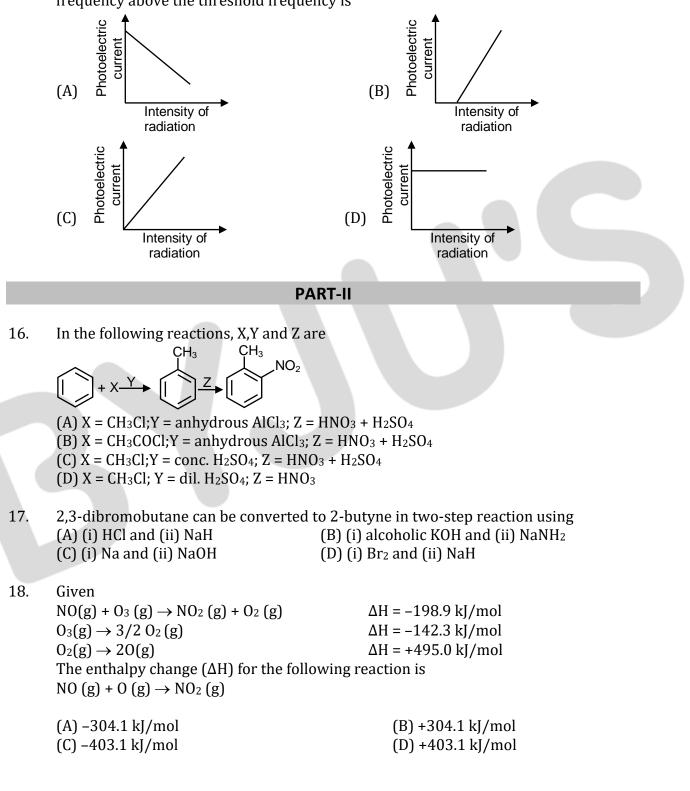

PART-I

1.		e of carbon dioxid	sted below, having carbo le upon heating (atomic m				
	(A) C ₂ H ₅ COONa	(B) NaHCO ₃	(C) HCOONa	(D) CH₃COONa			
2.	Among formic acid, ac water is	cetic acid, propan	noic acid and phenol, the	strongest acid in			
	(A) formic acid	(B) acetic acid	(C) propanoic acid	(D) phenol			
3.	According to Graham's order:	Law, the rate of	f diffusion of CO,O ₂ , N ₂ ar	nd CO_2 follows the			
	(A) $CO = N_2 > O_2 > CO_2$ (C) $O_2 > CO = N_2 > CO_2$		(B) $CO = N_2 > CO_2 > O$ (D) $CO_2 > O_2 > CO = N_2$	2			
4.	The major product formed when 2-butene is reacted with O_3 followed by treatment with $T_{\rm P}$ (HeO is						
	with Zn/H ₂ O is (A) CH ₃ COOH	(B) CH₃CHO	(C) CH ₃ CH ₂ OH	(D) $CH_2 = CH_2$			
5.	The IUPAC name for the CH ₂ -CH ₂ -C-C		ound is				
	CH ₂ (A) 2-propylhex-1-ene		(B) 2-butylpent-1-ene				
	(C) 2-propyl-2- butylet	hene	(D) Propyl-1-butylethen	e			
6.	The major products ol heating are	otained in the rea	action of oxalic acid with	conc. H ₂ SO ₄ upon			
	(A) CO, CO ₂ , H ₂ O (C) H ₂ S, CO, H ₂ O		(B) CO, SO ₂ , H ₂ O (D) HCOOH, H ₂ S, CO				
7.	LiOH reacts with CO ₂ to consumed by 1g of LiOl	•	omic mass of Li=7). The an	nount of CO2 (in g)			
	(A) 0.916 (C) 0.544	11 13 0103030 00	(B) 1.832 (D) 1.088				
0							
8.	The oxidation number ((A) H ₂ S	of sulphur is +4 in	(B) CS ₂				
	(C) Na_2SO_4		(D) Na_2SO_3				
9.	Al ₂ O ₃ reacts with (A) only water		(B) only acids				
	(C) only alkalis		(D) both acids and alkali	S			


- 10.The major product formed in the oxidation of acetylene by alkaline KMnO4 is
(A) Ethanol
(B) acetic acid
(C) formic acid(D) oxalic acid
- 11. In a closed vessel, an ideal gas at 1 atm is heated from 27°C to 327°C. The final pressure of the gas will approximately be (A) 3 atm (B) 0.5 atm (C) 2 atm (D) 12 atm
- 12. Among the element Li,N,C and Be, one with the largest atomic radius is (A) Li (B) N (C) C (D) Be
- 13. A redox reaction among the following is (A) CdCl₂ + 2KOH \rightarrow Cd (OH)₂ + 2KCl (C) CaCO₃ \rightarrow CaO + CO₂

(B) $BaCl_2 + K_2SO_4 \rightarrow BaSO_4 + 2KCl$ (D) $2Ca + O_2 \rightarrow 2CaO$

14. The electronic configuration which obeys Hund's rule for the ground state of carbon atom is

15. The graph that depicts Einstein photoelectric effect for a monochromatic source of frequency above the threshold frequency is

- A 1.85 g sample of an arsenic-containing pesticide was chemically converted to 19. AsO_{4³⁻} (atomic mass of As = 74.9) and titrated with Pb²⁺ to form Pb₃ (AsO₄)₂. If 20 mL of 0.1 M Pb²⁺ is required to reach the equivalence point, the mass percentage of arsenic in the pesticide sample is closest to (A) 8.1 (B) 2.3 (C) 5.4 (D) 3.6
- 20. When treated with conc. HCl, MnO₂ yields gas (X) which further reacts with Ca(OH₂) to generate a white solid (Y). The solid (Y) reacts with dil. HCl to produce the same gas X. the solid Y is (A) CaO

(B) CaCl₂ (C) Ca(OCl)Cl (D) $CaCO_3$

1. (B)	2. (A)	3. (A)	4. (B)	5. (A)	6. (A)	7. (A)	8. (D)	9. (D)	10. (D)
11. (C)	12. (A)	13. (D)	14. (A)	15. (C)	16. (A)	17. (B)	18. (A)	19. (C)	20. (C)

SOLUTIONS

PART-I

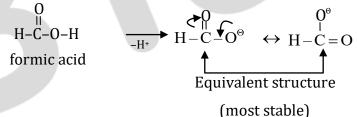
1. (B) $2NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + H_2O + CO_2$

: Molecular weight of NaHCO₃= 23+1+12+48 = 84 g mol⁻¹ Molecular weight of carbon = 12 g mol⁻¹

% carbon content in NaHCO₃ =
$$\frac{12}{84} \times 100 = 14.28\%$$

 \rightarrow The C content in other compound is not 14.3%

 \rightarrow Therefore, the correct option is (B).


2. (A)

Formic acid is strongest acid

 \rightarrow Number of C atom () + I effect () (-C₂H₅ > -CH₃)

 \rightarrow +I effect \bigcirc acidic strength \bigcirc

 \rightarrow Carboxylic acids are more acidic than phenol due to equivalent resonating structure.

E.g.

- \rightarrow Carboxylic acid is more acidic than phenol and alcohol because conjugate base of a carboxylic acid is stabilized by two equivalent resonance structures in which the negative charge is effectively delocalized between two more electronegative oxygen atoms.
- \rightarrow Hence, the overall order of acidic strength will be -

Therefore, the correct option is (A).

3. (A)

Rate of diffusion $\alpha \frac{1}{\sqrt{m}}$, m \rightarrow molecular weight

 \therefore Rate of diffusion \odot with \bigcirc in molecular weight

Gas	CO	N ₂	02	CO ₂
M (g mol ⁻¹)	28	28	32	44

Hence, the order of molecular mass $\rightarrow CO_2 > O_2 > CO=NO$

- :. Order of diffusion $CO=N_2 > O_2 > CO_2$ Therefore, the correct option is (A).
- 4. (B)

Reaction of 2-butene with O2 follow as

2 CH₃CHO + H₂O₂

Therefore the correct option is (B)

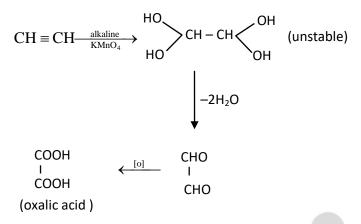
5. (A)

$$CH_{3}^{6} - CH_{2}^{5} - CH_{2}^{4} - CH_{2}^{3} - CH_{2}^{2} - CH_{2} - CH_{2} - CH_{3}$$

(2 propyl hex -1-ene)

Therefore, the correct option is (A).

Reaction of oxalic acid with conc. H₂SO₄ upon heating follows as 0 сн-он $\begin{array}{c} H^{-}OH \\ C \\ -OH \\ 0 \end{array} \xrightarrow{H_2O+CO_2(g)+CO(g)} \\ + H_2SO_4(\text{dilute form }) \end{array}$ Therefore, the correct option is (A). 7. (A) Reaction of LiOH with CO₂ follows as $2 \underset{\text{Base}}{\text{LiOH}} + \underset{\text{acid}}{\text{CO}_2} + \rightarrow \text{Li}_2\text{CO}_3 + \text{H}_2\text{O}$ Hence, the moles of LiOH = moles of $CO_2 \times 2$ moles of LiOH = $\frac{\text{weight of LiOH}}{\text{molecular wt}} = \frac{1}{24} = 0.417 \text{moles}$ Hence, the moles of CO₂= $\frac{1}{2}$ × moles of LiOH = 0.0208 moles Weight of CO₂ = moles × molecular weight = 0.0208 × 44 = 0.916 g $\frac{\text{wt}}{\text{Mw}}$ Therefore, the correct option is (A). 8. (D) Let, the oxidation number of S = X(i) $H_2S \rightarrow x+2 \times (+1) = 0 \Rightarrow x = -2$ (ii) $CS_2 \rightarrow 2x + 1 \times (+4) = 0 \Longrightarrow x = -2$ (iii) Na₂SO₄ \rightarrow 2× (+1)+x+(-2)×4 = 0 \Rightarrow x = +6 Oxidation No H = +1 (iv) Na₂SO₃ \rightarrow 2× (+1)+x +(-2)×3 = 0 \Rightarrow x = +4 $\begin{cases} C = +4 \\ Na = +1 \end{cases}$ -2 Therefore, the correct option is (D).


9. (D)

6. (A)

Hint → See the definition and key point of amphoteric oxide. $A\ell_2O_3$ is an amphoteric oxide hence, it reacts with both acid and base as given below - $\rightarrow HC\ell_{acid} + A\ell_2O_3 \rightarrow A\ell C\ell_3 + H_2O$ $\rightarrow NaOH_{Base} + A\ell_2O_3 \rightarrow NaA\ell O_2 + H_2O$

Therefore, the correct option is (D).

10. (D)

Therefore, the correct option is (D).

11. (C)

According to the Gay-Lussac's law, at constant volume, pressure of gas is directly proportional to the absolute temperature of gas (v,n,R \rightarrow constant).

$$P \propto T$$
 or $P = KT$
: $P_1 = T_1K$, $P_2 = T_2K$

$$\Rightarrow \frac{P_1}{P_2} = \frac{1}{T}$$

 $(P_1 \rightarrow Initial pressure)$

 $T_1 \rightarrow$ Initial temperature

 $T_2 \rightarrow Final temperature$

$$P_2 \rightarrow$$
 Final pressure

 $\Rightarrow \frac{1}{P_2} = \frac{300}{600}$

$$\Rightarrow$$
 P₂ = 2atm

Therefore, the correct option is (C).

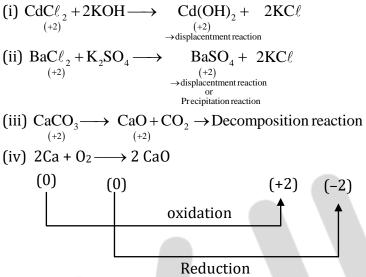
12. (A)

As we move, from left to right in a period, atomic radius \bigodot because Z_{eff} , so the greatest radius is of lithium.

$$\frac{{}_{3}\text{Li} {}_{4}\text{Be} {}_{5}\text{B} {}_{6}\text{C} {}_{7}\text{N}}{\text{Zeff}} \xrightarrow{}$$

Therefore, the correct option is (A).

KVPY 2016 (Chemistry)


Page | 8

13. (D)

Redox Reaction \rightarrow

Chemical reaction in which oxidation and reduction process takes place simultaneously known as redox reaction.

Hence, it is a redox reaction. Therefore, the correct option is (D).

14. (A)

Hund's Rules \rightarrow

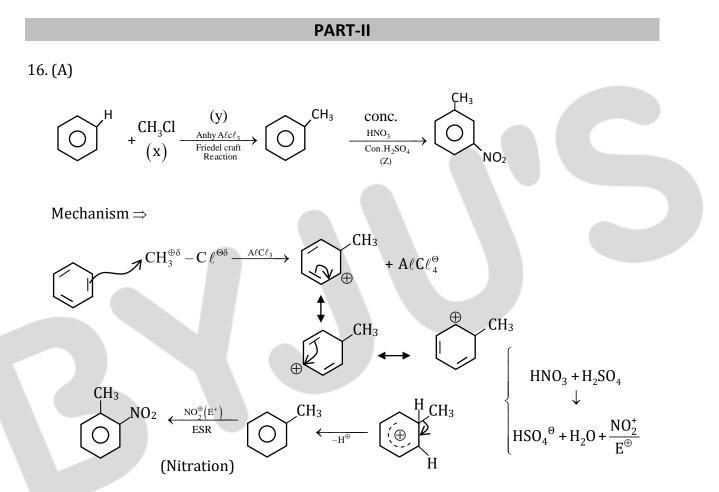
According to Hund's rule, in the ground state of an atom/molecules, the electronic configuration with lowest energy, is the one with the highest value of spin multiplicity. This implies that low energy orbital's are first completely filled and in case of degenerate orbital's (two or more orbital's of equal energy), each orbital occupy single electron with same spin

$$\left(\operatorname{either},+\frac{1}{2}(\uparrow)\operatorname{or},-\frac{1}{2}(\downarrow)\right)$$
 before they pair up.

Energy of orbital's 1S < 2S < 2P

If we see all the options, only C follows the Hund's law according above definition.

$$C \rightarrow \fbox{}{\uparrow \downarrow} \fbox{}{\uparrow \downarrow} \fbox{}{\uparrow \downarrow} \fbox{}{\uparrow \downarrow}$$

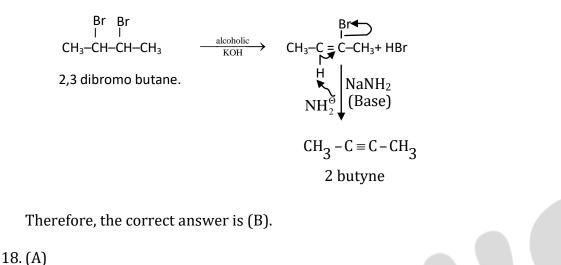

Therefore, the correct option is (A).

15. (C)

Photoelectric effect is the phenomenon of ejection of electron from the surface of a material upon irradiation with light. The ejected electron thus, gives the photo electric current. These electrons can be ejected only by supplying a minimum amount of energy

called threshold energy (frequency). Intensity of a monochromatic light is proportional to the number of photons with particular frequency. Since, each photon can abstract one electron at a time therefore, if the photons \textcircled{O}_{i} the number of photoelectrons O in the same proportion. Thus, suggests that above threshold frequency the photoelectric current and light intensity will O linearly.

Therefore, the correct answer is (C).



Therefore, the correct answer is (A).

17. (B)

Reaction mechanism of conversion of 2,3 dibromo butane to 2 butyne follow as-

 $NO + O(g) \longrightarrow NO_2(g) \qquad \Delta H = ?$ $NO_{(g)} + O_3(g) \longrightarrow NO_2 + O_2 \quad \Delta H = -198.9 \text{ kJ mol}^{-1}$ (1) $0_3 \longrightarrow \frac{3}{2} 0_2 \quad \Delta H = -142.3 \text{ kJ mol}^{-1}$ $0_2 \longrightarrow 20$ $\Delta H = 495 \text{ kJ mol}^{-1}$ Or $0 \longrightarrow \frac{1}{2}O_2 \quad \Delta H = \frac{-495}{2} \text{ kJ mol}^{-1}$ Equation (1) - (2) + (3) $NO_{(g)} + O_3 + O \rightarrow NO_2 + O_2 + \frac{1}{2}O_2$ $\frac{3}{2}0_{2}$ 03 $NO(g) + O(g) \longrightarrow$ NO₂(g $\Delta H = (\Delta H)_1 - (\Delta H)_2 + (\Delta H)_3$ $=-198.9-(-142.3)-\frac{495}{2}$ = +142.3 -198.9 -247.5 $\Delta H = -304.1 \text{ kJ mol}^{-1}$

Note: Enthalpy is a state function hence, it depends only on initial and final state, and not on path followed by the function.

Therefore, the correct answer is (A).

19. (C) Reaction of Pb⁺² with ASO₄³⁻ follows as 3Pb⁺² + 2ASO₄³⁻ \longrightarrow Pb₃ (ASO₄)₂ From above reaction, Moles of Pb⁺² = $\frac{3}{2}$ moles of ASO₄³⁻ \Rightarrow Moles of ASO₄³⁻ = $\frac{2}{3}$ moles of Pb⁺² Morality of Pb⁺² = $\frac{\text{moles} \times 1000}{\text{v}}$ Moles of Pb⁺² = $\frac{0.1 \times 20}{1000}$ = 2 × 10⁻³ moles Hence, moles of ASO₄³⁻ = $\frac{2}{3} \times 2 \times 10^{-3}$ = $\frac{4}{3} \times 10^{-3}$ moles Molecular weight of As = 74.9 g mol⁻¹ \therefore moles = $\frac{\text{wt}}{\text{mw}} \Rightarrow$ wt of As = moles × mw = 74.9 × $\frac{4}{3} \times 10^{-3}$ Weight of As = 0.09986g \therefore Percentage of As in sample = $\frac{0.09986}{1.85} \times 100$ = 5.4% Therefore, the correct answer is (C).

20. (C)

Following steps are involved in the reaction - $MnO_2 + 4HCl(conc.) \rightarrow Cl_{(g)} + MnCl_2$ $(X) + 2H_2O$

$$Ca(OH)_{2} + Cl_{2} \rightarrow CaOC\ell_{2} + H_{2}O$$
(Y)
$$CaOCl_{2} + dil HCl \rightarrow Cl_{2}(g) + CaCl_{2} + H_{2}O$$
(x)
Hence, here solid Y = Ca(OC\ell) C\ell or CaOC\ell_{2}

Therefore, the correct answer is (C).