

### EXERCISE 14

# **1.** Prove that the line segment joining the mid-points of a pair of opposite sides of a parallelogram divides it into two equal parallelograms. Solution:

Let us consider ABCD be a parallelogram in which E and F are mid-points of AB and CD. Join EF.

Let us construct DG  $\perp$  AG and let DG = h where, h is the altitude on side AB. <u>Proof:</u>

ar (|| ABCD) = AB × h ar (|| AEFD) = AE × h  $= \frac{1}{2} AB \times h \dots (1)$  [Since, E is the mid-point of AB] ar (|| EBCF) = EF × h  $= \frac{1}{2} AB \times h \dots (2)$  [Since, E is the mid-point of AB] From (1) and (2) ar (|| ABFD) = ar (|| EBCF) Hence proved.

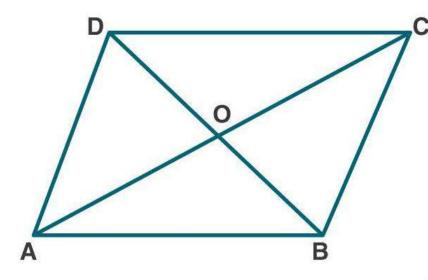
## 2. Prove that the diagonals of a parallelogram divide it into four triangles of equal area.

#### Solution:

Let us consider in a parallelogram ABCD the diagonals AC and BD are cut at point O. <u>To prove:</u> ar ( $\Delta AOB$ ) = ar ( $\Delta BOC$ ) = ar ( $\Delta COD$ ) = ar ( $\Delta AOD$ )







Proof: In parallelogram ABCD the diagonals bisect each other. AO = OC In ΔACD, O is the mid-point of AC. DO is the median. ar (ΔAOD) = ar (COD) ..... (1) [Median of Δ divides it into two triangles of equal arreas]

Similarly, in  $\triangle$  ABC ar ( $\triangle$ AOB) = ar ( $\triangle$ COB) ..... (2)

```
In \triangle ADB
ar (\triangle AOD) = ar (\triangle AOB) .... (3)
```

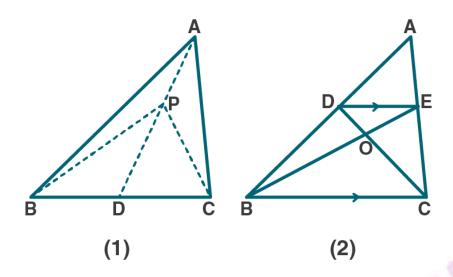
```
In \triangleCDB
ar (\triangleCOD) = ar (\triangleCOB) .... (4)
From (1), (2), (3) and (4)
ar (\triangleAOB) = ar (\triangleBOC) = ar (\triangleCOD) = ar (\triangleAOD)
Hence proved.
```

3. (a) In the figure (1) given below, AD is median of  $\triangle ABC$  and P is any point on AD. Prove that

(i) Area of ΔPBD = area of ΔPDC.
(ii) Area of ΔABP = area of ΔACP.
(b) In the figure (2) given below, DE || BC. Prove that
(i) area of ΔACD = area of Δ ABE.
(ii) Area of ΔODD = area of ΔOCE

(ii) Area of  $\triangle OBD = area of \triangle OCE$ .





#### Solution:

(a) Given:

 $\triangle$ ABC in which AD is the median. P is any point on AD. Join PB and PC.

To prove:

(i) Area of  $\triangle PBD$  = area of  $\triangle PDC$ .

(ii) Area of  $\triangle ABP$  = area of  $\triangle ACP$ .

Proof:

From fig (1) AD is a median of  $\triangle ABC$ 

So, ar  $(\Delta ABD) = ar (\Delta ADC) \dots (1)$ 

Also, PD is the median of  $\triangle BPD$ 

Similarly, ar ( $\Delta$ PBD) = ar ( $\Delta$ PDC) .... (2) Now, let us subtract (2) from (1), we get ar ( $\Delta$ ABD) - ar ( $\Delta$ PBD) = ar ( $\Delta$ ADC) - ar ( $\Delta$ PDC) Or ar ( $\Delta$ ABP) = ar ( $\Delta$ ACP) Hence proved.

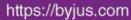
(b) Given:
ΔABC in which DE || BC
To prove:

(i) area of ΔACD = area of Δ ABE.
(ii) Area of ΔOBD = area of ΔOCE.

Proof:

From fig (2)

ΔDEC and ΔBDE are on the same base DE and between the same || line DE and BE.





ar  $(\Delta DEC) = ar (\Delta BDE)$ Now add ar (ADE) on both sides, we get ar  $(\Delta DEC) + ar (\Delta ADE) = ar (\Delta BDE) + ar (\Delta ADE)$ ar  $(\Delta ACD) = ar (\Delta ABE)$ Hence proved.

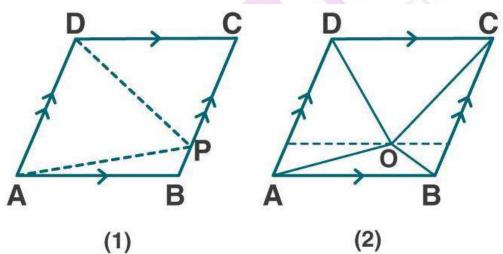
Similarly, ar ( $\Delta DEC$ ) = ar ( $\Delta BDE$ ) Subtract ar ( $\Delta DOE$ ) from both sides, we get ar ( $\Delta DEC$ ) - ar ( $\Delta DOE$ ) = ar ( $\Delta BDE$ ) - ar ( $\Delta DOE$ ) ar ( $\Delta OBD$ ) = ar ( $\Delta OCE$ ) Hence proved.

4. (a) In the figure (1) given below, ABCD is a parallelogram and P is any point in BC. Prove that: Area of  $\triangle ABP$  + area of  $\triangle DPC$  = Area of  $\triangle APD$ .

(b) In the figure (2) given below, O is any point inside a parallelogram ABCD. Prove that:

(i) area of  $\triangle OAB$  + area of  $\triangle OCD = \frac{1}{2}$  area of || gm ABCD

(ii) area of  $\triangle$  OBC + area of  $\triangle$  OAD = ½ area of || gm ABCD



#### Solution:

(a) Given:

From fig (1)

ABCD is a parallelogram and P is any point in BC.

To prove:

Area of  $\triangle ABP$  + area of  $\triangle DPC$  = Area of  $\triangle APD$ 

Proof:

 $\Delta$ APD and || gm ABCD are on the same base AD and between the same || lines AD and BC,



ar ( $\Delta$ APD) =  $\frac{1}{2}$  ar (|| gm ABCD) .... (1)

In parallelogram ABCD  $ar(\parallel gm ABCD) = ar (\Delta ABP) + ar (\Delta APD) + ar (\Delta DPC)$ Now, divide both sides by 2, we get  $\frac{1}{2} \operatorname{ar}(\| \operatorname{gm} ABCD) = \frac{1}{2} \operatorname{ar}(\Delta ABP) + \frac{1}{2} \operatorname{ar}(\Delta APD) + \frac{1}{2} \operatorname{ar}(\Delta DPC) \dots (2)$ From (1) and (2) ar ( $\triangle$ APD) =  $\frac{1}{2}$  ar (|| gm ABCD) Substituting (2) in (1) ar  $(\Delta APD) = \frac{1}{2}$  ar  $(\Delta ABP) + \frac{1}{2}$  ar  $(\Delta APD) + \frac{1}{2}$  ar  $(\Delta DPC)$ ar ( $\triangle APD$ ) -  $\frac{1}{2}$  ar ( $\triangle APD$ ) =  $\frac{1}{2}$  ar ( $\triangle ABP$ ) +  $\frac{1}{2}$  ar ( $\triangle DPC$ )  $\frac{1}{2}$  ar ( $\Delta$ APD) =  $\frac{1}{2}$  [ar ( $\Delta$  ABP) + ar ( $\Delta$ DPC)] ar  $(\Delta APD) = ar (\Delta ABP) + ar (\Delta DPC)$ Or ar  $(\Delta ABP)$  + ar  $(\Delta DPC)$  = ar  $(\Delta APD)$ Hence proved. (b) Given: From fig (2) || gm ABCD in which O is any point inside it. To prove: (i) area of  $\triangle OAB$  + area of  $\triangle OCD = \frac{1}{2}$  area of  $\parallel$  gm ABCD (ii) area of  $\triangle$  OBC + area of  $\triangle$  OAD =  $\frac{1}{2}$  area of || gm ABCD Draw POQ || AB through O. It meets AD at P and BC at Q. Proof: (i)  $AB \parallel PQ$  and  $AP \parallel BQ$ ABQP is a || gm Similarly, PQCD is a || gm Now,  $\triangle OAB$  and || gm ABQP are on same base AB and between same || lines AB and PQ ar ( $\triangle OAB$ ) =  $\frac{1}{2}$  ar ( $\|gm ABQP$ ) .... (1) Similarly, ar ( $\triangle OCD$ ) =  $\frac{1}{2}$  ar ( $\parallel gm PQCD$ ) .... (2) Now by adding (1) and (2)ar  $(\triangle OAB)$  + ar  $(\triangle OCD)$  =  $\frac{1}{2}$  ar (|| gm ABQP) +  $\frac{1}{2}$  ar (|| gm PQCD)  $= \frac{1}{2} [ar (|| gm ABQP) + ar (|| gm PQCD)]$  $= \frac{1}{2}$  ar (|| gm ABCD)

ar  $(\Delta OAB)$  + ar  $(\Delta OCD)$  = ½ ar (|| gm ABCD)

Hence proved.

(ii) we know that,



ar  $(\triangle OAB)$  + ar  $(\triangle OBC)$  + ar  $(\triangle OCD)$  + ar  $(\triangle OAD)$  = ar (|| gm ABCD) [ar  $(\triangle OAB)$  + ar  $(\triangle OCD)$ ] + [ar  $(\triangle OBC)$  + ar  $(\triangle OAD)$ ] = ar (|| gm ABCD)  $\frac{1}{2}$  ar (|| gm ABCD) + ar  $(\triangle OBC)$  + ar  $(\triangle OAD)$  = ar (|| gm ABCD) ar  $(\triangle OBC)$  + ar  $(\triangle OAD)$  = ar (|| gm ABCD) -  $\frac{1}{2}$  ar (|| gm ABCD) ar  $(\triangle OBC)$  + ar  $(\triangle OAD)$  =  $\frac{1}{2}$  ar (|| gm ABCD) Hence proved.

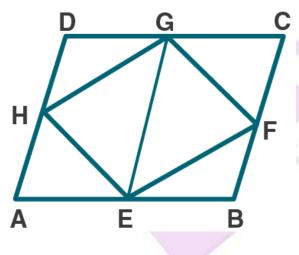
5. If E, F, G and H are mid-points of the sides AB, BC, CD and DA respectively of a parallelogram ABCD, prove that area of quad. EFGH = 1/2 area of || gm ABCD. Solution:

Given:

In parallelogram ABCD, E, F, G, H are the mid-points of its sides AB, BC, CD and DA. Join EF, FG, GH and HE.

To prove:

area of quad. EFGH =  $\frac{1}{2}$  area of || gm ABCD



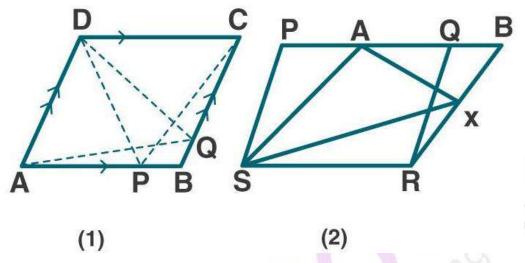
Proof:

Let us join EG. We know that, E and G are mid-points of AB and CD. EG || AD || BC AEGD and EBCG are parallelogram Now, || gm AEGD and  $\Delta$ EHG are on the same base and between the parallel lines. ar  $\Delta$ EHG =  $\frac{1}{2}$  ar || gm AEGD .... (1) Similarly, ar  $\Delta$ EFG =  $\frac{1}{2}$  ar || gm EBCG .... (2) Now by adding (1) and (2) ar  $\Delta$ EHG + ar  $\Delta$ EFG =  $\frac{1}{2}$  ar || gm AEGD +  $\frac{1}{2}$  ar || gm EBCG area quad. EFGH =  $\frac{1}{2}$  ar || gm ABCD



Hence proved.

6. (a) In the figure (1) given below, ABCD is a parallelogram. P, Q are any two points on the sides AB and BC respectively. Prove that, area of  $\triangle$  CPD = area of  $\triangle$  AQD.



(b) In the figure (2) given below, PQRS and ABRS are parallelograms and X is any point on the side BR. Show that area of  $\triangle AXS = \frac{1}{2}$  area of ||gm PQRS. Solution:

(a) Given:

From fig (1)

||gm ABCD in which P is a point on AB and Q is a point on BC.

To prove:

area of  $\triangle$  CPD = area of  $\triangle$  AQD.

Proof:

 $\Delta$  CPD and ||gm ABCD are on the same base CD and between the same parallels AB and CD.

ar ( $\Delta$  CPD) =  $\frac{1}{2}$  ar ( $\parallel$ gm ABCD) .... (1)

 $\Delta$  AQD and ||gm ABCD are on the same base AD and between the same parallels AD and BC.

```
ar (\Delta AQD) = \frac{1}{2} ar (||gm ABCD) .... (2)
from (1) and (2)
ar (\Delta CPD) = ar (\Delta AQD)
Hence proved.
```

**(b)** From fig (2)





Given:

PQRS and ABRS are parallelograms on the same base SR. X is any point on the side BR. Join AX and SX.

To prove:

```
area of \triangle AXS = \frac{1}{2} area of ||gm PQRS
```

we know that, || gm PQRS and ABRS are on the same base SR and between the same parallels.

```
So, ar \parallel gm PQRS = ar \parallel gm ABRS \dots (1)
```

we know that,  $\Delta$  AXS and || gm ABRS are on the same base AS and between the same parallels.

So, ar  $\triangle AXS = \frac{1}{2}$  ar ||gm ABRS =  $\frac{1}{2}$  ar ||gm PQRS [From (1)] Hence proved.

7. D, E and F are mid-point of the sides BC, CA and AB respectively of a  $\Delta$  ABC. Prove that

```
(i) FDCE is a parallelogram
```

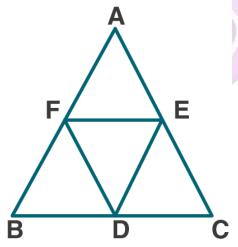
(ii) area of  $\triangle$  DEF = <sup>1</sup>/<sub>4</sub> area of  $\triangle$  ABC

```
(iii) area of || gm FDCE = \frac{1}{2} area of \triangle ABC
```

Solution:

Given:

D, E and F are mid-point of the sides BC, CA and AB respectively of a  $\Delta$  ABC.



To prove:

- (i) FDCE is a parallelogram
- (ii) area of  $\triangle$  DEF =  $\frac{1}{4}$  area of  $\triangle$  ABC
- (iii) area of  $\parallel$  gm FDCE =  $\frac{1}{2}$  area of  $\triangle$  ABC



<u>Proof:</u> (i) F and E are mid-points of AB and AC. So, FE || BC and FE =  $\frac{1}{2}$  BC ..... (1) Also, D is mid-point of BC CD =  $\frac{1}{2}$  BC ..... (2) From (1) and (2) FE || BC and FE = CD FE || CD and FE = CD ...... (3)

Similarly, D and F are mid-points of BC and AB. So, DF || EC is a parallelogram. Hence proved.

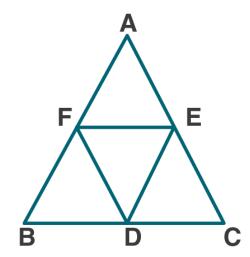
(ii) we know that, FDCE is a parallelogram. And DE is a diagonal of ||gm FDCE|So, ar ( $\Delta$  DEF) = ar ( $\Delta$ DEC) ..... (4)

```
Similarly, we know BDEF and DEAF are ||gm
So, ar (\Delta DEF) = ar (\Delta BDF) = ar (\Delta AFE) ..... (5)
From (4) and (5)
ar (\Delta DEF) = ar (\DeltaDEC) = ar (\Delta BDF) = ar (\Delta AFE)
Now, ar (\Delta ABC) = ar (\Delta DEF) + ar (\Delta DEF) + ar (\Delta DEF) + ar (\Delta DEF)
= 4 ar (\Delta DEF) = ar (\Delta DEF) + ar (\Delta DEF) + ar (\Delta DEF)
ar (\Delta DEF) = <sup>1</sup>/<sub>4</sub> ar (\Delta ABC) ..... (6)
Hence proved.
(iii) ar of || gm FDCE = ar (\Delta DEF) + ar (\Delta DEC)
= ar (\Delta DEF) + ar (\Delta DEF)
= 2 ar (\Delta DEF) [From (4)]
= 2 [<sup>1</sup>/<sub>4</sub> ar (\Delta ABC)] [From (6)]
ar of || gm FDCE = <sup>1</sup>/<sub>2</sub> ar of \Delta ABC
```

Hence proved.

8. In the given figure, D, E and F are mid points of the sides BC, CA and AB respectively of  $\triangle$  ABC. Prove that BCEF is a trapezium and area of trap. BCEF = <sup>3</sup>/<sub>4</sub> area of  $\triangle$  ABC.





#### Solution:

Given: In  $\triangle ABC$ , D, E and F are mid points of the sides BC, CA and AB. <u>To prove:</u> area of trap. BCEF = <sup>3</sup>/<sub>4</sub> area of  $\triangle ABC$ <u>Proof:</u> We know that D and E are the mid-points of BC and CA. So, DE || AB and <sup>1</sup>/<sub>2</sub> AB Similarly, EF || BC and <sup>1</sup>/<sub>2</sub> BC And FD || AC and <sup>1</sup>/<sub>2</sub> AC  $\therefore$  BDEF, CDFE, AFDE are parallelograms which are equal in area. ED, DF, EF are diagonals of these ||gm which divides the corresponding parallelogram into two triangles equal in area. Hence, BCEF is a trapezium. area of trap. BCEF = <sup>3</sup>/<sub>4</sub> area of  $\triangle ABC$ 

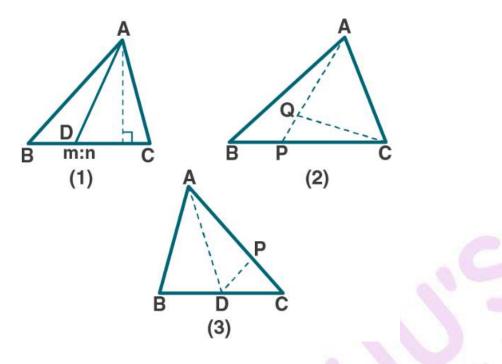
9. (a) In the figure (1) given below, the point D divides the side BC of  $\triangle ABC$  in the ratio m: n. Prove that area of  $\triangle ABD$ : area of  $\triangle ADC = m$ : n. (b) In the figure (2) given below, P is a point on the side BC of  $\triangle ABC$  such that PC = 2BP, and Q is a point on AP such that QA = 5 PQ, find area of  $\triangle AQC$ : area of  $\triangle ABC$ .

(c) In the figure (3) given below, AD is a median of  $\triangle ABC$  and P is a point in AC such that area of  $\triangle ADP$ : area of  $\triangle ABD = 2:3$ . Find

(i) **AP: PC** 

(ii) area of  $\triangle$ PDC: area of  $\triangle$ ABC.





#### Solution:

(a) Given: From fig (1) In  $\triangle$ ABC, the point D divides the side BC in the ratio m: n. BD: DC = m: n <u>To prove:</u> area of  $\triangle$  ABD: area of  $\triangle$  ADC = m: n <u>Proof:</u> area of  $\triangle$  ABD =  $\frac{1}{2} \times$  base  $\times$  height ar ( $\triangle$  ABD) =  $\frac{1}{2} \times$  BD  $\times$  AE ..... (1) ar ( $\triangle$  ACD) =  $\frac{1}{2} \times$  DC  $\times$  AE ..... (2) let us divide (1) by (2) [ar ( $\triangle$  ABD) =  $\frac{1}{2} \times$  BD  $\times$  AE] / [ar ( $\triangle$  ACD) =  $\frac{1}{2} \times$  DC  $\times$  AE] [ar ( $\triangle$  ABD)] / [ar ( $\triangle$  ACD)] = BD/DC = m/n [it is given that, BD: DC = m: n]

Hence proved.

(b) Given: From fig (2) In  $\triangle$ ABC, P is a point on the side BC such that PC = 2BP, and Q is a point on AP such that QA = 5 PQ. <u>To Find:</u> area of  $\triangle$ AQC: area of  $\triangle$ ABC



Now, It is given that: PC = 2BPPC/2 = BPWe know that, BC = BP + PCNow substitute the values, we get BC = BP + PC= PC/2 + PC= (PC + 2PC)/2= 3PC/22BC/3 = PCar ( $\triangle APC$ ) = 2/3 ar ( $\triangle ABC$ ) ..... (1) It is given that, QA = 5PQQA/5 = PQWe know that, QA = QA + PQSo, QA = 5/6 APar ( $\Delta AQC$ ) = 5/6 ar ( $\Delta APC$ )  $= 5/6 (2/3 \text{ ar} (\Delta ABC)) [From (1)]$ ar ( $\triangle AOC$ ) = 5/9 ar ( $\triangle ABC$ ) ar ( $\Delta AQC$ )/ ar ( $\Delta AQC$ ) = 5/9 Hence proved. (c) Given: From fig (3) AD is a median of  $\triangle$ ABC and P is a point in AC such that area of  $\triangle$ ADP: area of  $\triangle$ ABD = 2:3 To Find: (i) AP: PC (ii) area of  $\triangle PDC$ : area of  $\triangle ABC$ Now, (i) we know that AD is the median of  $\triangle ABC$ ar ( $\triangle ABD$ ) = ar ( $\triangle ADC$ ) = ½ ar ( $\triangle ABC$ ) ......(1) It is given that, ar ( $\triangle$ ADP): ar ( $\triangle$ ABD) = 2: 3 AP: AC = 2: 3 AP/AC = 2/3AP = 2/3 ACNow, PC = AC - AP



= AC - 2/3 AC=(3AC-2AC)/3 $= AC/3 \dots (2)$ So. AP/PC = (2/3 AC) / (AC/3)= 2/1AP: PC = 2:1 (ii) we know that from (2) PC = AC/3PC/AC = 1/3So. ar ( $\Delta PDC$ )/ar ( $\Delta ADC$ ) = PC/AC = 1/3ar ( $\Delta$ PDC)/1/2 ar ( $\Delta$ ABC) = 1/3 ar ( $\Delta$ PDC)/ar ( $\Delta$ ABC) = 1/3 ×  $\frac{1}{2}$ = 1/6ar ( $\Delta$ PDC): ar ( $\Delta$ ABC) = 1: 6

Hence proved.

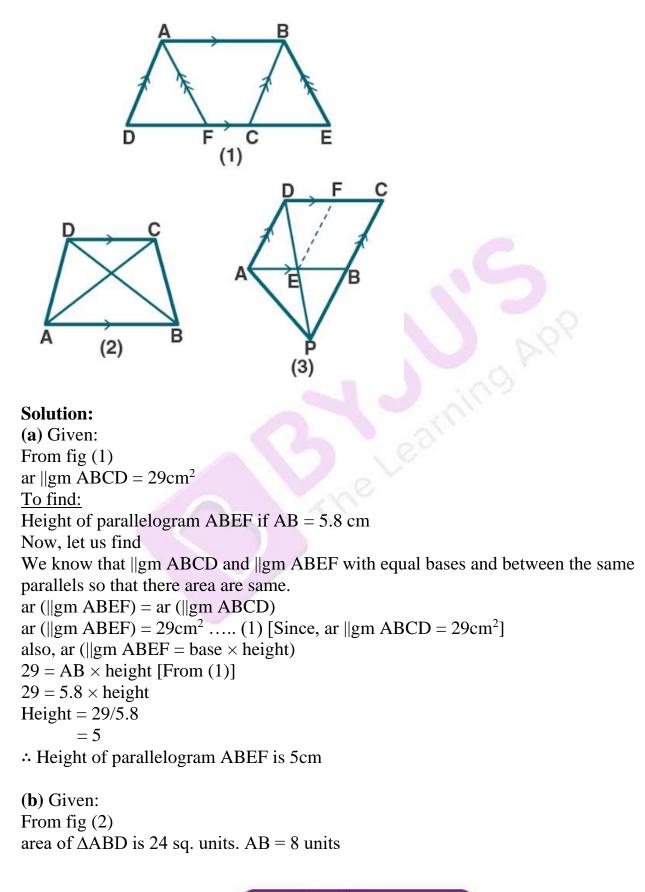
10. (a) In the figure (1) given below, area of parallelogram ABCD is 29 cm<sup>2</sup>. Calculate the height of parallelogram ABEF if AB = 5.8 cm

(b) In the figure (2) given below, area of  $\triangle ABD$  is 24 sq. units. If AB = 8 units, find the height of ABC.

(c) In the figure (3) given below, E and F are mid points of sides AB and CD respectively of parallelogram ABCD. If the area of parallelogram ABC is 36 cm<sup>2</sup>.
(i) State the area of △ APD.

(ii) Name the parallelogram whose area is equal to the area of  $\triangle$  APD.







To find: Height of ABC Now, let us find We know that ar  $\triangle ABD = 24$  sq. units ..... (1) So, ar  $\triangle ABD = \triangle ABC \dots (2)$ From (1) and (2)ar  $\triangle ABC = 24$  sq. units  $\frac{1}{2} \times AB \times height = 24$  $\frac{1}{2} \times 8 \times \text{height} = 24$  $4 \times \text{height} = 24$ Height = 24/4= 6  $\therefore$  Height of  $\triangle ABC = 6$  sq. units (c) Given: From fig (3)In ||gm ABCD, E and F are mid points of sides AB and CD respectively. ar ( $\parallel$ gm ABCD) = 36cm<sup>2</sup> To find: (i) State the area of  $\triangle$  APD. (ii) Name the parallelogram whose area is equal to the area of  $\triangle$  APD. Now, let us find (i) we know that  $\triangle$  APD and ||gm ABCD are on the same base AD and between the same parallel lines AD and BC. ar ( $\triangle$  APD) =  $\frac{1}{2}$  ar (||gm ABCD) ..... (1) ar ( $\|$ gm ABCD) = 36cm<sup>2</sup> ..... (2) From (1) and (2)ar ( $\triangle$  APD) =  $\frac{1}{2} \times 36$  $= 18 \text{cm}^2$ (ii) we know that E and F are mid-points of AB and CD In  $\triangle CPD$ , EF  $\parallel PC$ Also, EF bisects the ||gm ABCD in two eual parts. So, EF || AD and AE || DF AEFD is a parallelogram. ar ( $\|$ gm AEFD) =  $\frac{1}{2}$  ar ( $\|$ gm ABCD) ......(3) From (1) and (3)ar ( $\Delta$ APD) = ar (||gm AEFD)  $\therefore$  AEFD is the required parallelogram which is equal to area of  $\triangle$ APD.



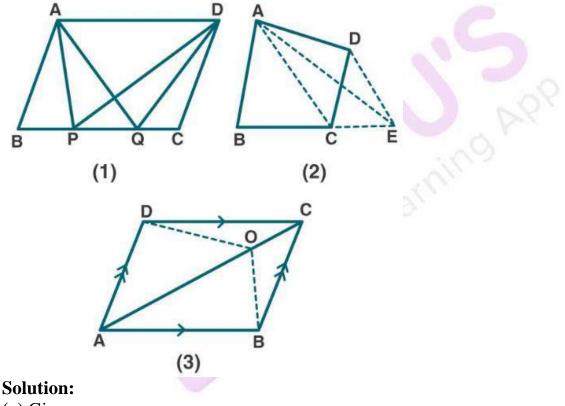


11. (a) In the figure (1) given below, ABCD is a parallelogram. Points P and Q on BC trisect BC into three equal parts. Prove that :

area of  $\triangle APQ$  = area of  $\triangle DPQ$  = 1/6 (area of ||gm ABCD)

(b) In the figure (2) given below, DE is drawn parallel to the diagonal AC of the quadrilateral ABCD to meet BC produced at the point E. Prove that area of quad. **ABCD** = area of  $\triangle$ **ABE**.

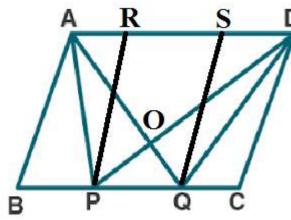
(c) In the figure (3) given below, ABCD is a parallelogram. O is any point on the diagonal AC of the parallelogram. Show that the area of  $\triangle AOB$  is equal to the area of  $\triangle AOD$ .



(a) Given:

From fig (1)





In ||gm ABCD, points P and Q trisect BC into three equal parts.

To prove:

area of  $\triangle APQ$  = area of  $\triangle DPQ$  = 1/6 (area of ||gm ABCD)

Firstly, let us construct: through P and Q, draw PR and QS parallel to AB and CD. <u>Proof:</u>

ar ( $\triangle APD$ ) = ar ( $\triangle AQD$ ) [Since,  $\triangle APD$  and  $\triangle AQD$  lie on the same base AD and between the same parallel lines AD and BC]

ar  $(\Delta APD)$  – ar  $(\Delta AOD)$  = ar  $(\Delta AQD)$  – ar  $(\Delta AOD)$  [On subtracting ar  $\Delta AOD$  on both sides]

ar ( $\triangle APO$ ) = ar ( $\triangle OQD$ ) ..... (1)

ar  $(\Delta APO)$  + ar  $(\Delta OPQ)$  = ar  $(\Delta OQD)$  + ar  $(\Delta OPQ)$  [On adding ar  $\Delta OPQ$  on both sides] ar  $(\Delta APQ)$  = ar  $(\Delta DPQ)$  ..... (2)

We know that,  $\triangle APQ$  and ||gm PQSR are on the same base PQ and between same parallel lines PQ and AD.

```
ar (\Delta APQ) = \frac{1}{2} ar (||gm PQRS) ..... (3)
```

Now,

[ar (||gm ABCD)/ar (||gm PQRS)] = [(BC×height)/(PQ×height)] =

[(3PQ×height)/(1PQ×hight)]

```
ar (\|gm PQRS) = 1/3 ar (\|gm ABCD) .... (4)
```

```
by using (2), (3), (4), we get
```

ar  $(\Delta APQ) = ar (\Delta DPQ)$ 

```
= \frac{1}{2} ar (||gm PQRS)
```

```
= \frac{1}{2} \times \frac{1}{3} ar (||gm ABCD)
```

```
= 1/6 ar (||gm ABCD)
```

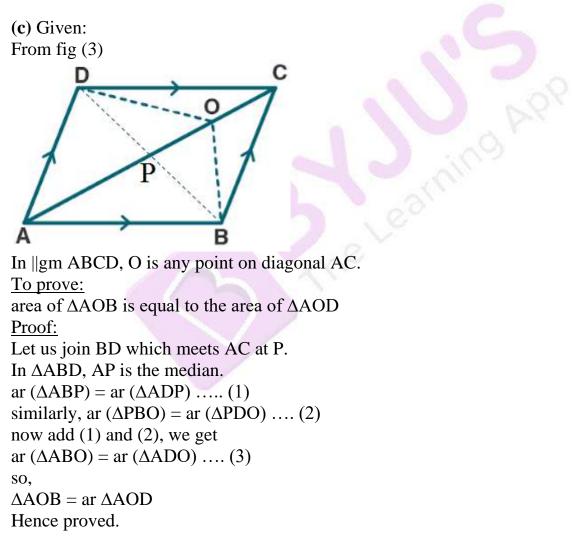
Hence proved.

(**b**) Given:

In the figure (2) given below,  $DE \parallel AC$  the diagonal of the quadrilateral ABCD to meet at point E on producing BC. Join AC, AE.



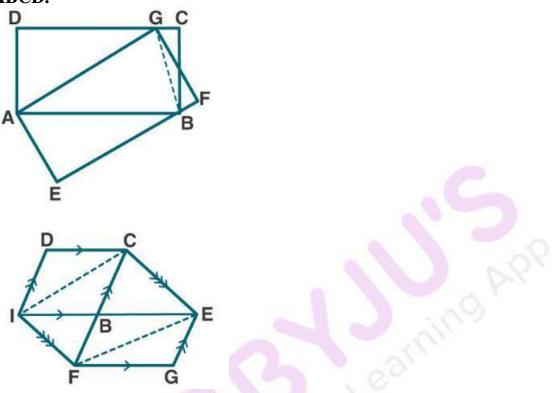
<u>To prove:</u> area of quad. ABCD = area of  $\triangle$ ABE <u>Proof:</u> We know that,  $\triangle$ ACE and  $\triangle$ ADE are on the same base AC and between the same parallelogram. ar ( $\triangle$ ACE) = ar ( $\triangle$ ADC) Now by adding ar ( $\triangle$ ABC) on both sides, we get ar ( $\triangle$ ACE) + ar ( $\triangle$ ABC) = ar ( $\triangle$ ADC) + ar ( $\triangle$ ABC) ar ( $\triangle$  ABE) = ar quad. ABCD Hence proved.



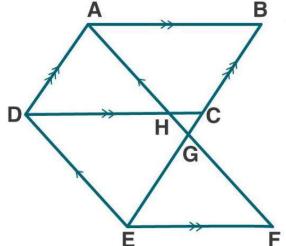
12. (a) In the figure given, ABCD and AEFG are two parallelograms.
Prove that area of || gm ABCD = area of || gm AEFG.
(b) In the fig. (2) Given below, the side AB of the parallelogram ABCD is produced



to E. A straight line through A is drawn parallel to CE to meet CB produced at F and parallelogram BFGE is Completed prove that area of || gm BFGE=Area of || gm ABCD.



(c) In the figure (3) given below AB || DC || EF, AD || BE and DE || AF. Prove the area of DEFH is equal to the area of ABCD.



#### Solution:

(a) Given:From fig (1)ABCD and AEFG are two parallelograms as shown in the figure.



<u>To prove:</u> area of || gm ABCD = area of || gm AEFG <u>Proof:</u> let us join BG. We know that, ar  $(\Delta ABG) = \frac{1}{2}$  (ar ||gm ABCD) ..... (1) Similarly, ar  $(\Delta ABG) = \frac{1}{2}$  (ar ||gm AEFG) .... (2) From (1) and (2)  $\frac{1}{2}$  (ar ||gm ABCD) =  $\frac{1}{2}$  (ar ||gm AEFG) So, ar ||gm ABCD = ar ||gm AEFG) Hence proved.

(**b**) Given:

From fig (2)

A parallelogram ABCD in which AB is produced to E. A straight line through A is drawn parallel to CE to meet CB produced at F and parallelogram BFGE is Completed.

To prove:

area of || gm BFGE=Area of || gm ABCD

Proof:

Let us join AC and EF.

We know that,

ar  $(\Delta AFC) = ar (\Delta AFE) \dots (1)$ now subtract ar  $(\Delta ABF)$  on both sides, we get ar  $(\Delta AFC)$  - ar  $(\Delta ABF) = ar (\Delta AFE)$  - ar  $(\Delta ABF)$ Or ar  $(\Delta ABC) = ar (\Delta BEF)$ 

Now multiply by 2 on both sides, we get 2. ar  $(\Delta ABC) = 2$ . ar  $(\Delta BEF)$ Or ar (||gm ABCD) = ar (||gm BFGE) Hence proved.

(c) Given: From fig (3) AB || DC || EF, AD || BE and DE || AF To prove: area of DEFH = area of ABCD <u>Proof:</u>

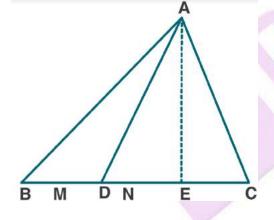


We know that, DE || AF and AD || BE It is given that ADEG is a parallelogram. So, ar (||gm ABCD) = ar (||gm ADEG) ..... (1) Again, DEFG is a parallelogram. ar (||gm DEFH) = ar (||gm ADEG) ..... (2) From (1) and (2) ar (||gm ABCD) = ar (||gm DEFH) Or ar ABCD = ar DEFH Hence proved.

13. Any point D is taken on the side BC of, a  $\triangle$  ABC and AD is produced to E such that AD=DE, prove that area of  $\triangle$  BCE = area of  $\triangle$  ABC. Solution:

Given:

In  $\triangle$ ABC, D is taken on the side BC. AD produced to E such that AD = DE



<u>To prove:</u> area of  $\triangle$  BCE = area of  $\triangle$  ABC <u>Proof:</u> In  $\triangle$ ABE, it is given that AD = DE So, BD is the median of  $\triangle$ ABE ar ( $\triangle$ ABD) = ar ( $\triangle$ BED) ..... (1) similarly, In  $\triangle$ ACE, CD is the median of  $\triangle$ ACE ar ( $\triangle$ ACD) = ar ( $\triangle$ CED) ..... (2) By adding (1) and (2), we get ar ( $\triangle$ ABD) + ar ( $\triangle$ ACD) = ar ( $\triangle$ BED) + ar ( $\triangle$ CED)

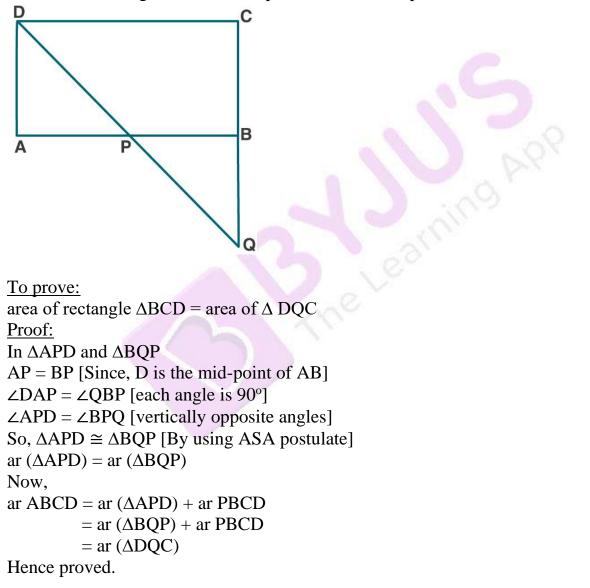


Or ar  $(\Delta ABC) = ar (\Delta BCE)$ Hence proved.

#### 14. ABCD is a rectangle and P is mid-point of AB. DP is produced to meet CB at Q. Prove that area of rectangle $\triangle BCD = area \text{ of } \triangle DQC$ . Solution:

Given:

ABCD is a rectangle and P is mid-point of AB. DP is produced to meet CB at Q.



15. (a) In the figure (1) given below, the perimeter of parallelogram is 42 cm.
Calculate the lengths of the sides of the parallelogram.
(b) In the figure (2) given below, the perimeter of △ ABC is 37 cm. If the lengths of

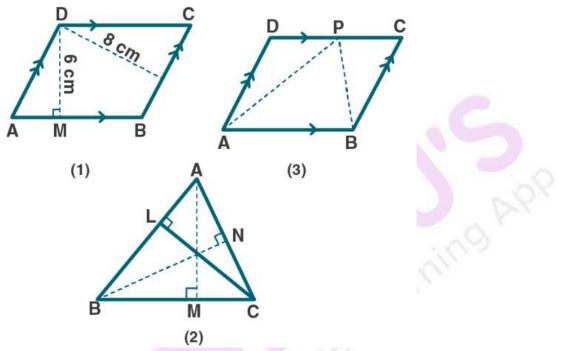


the altitudes AM, BN and CL are 5x, 6x, and 4x respectively, Calculate the lengths of the sides of  $\triangle ABC$ .

(c) In the fig. (3) Given below, ABCD is a parallelogram. P is a point on DC such that area of  $\triangle DAP = 25 \text{ cm}^2$  and area of  $\triangle BCP = 15 \text{ cm}^2$ . Find

(i) area of  $\parallel \mathbf{gm} \ \mathbf{ABCD}$ 

(ii) DP: PC.



#### Solution:

(a) Given:

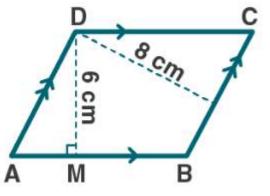
The perimeter of parallelogram ABCD = 42 cm<u>To find:</u>

Lengths of the sides of the parallelogram ABCD.

From fig (1)

We know that,

AB = P





Then, perimeter of  $\|gm ABCD = 2 (AB + BC)\|$ 42 = 2(P + BC)42/2 = P + BC21 = P + BCBC = 21 - PSo, ar ( $\|$ gm ABCD) = AB × DM  $= \mathbf{P} \times \mathbf{6}$  $= 6P \dots (1)$ Again, ar ( $||gm ABCD\rangle = BC \times DN$  $= (21 - P) \times 8$  $= 8(21 - P) \dots (2)$ From (1) and (2), we get 6P = 8(21 - P)6P = 168 - 8P6P + 8P = 16814P = 168P = 168/14= 12Hence, sides of ||gm are AB = 12cm and BC = (21 - 12)cm = 9cm(**b**) Given: The perimeter of  $\triangle$  ABC is 37 cm. The lengths of the altitudes AM, BN and CL are 5x, 6x, and 4x respectively. To find: Lengths of the sides of  $\triangle ABC$ . i.e., BC, CA and AB. Let us consider BC = P and CA = QFrom fig (2), Then, perimeter of  $\triangle ABC = AB + BC + CA$ 37 = AB + P + QAB = 37 - P - OArea ( $\triangle ABC$ ) =  $\frac{1}{2} \times base \times height$  $= \frac{1}{2} \times BC \times AM = \frac{1}{2} \times CA \times BN = \frac{1}{2} \times AB \times CL$  $= \frac{1}{2} \times P \times 5x = \frac{1}{2} \times Q \times 6x = \frac{1}{2} (37 - P - Q) \times 4x$ = 5P/2 = 3Q = 2(37 - P - Q)Let us consider first two parts:



5P/2 = 3Q5P = 6Q $5P - 6Q = 0 \dots (1)$ 25P - 30Q (multiplying by 5).... (2) Let us consider second and third parts: 3Q = 2(37 - P - Q)3Q = 74 - 2P - 2Q3Q + 2Q + 2P = 742P + 5Q = 74 .....(3) 12P + 30Q = 444 (multiplying by 6).....(4) By adding (2) and (4), we get 37P = 444P = 444/37= 12Now, substitute the value of P in equation (1), we get 5P - 6Q = 05(12) - 6Q = 060 = 6QO = 60/6= 10Hence, BC = P = 12cmCA = Q = 10cmAnd AB = 37 - P - Q = 37 - 12 - 10 = 15cm (c) Given: ABCD is a parallelogram. P is a point on DC such that area of  $\Delta DAP = 25 \text{ cm}^2$  and area of  $\triangle BCP = 15 \text{ cm}^2$ . To Find: (i) area of || gm ABCD (**ii**) DP: PC Now let us find, From fig (3) (i) we know that, ar ( $\triangle APB$ ) =  $\frac{1}{2}$  ar ( $\parallel gm ABCD$ ) Then,  $\frac{1}{2}$  ar (||gm ABCD) = ar ( $\Delta$ DAP) + ar ( $\Delta$ BCP) = 25 + 15

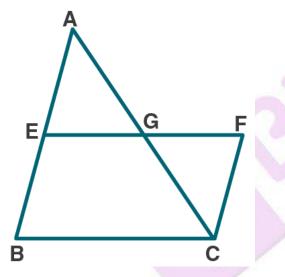


 $= 40 \text{cm}^2$ So, ar (||gm ABCD)  $= 2 \times 40 = 80 \text{cm}^2$ 

(ii) we know that,  $\triangle ADP$  and  $\triangle BCP$  are on the same base CD and between same parallel lines CD and AB. ar ( $\triangle DAP$ )/ar( $\triangle BCP$ ) = DP/PC 25/15 = DP/PC 5/3 = DP/PC So, DP: PC = 5: 3

16. In the adjoining figure, E is mid-point of the side AB of a triangle ABC and EBCF is a parallelogram. If the area of  $\triangle$  ABC is 25 sq. units, find the area of || gm EBCF.

**Solution:** 



Let us consider EF, side of ||gm BCFE meets AC at G. We know that, E is the mid-point and EF || BC G is the mid-point of AC. So, AG = GC

Now, in  $\triangle AEG$  and  $\triangle CFG$ , The alternate angles are:  $\angle EAG$ ,  $\angle GCF$ Vertically opposite angles are:  $\angle EGA = \angle CGF$ So, AG = GC Proved.



 $\therefore \Delta AEG \cong \Delta CFG$ ar ( $\Delta AEG$ ) = ar ( $\Delta CFG$ )

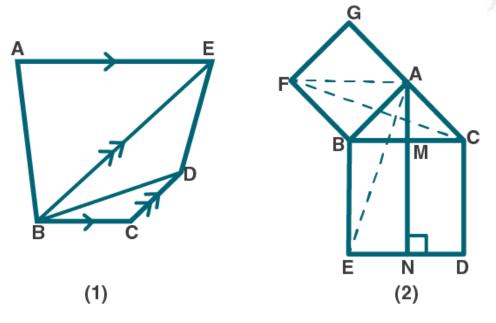
Now, ar (||gm EBCF) = ar BCGE + ar ( $\Delta$ CFG) = ar BCGE + ar ( $\Delta$ AEG) = ar ( $\Delta$ ABC) We know that, ar ( $\Delta$ ABC) = 25sq. units Hence, ar (||gm EBCF) = 25sq. units

17. (a) In the figure (1) given below, BC || AE and CD || BE. Prove that: area of  $\triangle ABC$ = area of  $\triangle EBD$ .

(b) In the figure (2) given below, ABC is right angled triangle at A. AGFB is a square on the side AB and BCDE is a square on the hypotenuse BC. If AN  $\perp$  ED, prove that:

(i)  $\triangle BCF \cong \triangle ABE$ .

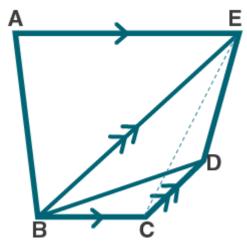
(ii) area of square ABFG = area of rectangle BENM.



#### Solution:

(a) Given: From fig (1) BC || AE and CD || BE <u>To prove:</u> area of  $\triangle$ ABC= area of  $\triangle$ EBD Proof:





By joining CE. We know that, from  $\triangle ABC$  and  $\triangle EBC$ ar ( $\triangle ABC$ ) = ar ( $\triangle EBC$ ) ..... (1) From EBC and  $\triangle EBD$ ar ( $\triangle EBC$ ) = ar ( $\triangle EBD$ ) ..... (2) From (1) and (2), we get ar ( $\triangle ABC$ ) = ar ( $\triangle EBD$ ) Hence proved.

(b) Given:

ABC is right angled triangle at A. Squares AGFB and BCDE are drawn on the side AB and hypotenuse BC of  $\triangle$ ABC. AN  $\perp$  ED which meets BC at M.

#### To prove:

```
(i) \triangle BCF \cong \triangle ABE.

(ii) area of square ABFG = area of rectangle BENM

From the figure (2)

(i) \angle FBC = \angle FBA + \angle ABC

So,

\angle FBC = 90^{\circ} + \angle ABC \dots (1)
```

```
\angle ABE = \angle EAC + \angle ABC
So,
\angle ABE = 90^{\circ} + \angle ABC \dots (2)
From (1) and (2), we get
\angle FBC = \angle ABE \dots (3)
So, BC = BE
```

Now, in  $\triangle BCF$  and  $\triangle ABE$ 



BF = ABBy using SAS axiom rule of congruency,  $\therefore \Delta BCF \cong \Delta ABE$ Hence proved.

(ii) we know that,  $\Delta BCF \cong \Delta ABE$ So, ar ( $\Delta BCF$ ) = ar ( $\Delta ABE$ ) ..... (4)  $\angle BAG + \angle BAC = 90^{\circ} + 90^{\circ}$   $= 180^{\circ}$ So, GAC is a straight line.

Now, from  $\triangle BCF$  and square AGFB ar  $(\triangle BCF) = \frac{1}{2}$  ar (square AGFB) .... (5)

From  $\triangle ABE$  and rectangle BENM ar ( $\triangle ABE$ ) =  $\frac{1}{2}$  ar (rectangle BENM) ..... (6) From (4), (5) and (6)  $\frac{1}{2}$  ar (square AGFB) =  $\frac{1}{2}$  ar (rectangle BENM) ar (square AGFB) = ar (rectangle BENM) Hence proved.