\begin{array}{cc}
e^{x-1}-e^{-(x-1)} & x \geq 1 \\
e^{x-1}-e^{(x-1)}=0 & x<1
\end{array}\right. \\
& f(x)=\left[\begin{array}{cc}
e^{x-1}-\frac{1}{e^{x-1}} & x \geq 1 \\
0 & x<1
\end{array}\right. \\
& \& g(x)=\frac{1}{2}\left(e^{x-1}+\frac{1}{e^{x-1}}\right)=\frac{1}{2}\left(e^{x-1}+e^{1-x}\right) \\
& N o w f(x)=g(x) \\
& e^{x-1}-\frac{1}{e^{x-1}}=\frac{1}{2}\left(e^{x-1}+\frac{1}{e^{x-1}}\right) \\
& 2 e^{x-1}-\frac{2}{e^{x-1}}=e^{x-1}+\frac{1}{e^{x-1}} c \\
& e^{x-1}-\frac{3}{e^{x-1}}=0 \Rightarrow e^{x-1}=\sqrt{3} \\
& x=1+\frac{\ln 3}{2}=1+\ln \sqrt{3}
\end{aligned}
$$

JEE Advanced 2020 | Paper-1 | Code-E

$$
\begin{aligned}
& \text { Area }=\int_{0}^{1} g(x) d x+\int_{1}^{1+\frac{\ln 3}{2}}\{g(x)-f(x)\} d x \\
& =\int_{0}^{1} \frac{1}{2}\left(e^{x-1}+\frac{1}{e^{x-1}}\right)+\int_{1}^{1+\frac{\ln 3}{2}} \frac{1}{2}\left(e^{x-1}+\frac{1}{e^{x-1}}\right)-\left(e^{x-1}-\frac{1}{e^{x-1}}\right) d x \\
& =\frac{e-e^{-1}}{2}+2-\sqrt{3}
\end{aligned}
$$

4. Let a, b and λ be positive real numbers. Suppose P is an end point of the latus rectum of the parabola $y^{2}=4 \lambda x$, and suppose the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the point P. If the tangents to the parabola and the ellipse at the point P are perpendicular to each other, then the eccentricity of the ellipse is
(A) $\frac{1}{\sqrt{2}}$
(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $\frac{2}{5}$

Answer: A
Solution:

$$
\begin{align*}
& P(\lambda, 2 \lambda) \\
& y^{2}=4 \lambda x \Rightarrow\left(\frac{d y}{d x}\right)_{A}=1=m_{1} \tag{1}
\end{align*}
$$

JEE Advanced 2020 | Paper-1 | Code-E

Now E: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ Passes through P
$\frac{\lambda^{2}}{\mathrm{a}^{2}}+\frac{4 \lambda^{2}}{\mathrm{~b}^{2}}=1 \Rightarrow\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\mathrm{A}}=\frac{-\mathrm{b}^{2}}{2 \mathrm{a}^{2}}=\mathrm{m}_{2}$
$\frac{2 \lambda}{2 \lambda} \mathrm{x}-\frac{\lambda}{\mathrm{a}^{2}} \cdot \frac{\mathrm{~b}^{2}}{2 \lambda}=-1$
From eq. (1) and (2)
$\mathrm{m}_{1} . \mathrm{m}_{2}=-1 \Rightarrow \mathrm{~b}^{2}=2 \mathrm{a}^{2}$
$\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}=\frac{1}{2}$
for eccentricity of ellipse
$e=\sqrt{1-\frac{a^{2}}{b^{2}}}=\sqrt{1-\frac{1}{2}}=\frac{1}{\sqrt{2}}$
5. Let C_{1} and C_{2} be two biased coins such that the probabilities of getting head in a single toss are $\frac{2}{3}$ and $\frac{1}{3}$, respectively. Suppose α is the number of heads that appear when C_{1} is tossed twice, independently, and suppose β is the number of heads that appear when C_{2} is tossed twice, independently. Then the probability that the roots of the quadratic polynomial $x^{2}-\alpha x+\beta$ are real and equal, is
(A) $\frac{40}{81}$
(B) $\frac{20}{81}$
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$

Answer: B
Solution:

Now roots of equation $x^{2}-\alpha x+\beta=0$ are real \& equal
$\therefore \mathrm{D}=0$
$\alpha^{2}-4 \beta=0$
$\alpha^{2}=4 \beta$
$\Rightarrow(\alpha=0, \beta=0) \operatorname{or}(\alpha=2, \beta=1)$
$\mathrm{P}(\mathrm{E})={ }^{2} \mathrm{C}_{0}\left(\frac{1}{3}\right)^{2} \cdot{ }^{2} \mathrm{C}_{0}\left(\frac{2}{3}\right)^{2}+{ }^{2} \mathrm{C}_{2}\left(\frac{2}{3}\right)^{2} \cdot{ }^{2} \mathrm{C}_{1}\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)$
$\Rightarrow \frac{1}{9} \times \frac{4}{9}+\frac{4}{9} \times \frac{4}{9}=\frac{20}{81}$

JEE Advanced 2020 | Paper-1 | Code-E

SECTION 2 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONE OR MORE THAN ONE of these four option(s) is(are) the correct answer(s).
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all four options is correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen; both of which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the questions is unanswered);

Negative Marks : -2 In all other cases.
6. Consider all rectangles lying in the region

$$
\left\{(x, y) \in R \times R: 0 \leq x \leq \frac{\pi}{2} \text { and } 0 \leq y \leq 2 \sin (2 x)\right\}
$$

and having one side on the x-axis. The area of the rectangle which has the maximum perimeter among all such rectangles, is
(A) $\frac{3 \pi}{2}$
(B) π
(C) $\frac{\pi}{2 \sqrt{3}}$
(D) $\frac{\pi \sqrt{3}}{2}$

Answer: C

JEE Advanced 2020 | Paper-1 | Code-E

Solution:

Let sides of rectangle are $\mathrm{a} \& \mathrm{~b}$
Then, perimeter $=2 \mathrm{a}+2 \mathrm{~b}$

$$
p=2(a+b)
$$

$$
\text { Now, } \mathrm{b}=2 \sin 2 \mathrm{x} \& \mathrm{~b}=2 \sin (2 \mathrm{x}+2 \mathrm{a}) \Rightarrow 2 \mathrm{x}+2 \mathrm{x}+2 \mathrm{a}=\pi
$$

$$
\left\{x=\frac{\pi}{4}-\frac{a}{2}\right\}
$$

For perimeter maximum
$\mathrm{P}=2 \mathrm{a}+2 \mathrm{~b}$

$$
P=\pi-4 x+4 \sin 2 x
$$

$$
\frac{d P}{d x}=-4+8 \cos 2 x=8\left\{\cos 2 x-\frac{1}{2}\right\}
$$

$\frac{d P}{d x}$
$\mathrm{P}_{\max }$ at $\mathrm{X}=\pi / 6$
Now, Area at $x=\frac{\pi}{6}$
Area $=\left(\frac{\pi}{2}-2 x\right) \cdot(2 \sin 2 x)$
$=\left(\frac{\pi}{2}-\frac{\pi}{3}\right)\left(2 \cdot \frac{\sqrt{3}}{2}\right)=\frac{\pi}{6} \sqrt{3}=\frac{\pi}{2 \sqrt{3}}$

JEE Advanced 2020 | Paper-1 | Code-E

7. Let the function $f: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $(x)=x^{3}-x^{2}+(x-1) \sin x$ and let $g: \mathrm{R} \rightarrow \mathrm{R}$ be an arbitrary function. Let $f \mathrm{~g}: \mathrm{R} \rightarrow \mathrm{R}$ be the product function defined by $(f g)(x)=f(x) g(x)$. Then which of the following statements is/are TRUE?
(A) If g is continuous at $x=1$, then $f g$ is differentiable at $x=1$
(B) If $f g$ is differentiable at $x=1$, then g is continuous at $x=1$
(C) If g is differentiable at $x=1$, then $f g$ is differentiable at $x=1$
(D) If $f g$ is differentiable at $x=1$, then g is differentiable at $x=1$

Answer: A, C
Solution:
$f: R \rightarrow R$
(A) $f(x)=x^{3}-x^{2}+(x-1) \sin x ; g: R \rightarrow R$
$h(x)=f(x) \cdot g(x)=\left\{x^{3}-x^{2}+(x-1) \sin x\right\} . g(x)$
$h^{\prime}\left(1^{+}\right)=\lim _{h \rightarrow 0} \frac{\left\{(1+h)^{3}-(1+h)^{2}+h \cdot \sin (1+h)\right\} g(1+h)}{h}$
$=\lim _{h \rightarrow 0} \frac{\left(1+h^{3}+3 h+3 h^{2}-1-h^{2}-2 h+h \sin (1+h)\right) g(1+h)}{h}$
$=\lim _{h \rightarrow 0} \frac{\left(\mathrm{~h}^{3}+2 \mathrm{~h}^{2}+\mathrm{h}+\mathrm{h} \sin (1+\mathrm{h})\right) \mathrm{g}(1+\mathrm{h})}{\mathrm{h}}$
$=\lim _{h \rightarrow 0}(1+\sin (1+h)) g(1+h)$
$h^{\prime}\left(1^{-}\right)=\lim _{h \rightarrow 0} \frac{\left((1-h)^{3}-(1-h)^{2}+(-h) \sin (1-h)\right) g(1-h)}{-h}$
$=\lim _{h \rightarrow 0} \frac{\left(-h^{3}-3 h+3 h^{2}-h^{2}+2 h-h \sin (1-h)\right) g(1-h)}{-h}$
$=\lim _{h \rightarrow 0}(1+\sin (1-h)) g(1-h)$
as $g(x)$ is constant at $x=1$
$\therefore \mathrm{g}(1+\mathrm{h})=\mathrm{g}(1-\mathrm{h})=\mathrm{g}(1)$
$h^{\prime}\left(1^{+}\right)=h^{\prime}\left(1^{-}\right)=(1+\sin 1) g(1)$
' A ' is Correct.

JEE Advanced 2020 | Paper-1 | Code-E

8. Let M be a 3×3 invertible matrix with real entries and let I denote the 3×3 identity matrix. If $M^{-1}=\operatorname{adj}(\operatorname{adj} M)$, then which of the following statements is/are ALWAYS TRUE?
(A) $M=I$
(B) $\operatorname{det} M=1$
(C) $M^{2}=I$
(D) $(\operatorname{adj} M)^{2}=I$

Answer: B, C, D
Solution:

$$
\begin{align*}
& \mathrm{M}^{-1}=\operatorname{adj}(\operatorname{adj}(\mathrm{M})) \\
& \left(\operatorname{adj} \mathrm{M}^{(1)} \mathrm{M}^{-1}=(\operatorname{adjM})(\operatorname{adj}(\operatorname{adj}(\mathrm{M})))\right. \\
& \text { (adj M)M-1 }=\mathrm{N} . \operatorname{adj}(\mathrm{N}) \\
& \text { (adj M)M }{ }^{-1}=|\mathrm{N}| \mathrm{I} \\
& (\operatorname{adjM}) \mathrm{M}^{-1}=|\operatorname{adj}(\mathrm{M})| \mathrm{I}_{3} \\
& (\operatorname{adjM})=|\mathrm{M}|^{2} . \mathrm{M} \tag{1}\\
& |\operatorname{adj} \mathrm{M}|=\left||\mathrm{M}|^{2} \cdot \mathrm{M}\right| \\
& |M|^{2}=\left|\mathrm{M}^{6}\right| .|\mathrm{M}| \\
& |M|=1,|M| \neq 0 \\
& \text { From equation (1) } \\
& \text { adj. } \mathrm{M}=\mathrm{M} \tag{2}\\
& \{\text { Let } \operatorname{adj}(\mathrm{M})=\mathrm{N}\}
\end{align*}
$$

Multiply by matrix M
M.adj $\mathrm{M}=\mathrm{M}^{2}$
$|\mathrm{M}| \mathrm{I}_{3}=\mathrm{M}^{2}$
$M^{2}=\mathrm{I}$
From (2) adj M = M
$(\operatorname{adj} \mathrm{M})^{2}=\mathrm{M}^{2}=\mathrm{I}$

JEE Advanced 2020 | Paper-1 | Code-E

9. Let S be the set of all complex numbers z satisfying $\left|z^{2}+z+1\right|=1$. Then which of the following statements is/are TRUE?
(A) $\left|z+\frac{1}{2}\right| \leq \frac{1}{2}$ for all $z \in S$
(B) $|z| \leq 2$ for all $z \in S$
(C) $\left|z+\frac{1}{2}\right| \geq \frac{1}{2}$ for all $z \in S$
(D) The set S has exactly four elements

Answer: B, C
Solution:

$$
\begin{aligned}
& \left|z^{2}+\mathrm{z}+1\right|=1 \\
\Rightarrow & \left|\left(\mathrm{z}+\frac{1}{2}\right)^{2}+\frac{3}{4}\right|=1 \\
\Rightarrow & \left|\left(\mathrm{z}+\frac{1}{2}\right)^{2}+\frac{3}{4}\right| \leq\left|\mathrm{z}+\frac{1}{2}\right|^{2}+\frac{3}{4} \\
\Rightarrow & 1 \leq\left|\mathrm{z}+\frac{1}{2}\right|^{2}+\frac{3}{4} \Rightarrow\left|\left(\mathrm{z}+\frac{1}{2}\right)\right|^{2} \geq \frac{1}{4} \\
\Rightarrow & \left|\mathrm{z}+\frac{1}{2}\right| \geq \frac{1}{2} \text { Option }(\mathrm{C}) \text { is correct }
\end{aligned}
$$

$$
\text { Also }\left|\left(\mathrm{z}^{2}+\mathrm{z}\right)+1\right|=1 \geq\left|\left|\mathrm{z}^{2}+\mathrm{z}\right|-1\right|
$$

$$
\Rightarrow\left|\mathrm{z}^{2}+\mathrm{z}\right|-1 \leq 1
$$

$$
\Rightarrow\left|\mathrm{z}^{2}+\mathrm{z}\right| \leq 2
$$

$$
\Rightarrow\left|\left|z^{2}\right|-|z|\right| \leq\left|z^{2}+\mathrm{z}\right| \leq 2
$$

$$
\Rightarrow\left|r^{2}-r\right| \leq 2
$$

$$
\Rightarrow \mathrm{r}=|\mathrm{z}| \leq 2 ; \forall \mathrm{z} \in \mathrm{~S}
$$

Also we can always fine root of the equation $z^{2}+z+1=\mathrm{e}^{\mathrm{i} \theta} ; \forall \theta \in \mathrm{R}$
Hence set ' S ' is infinite.

JEE Advanced 2020 | Paper-1 | Code-E

10. Let x, y and z be positive real numbers. Suppose x, y and z are the lengths of the sides of a triangle opposite to its angles X, Y and Z , respectively. If

$$
\tan \frac{X}{2}+\tan \frac{Z}{2}=\frac{2 y}{x+y+z}
$$

then which of the following statements is/are TRUE?
(A) $2 Y=X+Z$
(B) $\mathrm{Y}=X+Z$
(C) $\tan \frac{x}{2}=\frac{x}{y+z}$
(D) $x^{2}+z^{2}-y^{2}=x z$

Answer: B, C
Solution:

$$
\begin{aligned}
& \Rightarrow \frac{\Delta}{2} \frac{\Delta}{S(S-x)}+\frac{\Delta}{S(S-z)}=\frac{2 y}{2 S} \\
& \Rightarrow \frac{\Delta}{S}\left(\frac{2 S-(x+z)}{(S-x)(S-z)}\right)=\frac{2 y}{S} \\
& \Rightarrow \frac{\Delta y}{S(S-x)(S-z)}=\frac{y}{S} \\
& \Rightarrow \Delta^{2}=(S-x)^{2}(S-z)^{2} \\
& \Rightarrow S(S-y)=(S-x)(S-z) \\
& \Rightarrow(x+y+z)(x+z-y)=(y+z-x)(x+y-z) \\
& \Rightarrow(x+z)^{2}-y^{2}=y^{2}-(z-x)^{2}
\end{aligned}
$$

JEE Advanced 2020 | Paper-1 | Code-E

$\Rightarrow(\mathrm{x}+\mathrm{z})^{2}+(\mathrm{x}-\mathrm{z})^{2}=2 \mathrm{y}^{2}$
$\Rightarrow \mathrm{x}^{2}+\mathrm{z}^{2}=\mathrm{y}^{2} \quad \Rightarrow \angle \mathrm{Y}=\frac{\pi}{2}$
$\Rightarrow \angle \mathrm{Y}=\angle \mathrm{X}+\angle \mathrm{Z}$
$\tan \frac{X}{2}=\frac{\Delta}{S(S-x)}$
$\tan \frac{x}{2}=\frac{\frac{1}{2} x z}{\frac{(y+z)^{2}-x^{2}}{4}}$
$\tan \frac{X}{2}=\frac{2 x z}{y^{2}+z^{2}+2 y z-x^{2}}$
$\tan \frac{X}{2}=\frac{2 x z}{2 z^{2}+2 y z} \quad\left(u \operatorname{sing} y^{2}=x^{2}+z^{2}\right)$
$\tan \frac{X}{2}=\frac{x}{y+z}$
11. Let L_{1} and L_{2} be the following straight lines.
$\mathrm{L}_{1}: \frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}}{-1}=\frac{\mathrm{z}-1}{3}$ and $\mathrm{L}_{2}: \frac{\mathrm{x}-1}{-3}=\frac{\mathrm{y}}{-1}=\frac{\mathrm{z}-1}{1}$
Suppose the straight line
$L: \frac{x-\alpha}{l}=\frac{y-1}{m}=\frac{z-\gamma}{-2}$
Lies in the plane containing L_{1} and L_{2}, and passes through the point of intersection of L_{1} and L_{2}. If the line L bisects the acute angle between the lines L_{1} and L_{2}, then which of the following statements is/are TRUE?
(A) $\alpha-\gamma=3$
(B) $l+m=2$
(C) $\alpha-\gamma=1$
(D) $l+m=0$

Answer: A, B

JEE Advanced 2020 | Paper-1 | Code-E

Solution:

$$
\begin{aligned}
& \mathrm{L}_{1}: \frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}}{-1}=\frac{\mathrm{z}-1}{3}=\lambda \text { (let) } \\
& \mathrm{L}_{2}: \frac{\mathrm{x}-1}{-3}=\frac{\mathrm{y}}{-1}=\frac{\mathrm{z}-1}{1}=\mu \text { (let) } \\
& \mathrm{P}(\lambda+1,-\lambda, 3 \lambda+1), \quad \mathrm{Q}(-3 \mu+1,-\mu, \mu+1)
\end{aligned}
$$

For point of Intersection

$$
\begin{array}{ll}
\lambda+1=-3 \mu+1 & (\lambda=\mu) \\
\lambda=\mu=0 &
\end{array}
$$

Point of Intersection (1,0,1)
$\therefore \frac{x-\alpha}{l}=\frac{y-1}{m}=\frac{z-\gamma}{-2}$ passes through (1,0,1)
$\frac{1-\alpha}{l}=\frac{-1}{m}=\frac{1-\gamma}{-2}$
Direction ratio of $L_{1}(1,-1,3)$,direction ratio of $L_{2}(-3,-1,1)$
$\overrightarrow{\mathrm{V}}_{1}=$ direction cosine of $\mathrm{L}_{1}\left(\frac{1}{\sqrt{11}}, \frac{-1}{\sqrt{11}}, \frac{3}{\sqrt{11}}\right)$;
$\vec{V}_{2}=$ direction cosine of $L_{2}\left(\frac{-3}{\sqrt{11}}, \frac{-1}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right)$
$\vec{V}_{1} \cdot \vec{V}_{2}>0$
\therefore direction ratio of \angle bisector of L_{1} and L_{2}
$=\left(\frac{-2}{\sqrt{11}}, \frac{-2}{\sqrt{11}}, \frac{4}{\sqrt{11}}\right)$
Or $\frac{1}{-2}=\frac{m}{-2}=\frac{n}{4}$
$\frac{\mathrm{l}}{-1}=\frac{\mathrm{m}}{-1}=\frac{\mathrm{n}}{2} \Rightarrow \mathrm{l}=\mathrm{m}=1$
From eq.(1)

$$
\begin{aligned}
& \frac{1-\alpha}{1}=-1 \Rightarrow \alpha=2 \\
& \& \frac{1-\gamma}{-2}=-1 \Rightarrow \gamma=-1
\end{aligned}
$$

JEE Advanced 2020 | Paper-1 | Code-E

12. Which of the following inequalities is/are TRUE?
(A) $\int_{0}^{1} x \cos x d x \geq \frac{3}{8}$
(B) $\int_{0}^{1} x \sin x d x \geq \frac{3}{10}$
(C) $\int_{0}^{1} x^{2} \cos x d x \geq \frac{1}{2}$
(D) $\int_{0}^{1} x^{2} \sin x d x \geq \frac{2}{9}$

Answer: A, B, D

Solution:

(A)

Expansion of $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$
$\therefore \cos x \geq 1-\frac{\mathrm{x}^{2}}{2!}$
Multiply x both side
$x \cos x \geq x-\frac{x^{3}}{2!}$
Integration both side
$\int_{0}^{1} x \cos x d x \geq \int_{0}^{1}\left(x-\frac{x^{3}}{2}\right) d x$
$\int_{0}^{1} x \cos x d x \geq\left(\frac{x^{2}}{2}-\frac{x^{4}}{8}\right)_{0}^{1}$
$\int_{0}^{1} \mathrm{x} \cos \mathrm{xdx} \geq \frac{1}{2}-\frac{1}{8}$
$\int_{0}^{1} x \cos x d x \geq \frac{3}{8}$
Similarly
(B) expansion of $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \ldots$
$\sin x \geq x-\frac{x^{3}}{3!}$

JEE Advanced 2020 | Paper-1 | Code-E

Multiply x both side
$x \sin x \geq x^{2}-\frac{x^{4}}{6}$
Integration both side
$\int_{0}^{1} x \sin x d x \geq \int_{0}^{1}\left(x^{2}-\frac{x^{4}}{6}\right) d x$
$\int_{0}^{1} x \sin x d x \geq\left(\frac{x^{3}}{3}-\frac{x^{5}}{6 \cdot 5}\right)_{0}^{1}$
$\int_{0}^{1} x \sin x d x \geq\left(\frac{x^{3}}{3}-\frac{x^{5}}{30}\right)_{0}^{1}$
$\int_{0}^{1} x \sin x d x \geq \frac{1}{3}-\frac{1}{30}$
$\int_{0}^{1} x \sin x d x \geq \frac{3}{10}$
(C) $\cos x<1$

Multiply x^{2} both side
$x^{2} \cos x<x^{2}$
Integration both side
$\int_{0}^{1} x^{2} \cos x d x<\int_{0}^{1} x^{2} d x$
$\int_{0}^{1} x^{2} \cos x d x<\frac{1}{3}$
(D) $\int_{0}^{1} x^{2} \sin x d x \geq \int_{0}^{1} x^{2}\left(x-\frac{x^{3}}{6}\right) d x$
$\int_{0}^{1} x^{2} \sin x d x \geq\left(\frac{x^{4}}{4}-\frac{x^{6}}{36}\right)_{0}^{1}$
$\int_{0}^{1} x^{2} \sin x d x \geq \frac{1}{4}-\frac{1}{36}$
$\int_{0}^{1} x^{2} \sin x d x \geq \frac{2}{9}$

JEE Advanced 2020 | Paper-1 | Code-E

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For Each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numerical keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme: Full Marks : +4 If ONLY the correct numerical value is entered; Zero Marks : 0 In all other cases.

13. Let m be the minimum possible value of $\log _{3}\left(3^{y_{1}}+3^{y_{2}}+3^{y_{3}}\right)$, where y_{1}, y_{2}, y_{3} are real numbers for which $y_{1}+y_{2}+y_{3}=9$. Let M be the maximum possible value of $\left(\log _{3} x_{1}+\right.$ $\log _{3} x_{2}+\log _{3} x_{3}$, where $\mathrm{x}_{1}, x_{2}, x_{3}$ are positive real numbers for which $x_{1}+x_{2}+x_{3}=9$. Then the value of $\log _{2}\left(m^{3}\right)+\log _{3}\left(M^{2}\right)$ is \qquad
Answer: 8.00
Solution:

$$
\begin{aligned}
& \text { Using A.M } \geq \text { G.M. } \\
& \frac{3^{y_{1}}+3^{y_{2}}+3^{y_{3}}}{3} \geq\left(3^{y_{1}} \cdot 3^{y_{2}} \cdot 3^{y_{3}}\right)^{\frac{1}{3}} \\
& 3^{y_{1}}+3^{y_{2}}+3^{y_{3}} \geq 3 \cdot\left(3^{y_{1}+y_{2}+y_{3}}\right)^{\frac{1}{3}} \\
& 3^{y_{1}}+3^{y_{2}}+3^{y_{3}} \geq 3 \cdot\left(3^{9}\right)^{\frac{1}{3}} \\
& 3^{y_{1}}+3^{y_{2}}+3^{y_{3}} \geq 81 \\
& \Rightarrow m=\log _{3} 81=\log _{3} 3^{4}=4 \log _{3} 3=4 \\
& \text { Again, using A.M } \geq \text { G.M. } \\
& \frac{x_{1}+x_{2}+x_{3}}{3} \geq\left(x_{1} \cdot x_{2} \cdot x_{3}+y_{3}=9\right\} \\
& =\frac{9}{3} \geq\left(x_{1} \cdot x_{2} \cdot x_{3}\right)^{\frac{1}{3}} \\
& \Rightarrow 27 \geq x_{1} x_{2} x_{3} \\
& M=\log _{3} x_{1}+\log _{3} x_{2}+\log _{3} x_{3} \\
& M=\log _{3}\left(x_{1} x_{2} x_{3}\right)=\log _{3}(27)=3 \\
& \therefore \log _{2}(m)^{3}+\log _{3}(M)^{2} \Rightarrow \log _{2}\left(2^{6}\right)+\log _{3}\left(3^{2}\right)=6+2=8
\end{aligned}
$$

JEE Advanced 2020 | Paper-1 | Code-E

14. Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of positive integers in arithmetic progression with common difference 2. Also, let $b_{1}, \mathrm{~b}_{2}, b_{3}, \ldots$ be a sequence of positive integers in geometric progression with common ratio 2 . If $\mathrm{a}_{1}=b_{1}=c$, then the number of all possible values of c , for which the equality

$$
2\left(a_{1}+a_{2}+\cdots+a_{n}\right)=b_{1}+b_{2}+\cdots+b_{n}
$$

holds for some positive integer n, is \qquad
Answer: 1.00
Solution:

$$
\begin{aligned}
& 2\left(a_{1}+a_{2}+\ldots . . .+a_{n}\right)=b_{1}+b_{2}+\ldots+b_{n} \\
& \Rightarrow 2\left[\frac{\mathrm{n}}{2}\left(2 \mathrm{a}_{1}+(\mathrm{n}-1) 2\right)\right]=\frac{\mathrm{b}_{1}\left(2^{\mathrm{n}}-1\right)}{2-1} \\
& \Rightarrow 2 \mathrm{n}\left[\mathrm{a}_{1}+(\mathrm{n}-1)\right]=\mathrm{b}_{1}\left(2^{\mathrm{n}}-1\right) \\
& \Rightarrow 2 \mathrm{na}_{1}+2 \mathrm{n}^{2}-2 \mathrm{n}=\mathrm{a}_{1}\left(2^{\mathrm{n}}-1\right) \quad\left\{\because \mathrm{a}_{1}=\mathrm{b}_{1}\right\} \\
& \Rightarrow 2 \mathrm{n}^{2}-2 \mathrm{n}=\mathrm{a}_{1}(2-1-2 \mathrm{n}) \\
& \mathrm{a}_{1}=\frac{2\left(\mathrm{n}^{2}-\mathrm{n}\right)}{\left(2^{\mathrm{n}}-1-2 \mathrm{n}\right)}=\mathrm{c} \\
& \because c \geq 1 \\
& \Rightarrow \frac{2\left(n^{2}-n\right)}{2^{n}-1-2 n} \geq 1 \\
& 2\left(\mathrm{n}^{2}-\mathrm{n}\right) \geq 2^{\mathrm{n}}-1-2 \mathrm{n} \\
& =2 n^{2}+1 \geq 2^{n} \\
& \text { Therefore, } n=1,2,3,4,5,6 \\
& \mathrm{n}=1 \Rightarrow \mathrm{c}=0 \text { (rejected) } \\
& \mathrm{n}=2 \Rightarrow \mathrm{c}<0 \text { (rejected) } \\
& \mathrm{n}=3 \Rightarrow \mathrm{c}=12 \text { (correct) } \\
& \mathrm{n}=4 \Rightarrow \mathrm{c}=\text { not Integer } \\
& \mathrm{n}=5 \Rightarrow \mathrm{c}=\text { not Integer } \\
& \mathrm{n}=6 \Rightarrow \mathrm{c}=\text { not Integer } \\
& \therefore \mathrm{c}=12 \text { for } \mathrm{n}=3 \\
& \text { Hence, no. of such } \mathrm{c}=1
\end{aligned}
$$

JEE Advanced 2020 | Paper-1 | Code-E

15. Let $f:[0,2] \rightarrow R$ be the function defined by

$$
f(x)=(3-\sin (2 \pi x)) \sin \left(\pi x-\frac{\pi}{4}\right)-\sin \left(3 \pi x+\frac{\pi}{4}\right)
$$

If $\alpha, \beta \in[0,2]$ are such that $\{x \in[0,2]: f(x) \geq 0\}=[\alpha, \beta]$, then the value of $\beta-\alpha$ is \qquad
Answer: 1.00
Solution:

$$
\begin{aligned}
& f(\mathrm{x})=(3-\sin (2 \pi \mathrm{x})) \sin \left(\pi \mathrm{x}-\frac{\pi}{4}\right)-\sin \left(3 \pi \mathrm{x}+\frac{\pi}{4}\right) \\
& \text { Let } \pi \mathrm{x}-\pi / 4=\theta \\
& \mathrm{f}(\mathrm{x}) \geq 0 \\
& \Rightarrow(3-\sin 2(\theta+\pi / 4)) \sin \theta-\sin \left[3\left(\frac{\pi}{4}+\theta\right)+\frac{\pi}{4}\right] \geq 0 \\
& \Rightarrow 3 \sin \theta-\sin \theta \cdot \sin \left(\frac{\pi}{2}+2 \theta\right)-\sin (\pi+3 \theta) \geq 0 \\
& \Rightarrow 3 \sin \theta-\sin \theta \cos 2 \theta+\sin 3 \theta \geq 0 \\
& \Rightarrow\left[3 \sin \theta-\sin \theta\left(1-2 \sin ^{2} \theta\right)+\left(3 \sin \theta-4 \sin ^{3} \theta\right)\right] \geq 0 \\
& \Rightarrow \sin \theta\left[3-\left(1-2 \sin ^{2} \theta\right)+3-4 \sin 2 \theta\right] \geq 0 \\
& \Rightarrow \sin \theta[5-2 \sin 2 \theta] \geq 0 \\
& \sin \theta[4+\cos 2 \theta] \geq 0 \\
& \therefore \sin \theta \geq 0 \\
& \Rightarrow \theta \in[0, \pi] \\
& 0 \leq \theta \leq \pi \\
& 0 \leq \pi \mathrm{x}-\frac{\pi}{4} \leq \pi \\
& \frac{1}{4} \leq \mathrm{x} \leq \frac{5}{4} \\
& \mathrm{x} \in\left[\frac{1}{4}, \frac{5}{4}\right] \\
& \alpha=1 / 4 ; \beta=5 / 4 \\
& \beta-\alpha=1
\end{aligned}
$$

JEE Advanced 2020 | Paper-1 | Code-E

16. In a triangle $P Q R$, let $\vec{a}=\overrightarrow{Q R}, \vec{b}=\overrightarrow{R P}$ and $\vec{c}=\overrightarrow{P Q}$. If

$$
|\vec{a}|=3, \quad|\vec{b}|=4 \text { and } \frac{\vec{a} \cdot(\vec{c}-\vec{b})}{\vec{c} \cdot(\vec{a}-\vec{b})}=\frac{|\vec{a}|}{|\vec{a}|+|\vec{b}|}
$$

Then the value of $|\vec{a} \times \vec{b}|^{2}$ is \qquad
Answer: 108.00
Solution:

$$
\begin{align*}
& \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}=0 \tag{1}\\
& \Rightarrow \overrightarrow{\mathrm{c}}=-\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}} \tag{2}
\end{align*}
$$

$$
\text { Now, } \frac{\vec{a} \cdot(\vec{c}-\vec{b})}{\overrightarrow{\vec{b}} \cdot(\vec{a}-\vec{b})}=\frac{|\vec{a}|}{|\vec{a}|+|\vec{b}|}
$$

$$
\Rightarrow \frac{\overrightarrow{\mathrm{a}} .(-\overrightarrow{\mathrm{a}}-2 \overrightarrow{\mathrm{~b}})}{(-\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}})(\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}})}=\frac{3}{3+4}
$$

$$
\Rightarrow \frac{\overrightarrow{\mathrm{a}} .(\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{~b}})}{(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})(\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}})}=\frac{3}{7}
$$

$$
\Rightarrow \frac{|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}}{|\vec{a}|^{2}-|\vec{b}|^{2}}=\frac{3}{7}
$$

$$
\Rightarrow \frac{(3)^{2}+2 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}}{(3)^{2}-(4)^{2}}=\frac{3}{7}
$$

$$
\Rightarrow 2 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}=-12
$$

$$
\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}=-6
$$

Now, $|\vec{a} \times \vec{b}|^{2}=a^{2} b^{2}-(\vec{a} \cdot \vec{b})^{2}$
$=9 \times 16-(-6)^{2}$
$=108$

JEE Advanced 2020 | Paper-1 | Code-E

17. For a polynomial $\mathrm{g}(x)$ with real coefficients, let m_{g} denote the number of distinct real roots of $g(x)$.Suppose S is the set of polynomials with real coefficients defined by $S=\left\{\left(x^{2}-1\right)^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right): a_{0}, a_{1}, a_{2}, a_{3} \in R\right\}$

For a polynomial f, let f^{\prime} and $f^{\prime \prime}$ denote its first and second order derivatives, respectively. Then the minimum possible value of ($m_{f^{\prime}}+m_{f^{\prime \prime}}$), where $f \in S$, is \qquad

Answer: 5.00

Solution:

$$
f(x)=\left(x^{2}-1\right)^{2} h(x) ; h(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

Now, $\mathrm{f}(1)=\mathrm{f}(-1)=0$
$\Rightarrow \mathrm{f}^{\prime}(\alpha)=0, \alpha \in(-1,1)$
[Rolle's Theorem]

Also, $f^{\prime}(1)=f^{\prime}(-1)=0 \Rightarrow f^{\prime}(x)=0$ has atleast 3 root $-1, \alpha, 1$ with $-1<\alpha<1$
$\Rightarrow f^{\prime \prime}(x)=0$ will have at least 2 root, say β, γ such that
$-1<\beta<\alpha<\gamma<1$
[Rolle's Theorem]

So, $\min \left(\mathrm{m}_{\mathrm{f}}\right)=2$
and we find $\left(\mathrm{m}_{\mathrm{f}}+\mathrm{mf}^{\prime}\right)=5$ for $\mathrm{f}(\mathrm{x})=\left(\mathrm{x}^{2}-1\right)^{2}$

Thus, Ans $=5$

JEE Advanced 2020 | Paper-1 | Code-E

18. Let e denote the base of the natural logarithm. The value of the real number a for which the right hand limit

$$
\lim _{x \rightarrow 0^{+}} \frac{(1-x)^{\frac{1}{x}}-e^{-1}}{x^{a}}
$$

is equal to a nonzero real number, is \qquad
Answer: 1.00
Solution:

$$
\begin{aligned}
& L=\lim _{x \rightarrow 0^{+}} \frac{(1-x)^{\frac{1}{x}}-e^{-1}}{x^{a}} \\
& L=\lim _{x \rightarrow 0^{+}} \frac{e^{\ln (1-x)^{1 / x}}-e^{-1}}{x^{a}} \\
& L=\lim _{x \rightarrow 0^{+}} \frac{e^{\frac{1}{x} \ln (1-x)}-e^{-1}}{x^{a}} \\
& L=\lim _{x \rightarrow 0^{+}} \frac{e^{\frac{1}{x}\left(-x-\frac{x^{2}}{2}-\frac{x^{3}}{3} \ldots\right)}-e^{-1}}{x^{a}} \\
& L=\lim _{x \rightarrow 0^{+}} \frac{e^{-1} \cdot e^{-\left(\frac{x}{2}+\frac{x^{2}}{3} \cdots\right)}-e^{-1}}{x^{a}} \\
& \left.L=\lim _{x \rightarrow 0^{+}} \frac{e^{-1}\left[e^{-\left(\frac{x}{2}+\frac{x^{2}}{3} \ldots\right)}-1\right]}{x^{a}}\right) \\
& L=\lim _{x \rightarrow 0^{+}}^{x^{a}} \frac{e^{a-1}}{e^{-1}} \\
& \\
&
\end{aligned}
$$

For Non - Zero limit $\mathrm{a}-1=0 \Rightarrow \mathrm{a}=1$

