

EXERCISE 13.1

PAGE NO: 13.3

```
1. Evaluate the following:
(i) i <sup>457</sup>
(ii) i <sup>528</sup>
(iii) 1/ i<sup>58</sup>
(iv) i {}^{37} + 1/i {}^{67}
(v) [i^{41} + 1/i^{257}]
(vi) (i ^{77} + i ^{70} + i ^{87} + i ^{414})<sup>3</sup>
(vii) i {}^{30} + i {}^{40} + i {}^{60}
(viii) i <sup>49</sup> + i <sup>68</sup> + i <sup>89</sup> + i <sup>110</sup>
Solution:
(i) i <sup>457</sup>
Let us simplify we get,
i^{457} = i^{(456+1)}
     = i^{4(114)} \times i
     =(1)^{114} \times i
     = i [since i<sup>4</sup> = 1]
(ii) i <sup>528</sup>
Let us simplify we get,
i^{528} = i^{4(132)}
       =(1)^{132}
       = 1 [since i^4 = 1]
(iii) 1/ i<sup>58</sup>
Let us simplify we get,
1/i^{58} = 1/i^{56+2}
        = 1/ i {}^{56} \times i^2
         = 1/(i^4)^{14} \times i^2
         = 1/i^2 [since, i^4 = 1]
         = 1/-1 [since, i^2 = -1]
         = -1
(iv) i^{37} + 1/i^{67}
Let us simplify we get,
i^{37} + 1/i^{67} = i^{36+1} + 1/i^{64+3}
                  = i + 1/i^3 [since, i^4 = 1]
                  = i + i/i^4
```

Given:

$$1 + i^{10} + i^{20} + i^{30} = 1 + i^{(8+2)} + i^{20} + i^{(28+2)}$$

 $= 1 + (i^4)^2 \times i^2 + (i^4)^5 + (i^4)^7 \times i^2$
 $= 1 - 1 + 1 - 1$ [since, $i^4 = 1$, $i^2 = -1$]
 $= 0$

2. Show that
$$1 + i^{10} + i^{20} + i^{30}$$
 is a real number? Solution:

(vii)
$$i^{30} + i^{40} + i^{60}$$

Let us simplify we get,
 $i^{30} + i^{40} + i^{60} = i^{(28+2)} + i^{40} + i^{60}$
 $= (i^4)^7 i^2 + (i^4)^{10} + (i^4)^{15}$
 $= i^2 + 1^{10} + 1^{15}$
 $= -1 + 1 + 1$
 -1

$$= 0$$
(vi) (i ⁷⁷ + i ⁷⁰ + i ⁸⁷ + i ⁴¹⁴)³
Let us simplify we get,
(i ⁷⁷ + i ⁷⁰ + i ⁸⁷ + i ⁴¹⁴)³ = (i^(76 + 1) + i^(68 + 2) + i^(84 + 3) + i^(412 + 2))³
= (i + i² + i³ + i²)³ [since i³ = - i, i² = -1]
= (i + (-1) + (-i) + (-1))³
= (-2)³
= -8
(vii) i ³⁰ + i ⁴⁰ + i ⁶⁰
Let us simplify we get,
i ³⁰ + i ⁴⁰ + i ⁶⁰ = i^{(28 + 2) +} i⁴⁰ + i⁶⁰
= (i⁴)⁷ i² + (i⁴)¹⁰ + (i⁴)¹⁵
= i² + 1¹⁰ + 1¹⁵
= -1 + 1 + 1

= 2i
(v)
$$[i^{41} + 1/i^{257}]$$

Let us simplify we get,
 $[i^{41} + 1/i^{257}] = [i^{40+1} + 1/i^{256+1}]$
 $= [i + 1/i]^9$ [since, $1/i = -1$]
 $= [i - i]$
 $= 0$

BYJU'S The Learning App

= i + i

RD Sharma Solutions for Class 11 Maths Chapter 13 -Complex Numbers

Hence, $1 + i^{10} + i^{20} + i^{30}$ is a real number. 3. Find the values of the following expressions: (i) $i^{49} + i^{68} + i^{89} + i^{110}$ (ii) $i^{30} + i^{80} + i^{120}$ (iii) $i + i^2 + i^3 + i^4$ (iv) $i^5 + i^{10} + i^{15}$ (v) $[i^{592} + i^{590} + i^{588} + i^{586} + i^{584}] / [i^{582} + i^{580} + i^{578} + i^{576} + i^{574}]$ (vi) $1 + i^2 + i^4 + i^6 + i^8 + ... + i^{20}$ (vii) $(1 + i)^6 + (1 - i)^3$ Solution: (i) $i^{49} + i^{68} + i^{89} + i^{110}$ rning Apr Let us simplify we get, $i^{49} + i^{68} + i^{89} + i^{110} = i^{(48+1)} + i^{68} + i^{(88+1)} + i^{(108+2)}$ $=(i^4)^{12} \times i + (i^4)^{17} + (i^4)^{22} \times i + (i^4)^{27} \times i^2$ = i + 1 + i - 1 [since $i^4 = 1, i^2 = -1$] = 2i $: i^{49} + i^{68} + i^{89} + i^{110} = 2i$ (ii) $i^{30} + i^{80} + i^{120}$ Let us simplify we get, $i^{30} + i^{80} + i^{120} = i^{(28+2)} + i^{80} + i^{120}$ $=(i^4)^7 \times i^2 + (i^4)^{20} + (i^4)^{30}$ = -1 + 1 + 1 [since $i^4 = 1, i^2 = -1$] = 1 $: i^{30} + i^{80} + i^{120} = 1$ (iii) $i + i^2 + i^3 + i^4$ Let us simplify we get, $i + i^{2} + i^{3} + i^{4} = i + i^{2} + i^{2} \times i + i^{4}$ $= i - 1 + (-1) \times i + 1$ [since $i^4 = 1, i^2 = -1$] =i-1-i+1= 0 $\therefore i + i^2 + i^3 + i^4 = 0$ (iv) $i^5 + i^{10} + i^{15}$ Let us simplify we get, $i^{5} + i^{10} + i^{15} = i^{(4+1)} + i^{(8+2)} + i^{(12+3)}$ $= (i^4)^1 \times i + (i^4)^2 \times i^2 + (i^4)^3 \times i^3$

BYJU'S

RD Sharma Solutions for Class 11 Maths Chapter 13 – Complex Numbers

$$= (i^4)^1 xi + (i^4)^2 xi^2 + (i^4)^3 xi^2 xi \\ = 1xi + 1 \times (-1) + 1 \times (-1) xi \\ = i - 1 - i \\ = -1 \\ \therefore i^5 + i^{10} + i^{15} = -1$$

$$(v) [i^{592} + i^{590} + i^{588} + i^{586} + i^{584}] / [i^{582} + i^{578} + i^{578} + i^{576} + i^{574}] \\ Let us simplify we get, \\ [i^{592} + i^{590} + i^{588} + i^{586} + i^{584}] / [i^{582} + i^{580} + i^{578} + i^{576} + i^{574}] \\ = [i^{10} (i^{582} + i^{580} + i^{578} + i^{576} + i^{574}] / (i^{582} + i^{576} + i^{574})] \\ = i^{10} \\ = i^8 i^2 \\ = (i^4)^2 i^2 \\ = (1)^2 (1) [since i^4 = 1, i^2 = -1] \\ = -1 \\ \therefore [i^{592} + i^{598} + i^{588} + i^{586} + i^{584}] / [i^{582} + i^{580} + i^{578} + i^{576} + i^{574}] = -1 \\ (vi) 1 + i^2 + i^4 + i^6 + i^8 + ... + i^{20} \\ Let us simplify we get, \\ 1 + i^2 + i^4 + i^6 + i^8 + ... + i^{20} = 1 \\ (vii) (1 + i)^6 + (1 - i)^3 \\ Let us simplify we get, \\ (1 + i)^6 + (1 - i)^3 = \{(1 + i)^2\}^3 + (1 - i)^2 (1 - i) \\ = \{1 - i^2 + 2i\}^3 + (1 - i^{2-2})(1 - i) \\ = \{1 - i^2 + 2i\}^3 + (1 - i^{2-2})(1 - i) \\ = (2i)^3 + (-2i)(1 - i) \\ = 8i^3 + (-2i) + 2i^2 \\ = -8i - 2i - 2 [since i^3 = -i, i^2 = -1] \\ = -10 i - 2 \\ = -2(1 + 5i) \\ = -2 - 10i \\ \therefore (1 + i)^6 + (1 - i)^3 = -2 - 10i \\ \end{cases}$$

EXERCISE 13.2

PAGE NO: 13.31

(i) (1 + i) (1 + 2i)(ii) (3+2i)/(-2+i)(iii) $1/(2 + i)^2$ (iv) (1 - i) / (1 + i) $(v) (2+i)^3 / (2+3i)$ (vi) $[(1 + i) (1 + \sqrt{3}i)] / (1 - i)$ (vii) (2 + 3i) / (4 + 5i)(viii) $(1 - i)^3 / (1 - i^3)$ $(ix) (1 + 2i)^{-3}$ $(x)\left(3-4i\right)/\left[\left(4-2i\right)\left(1+i\right)\right]$ (**xi**) $\left(rac{1}{1-4i}-rac{2}{1+i} ight)\left(rac{3-4i}{5+i} ight)$ (xii) $(5 + \sqrt{2i}) / (1 - \sqrt{2i})$ Solution: (i) (1 + i) (1 + 2i)Let us simplify and express in the standard form of (a + ib), (1 + i) (1 + 2i) = (1+i)(1+2i)= 1(1+2i)+i(1+2i) $= 1 + 2i + i + 2i^{2}$ = 1+3i+2(-1) [since, $i^2 = -1$] = 1 + 3i - 2= -1 + 3i \therefore The values of a, b are -1, 3. (ii) (3 + 2i) / (-2 + i)Let us simplify and express in the standard form of (a + ib), $(3 + 2i) / (-2 + i) = [(3 + 2i) / (-2 + i)] \times (-2-i) / (-2-i)$ [multiply and divide with (-2-i)] $= [3(-2-i) + 2i(-2-i)] / [(-2)^2 - (i)^2]$ $= [-6 - 3i - 4i - 2i^2] / (4 - i^2)$ $= [-6 - 7i - 2(-1)] / (4 - (-1)) [since, i^2 = -1]$ = [-4 - 7i] / 5

1. Express the following complex numbers in the standard form a + ib:

 \therefore The values of a, b are -4/5, -7/5

(iii) $1/(2 + i)^2$ Let us simplify and express in the standard form of (a + ib),

$$\frac{1}{(2 + i)^2} = \frac{1}{(2^2 + i^2 + 2(2) (i))}$$

= 1/(4 - 1 + 4i) [since, i² = -1]
= 1/(3 + 4i) [multiply and divide with (3 - 4i)]
= 1/(3 + 4i) × (3 - 4i)/ (3 - 4i)]
= (3-4i)/ (3² - (4i)²)
= (3-4i)/ (9 - 16i²)
= (3-4i)/ (9 - 16(-1)) [since, i² = -1]
= (3-4i)/25

 \therefore The values of a, b are 3/25, -4/25

$$\begin{aligned} (iv) &(1 - i) / (1 + i) \\ \text{Let us simplify and express in the standard form of } (a + ib), \\ &(1 - i) / (1 + i) = (1 - i) / (1 + i) \times (1 - i) / (1 - i) [multiply and divide with (1 - i)] \\ &= (1^2 + i^2 - 2(1)(i)) / (1^2 - i^2) \\ &= (1 + (-1) - 2i) / (1 - (-1)) \\ &= -2i/2 \\ &= -i \end{aligned}$$

 \therefore The values of a, b are 0, -1

 $\begin{aligned} &(\mathbf{v}) \ (2+i)^3 / (2+3i) \\ &\text{Let us simplify and express in the standard form of (a + ib),} \\ &(2+i)^3 / (2+3i) = (2^3 + i^3 + 3(2)^2(i) + 3(i)^2(2)) / (2+3i) \\ &= (8 + (i^2.i) + 3(4)(i) + 6i^2) / (2+3i) \\ &= (8 + (-1)i + 12i + 6(-1)) / (2+3i) \\ &= (2+11i) / (2+3i) \\ &[\text{multiply and divide with (2-3i)]} \\ &= (2+11i) / (2+3i) \times (2-3i) / (2-3i) \\ &= [2(2-3i) + 11i(2-3i)] / (2^2 - (3i)^2) \\ &= (4-6i + 22i - 33i^2) / (4-9i^2) \\ &= (4+16i - 33(-1)) / (4-9(-1)) \ [\text{since, } i^2 = -1] \\ &= (37 + 16i) / 13 \end{aligned}$

 \therefore The values of a, b are 37/13, 16/13

(vi) $[(1 + i) (1 + \sqrt{3}i)] / (1 - i)$ Let us simplify and express in the standard form of (a + ib), $[(1 + i) (1 + \sqrt{3}i)] / (1 - i) = [1(1 + \sqrt{3}i) + i(1 + \sqrt{3}i)] / (1 - i)$ $= (1 + \sqrt{3}i + i + \sqrt{3}i^2) / (1 - i)$ $= (1 + (\sqrt{3} + 1)i + \sqrt{3}(-1)) / (1 - i) [since, i^2 = -1]$ $= [(1 - \sqrt{3}) + (1 + \sqrt{3})i] / (1 - i)$

[multiply and divide with (1+i)]
=
$$[(1-\sqrt{3}) + (1+\sqrt{3})i] / (1-i) \times (1+i)/(1+i)$$

= $[(1-\sqrt{3}) (1+i) + (1+\sqrt{3})i(1+i)] / (1^2 - i^2)$
= $[1-\sqrt{3} + (1-\sqrt{3})i + (1+\sqrt{3})i + (1+\sqrt{3})i^2] / (1-(-1))$ [since, $i^2 = -1$]
= $[(1-\sqrt{3})+(1-\sqrt{3}+1+\sqrt{3})i+(1+\sqrt{3})(-1)] / 2$
= $(-2\sqrt{3} + 2i) / 2$
= $-\sqrt{3} + i$

 \therefore The values of a, b are $-\sqrt{3}$, 1

(vii)
$$(2 + 3i) / (4 + 5i)$$

Let us simplify and express in the standard form of $(a + ib)$,
 $(2 + 3i) / (4 + 5i) = [multiply and divide with (4-5i)]$
 $= (2 + 3i) / (4 + 5i) \times (4-5i)/(4-5i)$
 $= [2(4-5i) + 3i(4-5i)] / (4^2 - (5i)^2)$
 $= [8 - 10i + 12i - 15i^2] / (16 - 25i^2)$
 $= [8+2i-15(-1)] / (16 - 25(-1)) [since, i^2 = -1]$
 $= (23 + 2i) / 41$
∴ The values of a, b are 23/41, 2/41

 \therefore The values of a, b are 23/41, 2/41

(viii)
$$(1 - i)^3 / (1 - i^3)$$

Let us simplify and express in the standard form of $(a + ib)$,
 $(1 - i)^3 / (1 - i^3) = [1^3 - 3(1)^2i + 3(1)(i)^2 - i^3] / (1 - i^2.i)$
 $= [1 - 3i + 3(-1) - i^2.i] / (1 - (-1)i)$ [since, $i^2 = -1$]
 $= [-2 - 3i - (-1)i] / (1+i)$
 $= [-2 - 4i] / (1+i)$
[Multiply and divide with (1-i)]
 $= [-2(1-i) - 4i(1-i)] / (1^2 - i^2)$
 $= [-2 + 2i - 4i + 4i^2] / (1 - (-1))$
 $= [-2 - 2i + 4(-1)] / 2$
 $= (-6 - 2i) / 2$
 $= -3 - i$

 \therefore The values of a, b are -3, -1

 $(ix) (1 + 2i)^{-3}$ Let us simplify and express in the standard form of (a + ib), $(1+2i)^{-3} = 1/(1+2i)^3$ $= 1/(1^3+3(1)^2 (2i)+2(1)(2i)^2 + (2i)^3)$ $= 1/(1+6i+4i^2+8i^3)$

$$= 1/(1+6i+4(-1)+8i^{2}.i) \text{ [since, } i^{2} = -1\text{]}$$

= 1/(-3+6i+8(-1)i) [since, i² = -1]
= 1/(-3-2i)
= -1/(3+2i)
[Multiply and divide with (3-2i)]
= -1/(3+2i) × (3-2i)/(3-2i)
= (-3+2i)/(3^{2} - (2i)^{2})
= (-3+2i) / (9-4i^{2})
= (-3+2i) / (9-4(-1))
= (-3+2i) / 13
∴ The values of a, b are -3/13, 2/13
(x) (3 - 4i) / [(4 - 2i) (1 + i)]

$$\begin{aligned} &(\mathbf{x}) (3-4\mathbf{i}) / [(4-2\mathbf{i}) (1+\mathbf{i})] \\ &\text{Let us simplify and express in the standard form of (a + ib),} \\ &(3-4\mathbf{i}) / [(4-2\mathbf{i}) (1+\mathbf{i})] = (3-4\mathbf{i}) / [4(1+\mathbf{i})-2\mathbf{i}(1+\mathbf{i})] \\ &= (3-4\mathbf{i}) / [4+4\mathbf{i}-2\mathbf{i}-2\mathbf{i}^2] \\ &= (3-4\mathbf{i}) / [4+2\mathbf{i}-2(-1)] [\text{since, } \mathbf{i}^2 = -1] \\ &= (3-4\mathbf{i}) / (6+2\mathbf{i}) \\ &\text{[Multiply and divide with (6-2\mathbf{i})]} \\ &= (3-4\mathbf{i}) / (6+2\mathbf{i}) \times (6-2\mathbf{i}) / (6-2\mathbf{i}) \\ &= [3(6-2\mathbf{i})-4\mathbf{i}(6-2\mathbf{i})] / (6^2 - (2\mathbf{i})^2) \\ &= [18 - 6\mathbf{i} - 24\mathbf{i} + 8\mathbf{i}^2] / (36 - 4\mathbf{i}^2) \\ &= [18 - 30\mathbf{i} + 8 (-1)] / (36 - 4 (-1)) [\text{since, } \mathbf{i}^2 = -1] \\ &= [10-30\mathbf{i}] / 40 \\ &= (1-3\mathbf{i}) / 4 \end{aligned}$$

: The values of a, b are 1/4, -3/4

(xi)
$$\left(\frac{1}{1-4i}-\frac{2}{1+i}\right)\left(\frac{3-4i}{5+i}\right)$$

Let us simplify and express in the standard form of (a + ib),

$$\begin{split} \left(\frac{1}{1-4i} - \frac{2}{1+i}\right) \left(\frac{3-4i}{5+i}\right) &= \left(\frac{1+i-2(1-4i)}{(1-4i)(1+i)}\right) \left(\frac{3-4i}{5+i}\right) \\ &= \left(\frac{1+i-2+8i}{1(1+i)-4i(1+i)}\right) \left(\frac{3-4i}{5+i}\right) \\ &= \left(\frac{-1+9i}{1+i-4i-4i^2}\right) \left(\frac{3-4i}{5+i}\right) \\ &= \left(\frac{-1+9i}{1-3i-4(-1)}\right) \left(\frac{3-4i}{5+i}\right) \end{split}$$

$$= \frac{(-1+9i)(3-4i)}{(5-3i)(5+i)}$$

$$= \frac{-1(3-4i)+9i(3-i)}{5(5+i)-3i(5+i)}$$

$$= \frac{-3+4i+27i-9i^2}{25+5i-15i-3i^2}$$

$$= \frac{-3+31i-9(-1)}{25-10i-3(-1)}$$

$$= \frac{6+31i}{28-10i}$$
[Multiply and divide with

$$= \frac{6+31i}{28-10i} \times \frac{28+10i}{28+10i}$$

$$= \frac{6(28+10i)+31i(28+10i)}{28^2-(10i)^2}$$

$$= \frac{168+60i+868i+310i^2}{784-100i^2}$$
168+928i+310(-1)

h (28+10i)]

$$= \frac{6+31i}{28-10i} \times \frac{28+10i}{28+10i}$$
$$= \frac{6(28+10i)+31i(28+10i)}{28^2-(10i)^2}$$
$$= \frac{168+60i+868i+310i^2}{784-100i^2}$$
$$= \frac{168+928i+310(-1)}{784-100(-1)}$$
$$= \frac{478+928i}{884}$$

Therefore value of a, b are 478/884, 928/884.

(xii)
$$(5 + \sqrt{2}i) / (1 - \sqrt{2}i)$$

Let us simplify and express in the standard form of $(a + ib)$,
 $(5 + \sqrt{2}i) / (1 - \sqrt{2}i) = [$ Multiply and divide with $(1 + \sqrt{2}i)]$
 $= (5 + \sqrt{2}i) / (1 - \sqrt{2}i) \times (1 + \sqrt{2}i)/(1 + \sqrt{2}i)$
 $= [5(1 + \sqrt{2}i) + \sqrt{2}i(1 + \sqrt{2}i)] / (1^2 - (\sqrt{2})^2)$
 $= [5 + 5\sqrt{2}i + \sqrt{2}i + 2i^2] / (1 - 2i^2)$
 $= [5 + 6\sqrt{2}i + 2(-1)] / (1 - 2(-1)) [$ since, $i^2 = -1$]
 $= [3 + 6\sqrt{2}i]/3$
 $= 1 + 2\sqrt{2}i$

 \therefore The values of a, b are 1, $2\sqrt{2}$

2. Find the real values of x and y, if (i) (x + iy) (2 - 3i) = 4 + i(ii) (3x - 2iy)(2 - 3i) = 1 + 1(iii) $(3x - 2iy)(2 + i)^2 = 10(1 + i)$ (iii) $\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i} = i$

(iv) (1 + i) (x + iy) = 2 - 5iSolution: (i) (x + iy) (2 - 3i) = 4 + iGiven: (x + iy) (2 - 3i) = 4 + iLet us simplify the expression we get, x(2 - 3i) + iy(2 - 3i) = 4 + i $2x - 3xi + 2yi - 3yi^2 = 4 + i$ $2x + (-3x+2y)i - 3y(-1) = 4 + i [since, i^2 = -1]$ 2x + (-3x+2y)i + 3y = 4 + i [since, $i^2 = -1$] (2x+3y) + i(-3x+2y) = 4 + iEquating Real and Imaginary parts on both sides, we get 2x+3y = 4... (i) And -3x+2y = 1... (ii) Multiply (i) by 3 and (ii) by 2 and add On solving we get, 6x - 6x - 9y + 4y = 12 + 213y = 14y = 14/13Substitute the value of y in (i) we get, 2x + 3y = 42x + 3(14/13) = 42x = 4 - (42/13)=(52-42)/132x = 10/13x = 5/13x = 5/13, y = 14/13: The real values of x and y are 5/13, 14/13(ii) $(3x - 2i y) (2 + i)^2 = 10(1 + i)$ Given: $(3x - 2iy) (2+i)^2 = 10(1+i)$ $(3x - 2yi) (2^2 + i^2 + 2(2)(i)) = 10 + 10i$ $(3x - 2yi) (4 + (-1)+4i) = 10+10i [since, i^2 = -1]$ (3x - 2yi)(3+4i) = 10+10iLet us divide with 3+4i on both sides we get, (3x - 2yi) = (10 + 10i)/(3 + 4i)= Now multiply and divide with (3-4i) $= [10(3-4i) + 10i(3-4i)] / (3^2 - (4i)^2)$

 $= [30-40i+30i-40i^2] / (9-16i^2)$ = [30-10i-40(-1)] / (9-16(-1))= [70-10i]/25Now, equating Real and Imaginary parts on both sides we get 3x = 70/25 and -2y = -10/25x = 70/75 and y = 1/5x = 14/15 and y = 1/5: The real values of x and y are 14/15, 1/5(iii) $\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$ Given: $\frac{(1+i)\mathbf{x}-2i}{3+i}+\frac{(2-3i)\mathbf{y}+i}{3-i}=i$ $\frac{\left(\left((1+i)x-2i\right)(3-i)\right)+\left(\left((2-3i)y+i\right)(3+i)\right)}{(3+i)(3-i)}=i$ $\frac{((1+i)(3-i)x) - (2i)(3-i) + ((2-3i)(3+i)y) + (i)(3+i)}{3^2 - i^2} = i$ $\frac{(3-i+3i-i^2)x-6i+2i^2+(6+2i-9i-3i^2)y+3i+i^2}{9-(-1)} = i$ $\frac{(3+2i-(-1))x-6i+2(-1)+(6-7i-3(-1))y+3i+(-1)}{10} = i \text{ [since, } i^2 = -1\text{]}$ (4+2i) x-3i-3 + (9-7i)y = 10i(4x+9y-3) + i(2x-7y-3) = 10iNow, equating Real and Imaginary parts on both sides we get, $4x+9y-3 = 0 \dots (i)$ And 2x-7y-3 = 10 $2x-7y = 13 \dots$ (ii) Multiply (i) by 7 and (ii) by 9 and add On solving these equations we get 28x + 18x + 63y - 63y = 117 + 2146x = 117 + 2146x = 138x = 138/46= 3Substitute the value of x in (i) we get, 4x + 9y - 3 = 0

9v = -9y = -9/9= -1 x = 3 and y = -1 \therefore The real values of x and y are 3 and -1 (iv) (1 + i) (x + iy) = 2 - 5iGiven: (1 + i) (x + iy) = 2 - 5iDivide with (1+i) on both the sides we get, (x + iy) = (2 - 5i)/(1+i)Multiply and divide by (1-i) $= (2-5i)/(1+i) \times (1-i)/(1-i)$ $= [2(1-i) - 5i(1-i)] / (1^2 - i^2)$ $= [2 - 7i + 5(-1)] / 2 [since, i^2 = -1]$ =(-3-7i)/2Now, equating Real and Imaginary parts on both sides we get

x = -3/2 and y = -7/2

: The real values of x and y are -3/2, -7/2

3. Find the conjugates of the following complex numbers:

(i) 4-5i(ii) 1/(3+5i)(iii) 1/(1+i)(iv) $(3-i)^2/(2+i)$ (v) [(1+i)(2+i)]/(3+i)(vi) [(3-2i)(2+3i)]/[(1+2i)(2-i)]Solution: (i) 4-5iGiven: 4-5iWe know the conjugate of a complex number (a + ib) is (a - ib) So, \therefore The conjugate of (4-5i) is (4+5i)(ii) 1/(2+5i)

(ii) 1 / (3 + 5i)
Given:
1 / (3 + 5i)
Since the given complex number is not in the standard form of (a + ib)

Let us convert to standard form by multiplying and dividing with (3 - 5i) We get,

$$\frac{1}{3+5i} = \frac{1}{3+5i} \times \frac{3-5i}{3-5i}$$
$$= \frac{3-5i}{3^2-(5i)^2}$$
$$= \frac{3-5i}{9-25i^2}$$
$$= \frac{3-5i}{9-25(-1)}$$
[Since, i² = -1]
$$= \frac{3-5i}{24}$$

We know the conjugate of a complex number (a + ib) is (a - ib) So,

: The conjugate of (3-5i)/34 is (3+5i)/34

(iii) 1 / (1 + i) Given: 1 / (1 + i)

Since the given complex number is not in the standard form of (a + ib)Let us convert to standard form by multiplying and dividing with (1 - i)We get,

$$\frac{1}{1+i} = \frac{1}{1+i} \times \frac{1-i}{1-i}$$
$$= \frac{1-i}{1^2 - i^2}$$
$$= \frac{1-i}{1 - (-1)} \text{[since, } i^2 = -1$$
$$= \frac{1-i}{2}$$

We know the conjugate of a complex number (a + ib) is (a - ib) So,

: The conjugate of (1-i)/2 is (1+i)/2

(iv) $(3 - i)^2 / (2 + i)$ Given: $(3 - i)^2 / (2 + i)$ Since the given complex number is not in the standard form of (a + ib) Let us convert to standard form,

$$\frac{(3-i)^2}{2+i} = \frac{3^2 + i^2 - 2(3)(i)}{2+i}$$
$$= \frac{9 + (-1) - 6i}{2+i}$$
[Since, $i^2 = -1$]
$$= \frac{8 - 6i}{2+i}$$

Now, let us multiply and divide with (2 - i) we get,

$$\frac{8-6i}{2+i} = \frac{8-6i}{2+i} \times \frac{2-i}{2-i}$$

$$= \frac{8(2-i)-6i(2-i)}{2^2-i^2}$$

$$= \frac{16-8i-12i+6i^2}{4-(-1)} \text{ [Since, i^2 = -1]}$$

$$= \frac{16-20i+6(-1)}{5}$$

$$= \frac{10-20i}{5}$$

$$= 10/5 - 20i/5$$

$$= 2 - 4i$$

We know the conjugate of a complex number (a + ib) is (a - ib) So,

: The conjugate of (2 - 4i) is (2 + 4i)

(v) [(1 + i) (2 + i)] / (3 + i)Given:

$$[(1+i)(2+i)]/(3+i)$$

Since the given complex number is not in the standard form of (a + ib)Let us convert to standard form,

$$\frac{(1+i)(2+i)}{3+i} = \frac{1(2+i)+i(2+i)}{3+i}$$
$$= \frac{2+i+2i+i^2}{3+i}$$
$$= \frac{2+3i+(-1)}{3+i}$$
[Since, i² = -1]
$$= \frac{1+3i}{3+i}$$

Now, let us multiply and divide with (3 - i) we get,

 $\frac{1+3i}{3+i} = \frac{1+3i}{3+i} \times \frac{3-i}{3-i}$

$$= \frac{1(3-i)+3i(3-i)}{3^2-i^2}$$

= $\frac{3-i+9i-3i^2}{9-(-1)}$ [Since, $i^2 = -1$]
= $\frac{3+8i-3(-1)}{10}$
= $\frac{6+8i}{10}$
= $\frac{3}{5} + \frac{4i}{5}$

We know the conjugate of a complex number (a + ib) is (a - ib)So,

: The conjugate of (3 + 4i)/5 is (3 - 4i)/5

(vi) [(3-2i)(2+3i)] / [(1+2i)(2-i)]Given: [(3-2i)(2+3i)] / [(1+2i)(2-i)]

Since the given complex number is not in the standard form of
$$(a + ib)$$

Let us convert to standard form,

$$\frac{(3-2i)(2+3i)}{(1+2i)(2-i)} = \frac{3(2+3i)-2i(2+3i)}{1(2-i)+2i(2-i)}$$
$$= \frac{6+9i-4i-6i^2}{2-i+4i-2i^2}$$
$$= \frac{6+5i-6(-1)}{2+3i-2(-1)}$$
$$= \frac{12+5i}{4+3i}$$

Now, let us multiply and divide with (4 - 3i) we get,

$$\frac{12+5i}{4+3i} = \frac{12+5i}{4+3i} \times \frac{4-3i}{4-3i}$$
$$= \frac{12(4-3i)+5i(4-3i)}{4^2-(3i)^2}$$
$$= \frac{48-36i+20i-15i^2}{16-9i^2}$$
$$= \frac{48-16i-15(-1)}{16-9(-1)}$$
$$= \frac{63-16i}{25}$$

We know the conjugate of a complex number (a + ib) is (a - ib)

So,

: The conjugate of (63 - 16i)/25 is (63 + 16i)/25

4. Find the multiplicative inverse of the following complex numbers:

(i) 1 - i(ii) $(1 + i\sqrt{3})^2$ (iii) 4 - 3i(iv) $\sqrt{5} + 3i$ Solution:

Solution:

(i) 1 − i

Given:

1-i

We know the multiplicative inverse of a complex number (Z) is Z^{-1} or 1/Z So,

Z = 1 - i $Z^{-1} = \frac{1}{1 - i}$

Let us multiply and divide by (1 + i) we get,

$$= \frac{1}{1-i} \times \frac{1+i}{1+i}$$

= $\frac{1+i}{1^2 - (i)^2}$
= $\frac{1+i}{1 - (-1)}$ [Since, $i^2 = -1$]
= $\frac{1+i}{2}$

: The multiplicative inverse of (1 - i) is (1 + i)/2

(ii) $(1 + i\sqrt{3})^2$ Given: $(1 + i\sqrt{3})^2$ $Z = (1 + i\sqrt{3})^2$ $= 1^2 + (i\sqrt{3})^2 + 2(1)(i\sqrt{3})$ $= 1 + 3i^2 + 2i\sqrt{3}$ $= 1 + 3(-1) + 2i\sqrt{3}$ [since, $i^2 = -1$] $= 1 - 3 + 2i\sqrt{3}$ $= -2 + 2i\sqrt{3}$ We know the multiplicative inverse of a complex number (Z) is Z⁻¹ or 1/Z So,

 $Z = -2 + 2 i\sqrt{3}$

$$Z^{-1} = \frac{1}{-2 + 2i\sqrt{3}}$$

Let us multiply and divide by -2 - 2 i $\sqrt{3}$, we get
$$= \frac{1}{-2 + 2\sqrt{3}i} \times \frac{-2 - 2\sqrt{3}i}{-2 - 2\sqrt{3}i}$$
$$= \frac{-2 - 2\sqrt{3}i}{(-2)^2 - (2\sqrt{3}i)^2}$$
$$= \frac{-2 - 2\sqrt{3}i}{4 - 12i^2}$$
$$= \frac{-2 - 2\sqrt{3}i}{4 - 12(-1)}$$
$$= \frac{-2 - 2\sqrt{3}i}{16}$$
$$= \frac{-1}{8} - \frac{i\sqrt{3}}{8}$$

: The multiplicative inverse of $(1 + i\sqrt{3})^2$ is $(-1-i\sqrt{3})/8$

(iii) 4 – 3i

Given: 4 – 3i

We know the multiplicative inverse of a complex number (Z) is Z^{-1} or 1/Z So,

$$\begin{split} \mathbf{Z} &= \mathbf{4} - \mathbf{3}\mathbf{i} \\ Z^{-1} &= \frac{1}{4 - 3i} \end{split}$$

Let us multiply and divide by (4 + 3i), we get

$$= \frac{1}{4-3i} \times \frac{4+3i}{4+3i}$$
$$= \frac{4+3i}{4^2 - (3i)^2}$$
$$= \frac{4+3i}{16-9i^2}$$
$$= \frac{4+3i}{16-9(-1)}$$
$$= \frac{4+3i}{25}$$

: The multiplicative inverse of (4 - 3i) is (4 + 3i)/25

(iv) $\sqrt{5} + 3i$ Given: $\sqrt{5} + 3i$ We know the multiplicative inverse of a complex number (Z) is Z⁻¹ or 1/Z So, $Z = \sqrt{5} + 3i$

$$Z^{-1} = \frac{1}{\sqrt{5} + 3i}$$

Let us multiply and divide by $(\sqrt{5} - 3i)$

$$= \frac{1}{\sqrt{5}+3i} \times \frac{\sqrt{5}-3i}{\sqrt{5}-3i}$$
$$= \frac{\sqrt{5}-3i}{(\sqrt{5})^2 - (3i)^2}$$
$$= \frac{\sqrt{5}-3i}{5-9i^2}$$
$$= \frac{\sqrt{5}-3i}{5-9(-1)}$$
$$= \frac{\sqrt{5}-3i}{14}$$

: The multiplicative inverse of $(\sqrt{5} + 3i)$ is $(\sqrt{5} - 3i)/14$

5. If
$$z_1 = 2 - i$$
, $z_2 = 1 + i$, find

 $rac{z_1+z_2+1}{z_1-z_2+i}$

Solution:

Given:

 $z_1 = (2 - i)$ and $z_2 = (1 + i)$ We know that, |a/b| = |a| / |b|So,

$$\begin{aligned} \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right| &= \frac{|z_1 + z_2 + 1|}{|z_1 - z_2 + i|} \\ &= \frac{|2 - i + 1 + i + 1|}{|2 - i - (1 + i) + i|} \\ &= \frac{|4|}{|1 - i|} \end{aligned}$$

We know, |a + ib| is $\sqrt{a^2 + b^2}$ So now,

 $=\frac{\sqrt{4^2+0^2}}{\sqrt{1^2+(-1)^2}}$ $=\frac{4}{\sqrt{2}}$ $=2\sqrt{2}$

: The value of $\left|\frac{z_1+z_2+1}{z_1-z_2+i}\right|$ is $2\sqrt{2}$

6. If
$$z_1 = (2 - i)$$
, $z_2 = (-2 + i)$, find
(i)Re $\left(\frac{z_1 z_2}{\overline{z_1}}\right)$

$$(\mathbf{i}\mathbf{i})\mathbf{Im}\left(\frac{\mathbf{1}}{\mathbf{z}_{1}\bar{\mathbf{z}_{1}}}\right)$$

Solution:

Given: $z_1 = (2 - i) \text{ and } z_2 = (-2 + i)$ $(i) \operatorname{Re} \left(\frac{z_1 z_2}{\overline{z_1}} \right)$

We shall rationalise the denominator, we get $\frac{z_1 z_2}{z_1} = \frac{z_1 z_2}{z_1} \checkmark^{z_1}$

$$\begin{aligned} \frac{1}{\bar{z}_1} &= \frac{z_1 z_2}{z_1} \times \frac{z_1}{z_1} \\ &= \frac{(z_1)^2 z_2}{z_1 z_1} \\ &= \frac{(2-i)^2 (-2+i)}{|z_1|^2} [\text{since}, z\bar{z} = |z|^2] \\ &= \frac{(2^2 + i^2 - 2 \times 2 \times i)(-2+i)}{|2-i|^2} \\ &= \frac{(4-1-4i)(-2+i)}{2^2 + (-1)^2} \\ &= \frac{(3-4i)(-2+i)}{4+i} \\ &= \frac{3(-2+i) - 4i(-2+i)}{4+i} \\ &= \frac{-6+3i + 8i + 4}{5} \\ &= \frac{-2+11i}{5} \end{aligned}$$

RD Sharma Solutions for Class 11 Maths Chapter 13 – Complex Numbers

$$\therefore$$
 The real value of $\left(\frac{z_1z_2}{\bar{z_1}}\right)$ is $\frac{-2}{5}$

$$(ii)Im\left(\frac{1}{z_{1}\bar{z_{1}}}\right)$$
$$\frac{1}{z_{1}\bar{z_{1}}} = \frac{1}{|z_{1}|^{2}}$$
$$= \frac{1}{|2-i|^{2}}$$
$$= \frac{1}{2^{2} + (-1)^{2}}$$
$$= \frac{1}{4+1}$$
$$= \frac{1}{5}$$

 \therefore The imaginary value of $\left(\frac{1}{z_1 \overline{z_1}}\right)$ is 0

7. Find the modulus of [(1 + i)/(1 - i)] - [(1 - i)/(1 + i)]Solution:

Given: [(1 + i)/(1 - i)] - [(1 - i)/(1 + i)]So, Z = [(1 + i)/(1 - i)] - [(1 - i)/(1 + i)]Let us simplify, we get $= [(1+i) (1+i) - (1-i) (1-i)] / (1^2 - i^2)$ $= [1^2 + i^2 + 2(1)(i) - (1^2 + i^2 - 2(1)(i))] / (1 - (-1)) [Since, i^2 = -1]$ = 4i/2 = 2i

We know that for a complex number Z = (a+ib) it's magnitude is given by $|z| = \sqrt{a^2 + b^2}$ So, $|Z| = \sqrt{(0^2 + 2^2)}$

: The modulus of [(1 + i)/(1 - i)] - [(1 - i)/(1 + i)] is 2.

8. If x + iy = (a+ib)/(a-ib), prove that $x^2 + y^2 = 1$ Solution:

Given:

x + iy = (a+ib)/(a-ib)

We know that for a complex number Z = (a+ib) it's magnitude is given by $|z| = \sqrt{a^2 + b^2}$. So,

|a/b| is |a| / |b|

Applying Modulus on both sides we get,

$$|x + iy| = \left|\frac{a+ib}{a-ib}\right|$$

$$\sqrt{x^2 + y^2} = \frac{|a+ib|}{|a-ib|}$$

$$= \frac{\sqrt{a^2 + b^2}}{\sqrt{a^2 + (-b)^2}}$$

$$= \frac{\sqrt{a^2 + b^2}}{\sqrt{a^2 + b^2}}$$

$$= 1$$
Squaring on both sides y

Squaring on both sides we get,

$$\left(\sqrt{x^2 + y^2}\right)^2 = 1^2$$

x²+y²=1
 \therefore Hence Proved.

9. Find the least positive integral value of n for which $[(1+i)/(1-i)]^n$ is real. Solution:

Given: $[(1+i)/(1-i)]^n$ $Z = [(1+i)/(1-i)]^n$ Now let us multiply and divide by (1+i), we get

$$= \frac{1+i}{1-i} \times \frac{1+i}{1+i}$$
$$= \frac{(1+i)^2}{1^2 - i^2}$$
$$= \frac{1^2 + i^2 + 2(1)(i)}{1 - (-1)}$$
$$= \frac{1-1+2i}{2}$$
$$= \frac{2i}{2}$$

= i [which is not real] For n = 2, we have

 $[(1+i)/(1-i)]^2 = i^2$

= -1 [which is real]

So, the smallest positive integral 'n' that can make $[(1+i)/(1-i)]^n$ real is 2.

 \therefore The smallest positive integral value of 'n' is 2.

10. Find the real values of θ for which the complex number $(1 + i \cos \theta) / (1 - 2i \cos \theta)$ is purely real.

Solution:

Given:

 $(1 + i \cos \theta) / (1 - 2i \cos \theta)$ Z = $(1 + i \cos \theta) / (1 - 2i \cos \theta)$ Let us multiply and divide by $(1 + 2i \cos \theta)$

$$= \frac{1+i\cos\theta}{1-2i\cos\theta} \times \frac{1+2i\cos\theta}{1+2i\cos\theta}$$
$$= \frac{1(1+2i\cos\theta)+i\cos\theta(1+2i\cos\theta)}{1^2-(2i\cos\theta)^2}$$
$$= \frac{1+2i\cos\theta+i\cos\theta+2i^2\cos^2\theta}{1-4i^2\cos^2\theta}$$
$$= \frac{1+3i\cos\theta+2(-1)\cos^2\theta}{1-4(-1)\cos^2\theta}$$
$$= \frac{1-2\cos^2\theta+3i\cos\theta}{1+4\cos^2\theta}$$

For a complex number to be purely real, the imaginary part should be equal to zero. So,

 $\frac{3\cos\theta}{1+4\cos^2\theta} = 0$ $3\cos\theta = 0 \text{ (since, } 1 + 4\cos^2\theta \ge 1\text{)}$ $\cos\theta = 0$ $\cos\theta = \cos\pi/2$ $\theta = [(2n+1)\pi] / 2, \text{ for } n \in \mathbb{Z}$ $= 2n\pi \pm \pi/2, \text{ for } n \in \mathbb{Z}$

 \therefore The values of θ to get the complex number to be purely real is $2n\pi \pm \pi/2$, for $n \in \mathbb{Z}$

11. Find the smallest positive integer value of n for which $(1+i)^n / (1-i)^{n-2}$ is a real number.

Solution: Given: $(1+i)^{n} / (1-i)^{n-2}$ $Z = (1+i)^{n} / (1-i)^{n-2}$

Let us multiply and divide by $(1 - i)^2$

$$= \frac{(1+i)^{n}}{(1-i)^{n-2}} \times \frac{(1-i)^{2}}{(1-i)^{2}}$$

$$= \left(\frac{1+i}{1-i}\right)^{n} \times (1-i)^{2}$$

$$= \left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{n} \times (1^{2} + i^{2} - 2(1)(i))$$

$$= \left(\frac{(1+i)^{2}}{1^{2}-i^{2}}\right)^{n} \times (1+i^{2} - 2i)$$

$$= \left(\frac{1^{2}+i^{2}+2(1)(i)}{1-(-1)}\right)^{n} \times (1+(-1) - 2i)$$

$$= \left(\frac{1-1+2i}{2}\right)^{n} \times (-2i)$$

$$= \left(\frac{2i}{2}\right)^{n} \times (-2i)$$

$$= i^{n} \times (-2i)$$

$$= -2i^{n+1}$$
For n = 1,
Z = -2i^{1+1}
$$= -2i^{2}$$

= 2, which is a real number.

 \therefore The smallest positive integer value of n is 1.

12. If $[(1+i)/(1-i)]^3 - [(1-i)/(1+i)]^3 = x + iy$, find (x, y)Solution:

Given:

 $[(1+i)/(1-i)]^3 - [(1-i)/(1+i)]^3 = x + iy$ Let us rationalize the denominator, we get

$$\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^3 - \left(\frac{1-i}{1+i} \times \frac{1-i}{1-i}\right)^3 = x + iy$$

$$\left(\frac{(1+i)^2}{1^2 - i^2}\right)^3 - \left(\frac{(1-i)^2}{1^2 - i^2}\right)^3 = x + iy$$

$$\left(\frac{1^2 + i^2 + 2(1)(i)}{1 - (-1)}\right)^3 - \left(\frac{1^2 + i^2 - 2(1)(i)}{1 - (-1)}\right)^3 = x + iy$$

$$\left(\frac{1-1+2i}{2}\right)^3 - \left(\frac{1-1-2i}{2}\right)^3 = x + iy$$

$$\left(\frac{2i}{2}\right)^3 - \left(\frac{-2i}{2}\right)^3 = x + iy$$

 i^{3} -(-i)³ = x + iy $2i^{3}$ = x + iy $2i^{2}$.i = x + iy 2(-1)I = x + iy-2i = x + iy Equating Real and Imaginary parts on both sides we get x = 0 and y = -2 ∴ The values of x and y are 0 and -2.

13. If $(1+i)^2 / (2-i) = x + iy$, find x + ySolution:

Given: $(1+i)^2 / (2-i) = x + iy$ Upon expansion we get, $\frac{1^2 + i^2 + 2(1)(i)}{2 - i} = x + iy$ $\frac{1 + (-1) + 2i}{2 - i} = x + iy$ $\frac{2i}{2-i} = x + iy$ Now, let us multiply and divide by (2+i), we get $\frac{2i}{2-i} \times \frac{2+i}{2+i} = x + iy$ $\frac{4i+2i^2}{2^2-i^2} = x + iy$ $\frac{2(-1)+4i}{4-(-1)} = x + iy$ $\frac{-2+4i}{5} = x + iy$ Let us equate real and imaginary parts on both sides we get, x = -2/5 and y = 4/5so, x + y = -2/5 + 4/5=(-2+4)/5= 2/5

 \therefore The value of (x + y) is 2/5

EXERCISE 13.3

PAGE NO: 13.39

1. Find the square root of the following complex numbers. (i) $-5 + 12i$ (ii) $-7 - 24i$ (iii) $1 - i$ (iv) $-8 - 6i$ (v) $8 - 15i$ (vi) $-11 - 60\sqrt{-1}$ (vii) $1 + 4\sqrt{-3}$ (viii) 4i
(ix) -i
Solution: <i>if</i> $b > 0, \sqrt{a + ib} = \pm \left[\left(\frac{a + \sqrt{a^2 + b^2}}{2} \right)^{\frac{1}{2}} + i \left(\frac{-a + \sqrt{a^2 + b^2}}{2} \right)^{\frac{1}{2}} \right]$
$if \ b < 0, \sqrt{a + ib} = \pm \left[\left(\frac{a + \sqrt{a^2 + b^2}}{2} \right)^{\frac{1}{2}} - i \left(\frac{-a + \sqrt{a^2 + b^2}}{2} \right)^{\frac{1}{2}} \right]$
(i) - 5 + 12i
Given:
-5 + 12i
We know, $Z = a + ib$
So, $\sqrt{(a + ib)} = \sqrt{(-5 + 12i)}$
Here, $b > 0$
Let us simplify now,
$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
$\sqrt{-5+12i} = \pm \left[\left(\frac{-5+\sqrt{(-5)^2+12^2}}{2} \right)^{\frac{1}{2}} + i \left(\frac{5+\sqrt{(-5)^2+12^2}}{2} \right)^{\frac{1}{2}} \right] \text{ [Since, } b > 0 \text{]}$
$= \pm \left[\left(\frac{-5 + \sqrt{25 + 144}}{2} \right)^{\frac{1}{2}} + i \left(\frac{5 + \sqrt{25 + 144}}{2} \right)^{\frac{1}{2}} \right]$
$= \pm \left[\left(\frac{-5 + \sqrt{169}}{2} \right)^{\frac{1}{2}} + i \left(\frac{5 + \sqrt{169}}{2} \right)^{\frac{1}{2}} \right]$
$= \pm \left[\left(\frac{-5+13}{2} \right)^{\frac{1}{2}} + i \left(\frac{5+13}{2} \right)^{\frac{1}{2}} \right]$

$$= \pm \left[\left(\frac{8}{2}\right)^{\frac{1}{2}} + i \left(\frac{18}{2}\right)^{\frac{1}{2}} \right]$$

$$= \pm \left[4^{\frac{1}{2}} + i9^{\frac{1}{2}} \right]$$

$$= \pm \left[2 + 3i \right]$$

∴ Square root of (-5 + 12i) is $\pm [2 + 3i]$
(ii) -7 - 24i
Given:
-7 - 24i
We know, $Z = -7 - 24i$
So, $\sqrt{(a + ib)} = \sqrt{(-7 - 24i)}$
Here, b < 0
Let us simplify now,
 $\sqrt{-7 - 24i} = \pm \left[\left(\frac{-7 + \sqrt{(-7)^2 + (-24)^2}}{2} \right)^{\frac{1}{2}} - i \left(\frac{7 + \sqrt{(-7)^2 + (-24)^2}}{2} \right)^{\frac{1}{2}} \right]$

$$= \pm \left[\left(\frac{-7 + \sqrt{49 + 576}}{2} \right)^{\frac{1}{2}} - i \left(\frac{7 + \sqrt{49 + 576}}{2} \right)^{\frac{1}{2}} \right]$$

$$= \pm \left[\left(\frac{-7 + \sqrt{625}}{2} \right)^{\frac{1}{2}} - i \left(\frac{7 + \sqrt{625}}{2} \right)^{\frac{1}{2}} \right]$$

$$= \pm \left[\left(\frac{-7 + 25}{2} \right)^{\frac{1}{2}} - i \left(\frac{7 + 25}{2} \right)^{\frac{1}{2}} \right]$$

$$= \pm \left[\left(\frac{18}{2} \right)^{\frac{1}{2}} - i \left(\frac{32}{2} \right)^{\frac{1}{2}} \right]$$

$$= \pm \left[9^{1/2} - 116^{1/2} \right]$$

$$= \pm \left[9^{1/2} - 116^{1/2} \right]$$

$$= \pm \left[3 - 4i \right]$$

∴ Square root of (-7 - 24i) is \pm \left[3 - 4i \right]

(iii) 1 - i Given: 1 - iWe know, Z = (1 - i)So, $\sqrt{(a + ib)} = \sqrt{(1 - i)}$

Here, b < 0Let us simplify now,

$$\sqrt{1-i} = \pm \left[\left(\frac{1+\sqrt{(1)^2+(-1)^2}}{2} \right)^{\frac{1}{2}} - i \left(\frac{-1+\sqrt{(1)^2+(-1)^2}}{2} \right)^{\frac{1}{2}} \right] \text{ [Since, b < 0]}$$

$$= \pm \left[\left(\frac{1+\sqrt{1+1}}{2} \right)^{\frac{1}{2}} - i \left(\frac{-1+\sqrt{1+1}}{2} \right)^{\frac{1}{2}} \right]$$

$$= \pm \left[\left(\frac{1+\sqrt{2}}{2} \right)^{\frac{1}{2}} - i \left(\frac{-1+\sqrt{2}}{2} \right)^{\frac{1}{2}} \right]$$

$$= \pm \left[\left(\sqrt{\frac{\sqrt{2}+1}{2}} \right) - i \left(\sqrt{\frac{\sqrt{2}-1}{2}} \right) \right]$$

$$\therefore \text{ Square root of (1 - i) is } \pm \left[(\sqrt{(\sqrt{2}+1)/2}) - i (\sqrt{(\sqrt{2}-1)/2}) \right]$$
(iv) -8 -6i
Given:
-8 -6i
We know, Z = -8 -6i
Here, b < 0
Let us simplify now,

: Square root of (1 - i) is $\pm [(\sqrt{(\sqrt{2}+1)/2}) - i(\sqrt{(\sqrt{2}-1)/2})]$

(iv) -8 -6i Given: -8 -6i We know, Z = -8 - 6iSo, $\sqrt{(a + ib)} = -8 - 6i$ Here, b < 0Let us simplify now,

$$\begin{split} \sqrt{-8-6i} &= \pm \left[\left(\frac{-8+\sqrt{(-8)^2+(-6)^2}}{2} \right)^{\frac{1}{2}} - i \left(\frac{8+\sqrt{(-8)^2+(-6)^2}}{2} \right)^{\frac{1}{2}} \right] \\ &= \pm \left[\left(\frac{-8+\sqrt{64+36}}{2} \right)^{\frac{1}{2}} - i \left(\frac{8+\sqrt{64+36}}{2} \right)^{\frac{1}{2}} \right] \\ &= \pm \left[\left(\frac{-8+\sqrt{100}}{2} \right)^{\frac{1}{2}} - i \left(\frac{8+\sqrt{100}}{2} \right)^{\frac{1}{2}} \right] \\ &= \pm \left[\left(\frac{-8+10}{2} \right)^{\frac{1}{2}} - i \left(\frac{8+10}{2} \right)^{\frac{1}{2}} \right] \\ &= \pm \left[\left(\frac{2}{2} \right)^{\frac{1}{2}} - i \left(\frac{18}{2} \right)^{\frac{1}{2}} \right] \\ &= \left[1^{1/2} - i 9^{1/2} \right] \end{split}$$

 $= \pm [1 - 3i]$ $\therefore \text{ Square root of (-8 -6i) is } \pm [1 - 3i]$

(v) 8 - 15iGiven: 8 - 15iWe know, Z = 8 - 15iSo, $\sqrt{(a + ib)} = 8 - 15i$ Here, b < 0Let us simplify now,

$$\sqrt{8 - 15i} = \pm \left[\left(\frac{8 + \sqrt{8^2 + (-15)^2}}{2} \right)^{\frac{1}{2}} - i \left(\frac{-8 + \sqrt{8^2 + (-15)^2}}{2} \right)^{\frac{1}{2}} \right] \text{ [Since, b < 0]}$$

$$= \pm \left[\left(\frac{8 + \sqrt{64 + 225}}{2} \right)^{\frac{1}{2}} - i \left(\frac{-8 + \sqrt{64 + 225}}{2} \right)^{\frac{1}{2}} \right]$$

$$= \pm \left[\left(\frac{8 + \sqrt{289}}{2} \right)^{\frac{1}{2}} - i \left(\frac{-8 + \sqrt{289}}{2} \right)^{\frac{1}{2}} \right]$$

$$= \pm \left[\left(\frac{8 + 17}{2} \right)^{\frac{1}{2}} - i \left(\frac{-8 + 17}{2} \right)^{\frac{1}{2}} \right]$$

$$= \pm \left[\left(\frac{25}{2} \right)^{\frac{1}{2}} - i \left(\frac{9}{2} \right)^{\frac{1}{2}} \right]$$

$$= \pm \left[\left(\frac{25}{2} \right)^{\frac{1}{2}} - i \left(\frac{9}{2} \right)^{\frac{1}{2}} \right]$$

$$= \pm \left[\frac{5}{\sqrt{2}} - \frac{i3}{\sqrt{2}} \right]$$

$$= \pm 1/\sqrt{2} (5 - 3i)$$

$$\therefore \text{ Square root of } (8 - 15i) \text{ is } \pm 1/\sqrt{2} (5 - 3i)$$

(vi) -11 - $60\sqrt{-1}$ Given: -11 - $60\sqrt{-1}$ We know, Z = -11 - $60\sqrt{-1}$ So, $\sqrt{(a + ib)} = -11 - 60\sqrt{-1}$ = -11 - 60i Here, b < 0 Let us simplify now,

$$\begin{split} \sqrt{-11-60i} &= \pm \left[\left(\frac{-11+\sqrt{(-11)^2+(-60)^2}}{2} \right)^{\frac{1}{2}} - i \left(\frac{11+\sqrt{(-11)^2+(60)^2}}{2} \right)^{\frac{1}{2}} \right] \\ &= \pm \left[\left(\frac{-11+\sqrt{121+3600}}{2} \right)^{\frac{1}{2}} - i \left(\frac{11+\sqrt{121+3600}}{2} \right)^{\frac{1}{2}} \right] \\ &= \pm \left[\left(\frac{-11+\sqrt{3721}}{2} \right)^{\frac{1}{2}} - i \left(\frac{11+\sqrt{3721}}{2} \right)^{\frac{1}{2}} \right] \\ &= \pm \left[\left(\frac{-11+\sqrt{3721}}{2} \right)^{\frac{1}{2}} - i \left(\frac{11+61}{2} \right)^{\frac{1}{2}} \right] \\ &= \pm \left[\left(\frac{50}{2} \right)^{\frac{1}{2}} - i \left(\frac{72}{2} \right)^{\frac{1}{2}} \right] \\ &= \pm \left[25^{\frac{1}{2}} - i36^{\frac{1}{2}} \right] \\ &= \pm \left[25^{\frac{1}{2}} - i36^{\frac{1}{2}} \right] \\ &= \pm (5-6i) \\ \therefore \text{ Square root of } (-11-60\sqrt{-1}) \text{ is } \pm (5-6i) \\ (\text{vii)} 1 + 4\sqrt{-3} \\ \text{Given:} \\ 1 + 4\sqrt{-3} \\ \text{We know, } Z = 1 + 4\sqrt{-3} \\ \text{So, } \sqrt{(a+ib)} = 1 + 4\sqrt{-3} \\ &= 1 + 4(\sqrt{3}) (\sqrt{-1}) \\ &= 1 + 4\sqrt{3}i \\ \text{Here, } b > 0 \\ \text{Let us simplify now,} \\ \sqrt{1 + 4\sqrt{3}i} = \pm \left[\left(\frac{1+\sqrt{12}+(4\sqrt{3})^2}{2} \right)^{\frac{1}{2}} + i \left(\frac{-1+\sqrt{12}+(4\sqrt{3})^2}{2} \right)^{\frac{1}{2}} \right] \\ &= \pm \left[\left(\frac{1+\sqrt{148}}{2} \right)^{\frac{1}{2}} + i \left(\frac{-1+\sqrt{148}}{2} \right)^{\frac{1}{2}} \right] \\ &= \pm \left[\left(\frac{1+\sqrt{49}}{2} \right)^{\frac{1}{2}} + i \left(\frac{-1+\sqrt{49}}{2} \right)^{\frac{1}{2}} \right] \end{aligned}$$

$$= \pm \left[\left(\frac{1+7}{2}\right)^{\frac{1}{2}} + i\left(\frac{-1+7}{2}\right)^{\frac{1}{2}} \right]$$
$$= \pm \left[\left(\frac{8}{2}\right)^{\frac{1}{2}} + i\left(\frac{6}{2}\right)^{\frac{1}{2}} \right]$$
$$= \pm \left[4^{\frac{1}{2}} + i3^{\frac{1}{2}} \right]$$
$$= \pm \left[2 + \sqrt{3}i \right]$$

 \therefore Square root of $(1 + 4\sqrt{-3})$ is $\pm (2 + \sqrt{3}i)$

(viii) 4i Given: 4i We know, Z = 4iSo, $\sqrt{(a+ib)} = 4i$ Here, b > 0Let us simplify now, $\sqrt{4i} = \pm \left[\left(\frac{0 + \sqrt{0^2 + 4^2}}{2} \right)^{\frac{1}{2}} + i \left(\frac{0 + \sqrt{0^2 + 4^2}}{2} \right)^{\frac{1}{2}} \right]$ [Since, b > 0] $= \pm \left[\left(\frac{0 + \sqrt{0 + 16}}{2} \right)^{\frac{1}{2}} + i \left(\frac{0 + \sqrt{0 + 16}}{2} \right)^{\frac{1}{2}} \right]$ $=\pm \left[\left(\frac{0+\sqrt{16}}{2} \right)^{\frac{1}{2}} + i \left(\frac{0+\sqrt{16}}{2} \right)^{\frac{1}{2}} \right]$ $=\pm\left[\left(\frac{0+4}{2}\right)^{\frac{1}{2}}+i\left(\frac{0+4}{2}\right)^{\frac{1}{2}}\right]$ $=\pm\left[\left(\frac{4}{2}\right)^{\frac{1}{2}}+i\left(\frac{4}{2}\right)^{\frac{1}{2}}\right]$ $=\pm \left[2^{\frac{1}{2}}+i2^{\frac{1}{2}}\right]$ $=\pm\left[\sqrt{2}+\sqrt{2}i\right]$ $=\pm \sqrt{2}(1+i)$ \therefore Square root of 4i is $\pm \sqrt{2} (1 + i)$

(**ix**) –i Given:

-i We know, Z = -iSo, $\sqrt{(a + ib)} = -i$ Here, b < 0Let us simplify now, $\sqrt{-i} = \pm \left[\left(\frac{0 + \sqrt{0^2 + (-1)^2}}{2} \right)^{\frac{1}{2}} - i \left(\frac{0 + \sqrt{0^2 + (-1)^2}}{2} \right)^{\frac{1}{2}} \right]$ $= \pm \left[\left(\frac{0 + \sqrt{0 + 1}}{2} \right)^{\frac{1}{2}} - i \left(\frac{0 + \sqrt{0 + 1}}{2} \right)^{\frac{1}{2}} \right]$ $= \pm \left[\left(\frac{0 + \sqrt{1}}{2} \right)^{\frac{1}{2}} - i \left(\frac{0 + \sqrt{1}}{2} \right)^{\frac{1}{2}} \right]$ $= \pm \left[\left(\frac{0 + 1}{2} \right)^{\frac{1}{2}} - i \left(\frac{0 + 1}{2} \right)^{\frac{1}{2}} \right]$ $= \pm \left[\left(\frac{1}{2} \right)^{\frac{1}{2}} - i \left(\frac{1}{2} \right)^{\frac{1}{2}} \right]$ $= \pm \left[\left(\frac{1}{2} \right)^{\frac{1}{2}} - i \left(\frac{1}{2} \right)^{\frac{1}{2}} \right]$ $= \pm \left[\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right]$ $= \pm 1/\sqrt{2} (1 - i)$

: Square root of -i is $\pm 1/\sqrt{2} (1 - i)$

EXERCISE 13.4

P&GE NO: 13.57

1. Find the modulus and argument of the following complex numbers and hence express each of them in the polar form:

(i) 1 + i(ii) $\sqrt{3} + i$ (iii) 1 - i (iv) (1 - i) / (1 + i)(v) 1/(1 + i)(vi) (1 + 2i) / (1 - 3i)(vii) sin 120° – i cos 120° (viii) -16 / $(1 + i\sqrt{3})$ Solution: We know that the polar form of a complex number Z = x + iy is given by $Z = |Z| (\cos \theta + i)$ $i \sin \theta$) Where, $|\mathbf{Z}| = \text{modulus of complex number} = \sqrt{(x^2 + y^2)}$ $\theta = \arg(z) = \operatorname{argument} \operatorname{of} \operatorname{complex} \operatorname{number} = \tan^{-1}(|y| / |x|)$ (i) 1 + iGiven: Z = 1 + iSo now, $|Z| = \sqrt{(x^2 + y^2)}$ $=\sqrt{(1^2+1^2)}$ $=\sqrt{(1+1)}$ $=\sqrt{2}$ $\theta = \tan^{-1} (|y| / |x|)$ $= \tan^{-1} (1 / 1)$ $= \tan^{-1} 1$ Since x > 0, y > 0 complex number lies in 1st quadrant and the value of θ is $0^{0} \le \theta \le 90^{0}$. $\theta = \pi/4$ $Z = \sqrt{2} (\cos (\pi/4) + i \sin (\pi/4))$ \therefore Polar form of (1 + i) is $\sqrt{2} (\cos (\pi/4) + i \sin (\pi/4))$ (ii) $\sqrt{3} + i$ Given: $Z = \sqrt{3} + i$ So now. $|Z| = \sqrt{(x^2 + y^2)}$ $=\sqrt{((\sqrt{3})^2+1^2)}$

 $=\sqrt{(3+1)}$ $=\sqrt{4}$ = 2 $\theta = \tan^{-1} \left(|\mathbf{y}| \ / \ |\mathbf{x}| \right)$ $= \tan^{-1} (1 / \sqrt{3})$ Since x > 0, y > 0 complex number lies in 1st quadrant and the value of θ is $0^0 \le \theta \le 90^0$. $\theta = \pi/6$ $Z = 2 (\cos (\pi/6) + i \sin (\pi/6))$ \therefore Polar form of $(\sqrt{3} + i)$ is 2 (cos $(\pi/6)$ + i sin $(\pi/6)$) (iii) 1 - i Given: Z = 1 - iSo now, $|\mathbf{Z}| = \sqrt{(\mathbf{x}^2 + \mathbf{y}^2)}$ $=\sqrt{(1^2+(-1)^2)}$ $=\sqrt{(1+1)}$ $=\sqrt{2}$ $\theta = \tan^{-1} (|y| / |x|)$ $= \tan^{-1} (1 / 1)$ $= \tan^{-1} 1$ Since x > 0, y < 0 complex number lies in 2^{nd} quadrant and the value of θ is $-90^{0} \le \theta \le 0^{0}$. $\theta = -\pi/4$ $Z = \sqrt{2} (\cos (-\pi/4) + i \sin (-\pi/4))$ $=\sqrt{2} (\cos (\pi/4) - i \sin (\pi/4))$: Polar form of (1 - i) is $\sqrt{2}$ (cos ($\pi/4$) - i sin ($\pi/4$)) (iv) (1 - i) / (1 + i)Given: Z = (1 - i) / (1 + i)Let us multiply and divide by (1 - i), we get $Z = \frac{1-i}{1+i} \times \frac{1-i}{1-i}$ $=\frac{(1-i)^2}{1^2-i^2}$ $=\frac{1^2+i^2-2(1)(i)}{1-(-1)}$ $=\frac{1+(-1)-2i}{2}$ $=\frac{-2i}{2}$ = 0 - i

So now, $|Z| = \sqrt{(x^2 + y^2)}$ $=\sqrt{(0^2+(-1)^2)}$ $=\sqrt{(0+1)}$ $=\sqrt{1}$ $\theta = \tan^{-1} \left(|\mathbf{y}| / |\mathbf{x}| \right)$ $= \tan^{-1} (1 / 0)$ $= \tan^{-1} \infty$ Since $x \ge 0$, y < 0 complex number lies in 4th quadrant and the value of θ is $-90^{0} \le \theta \le 0^{0}$. $\theta = -\pi/2$ $Z = 1 (\cos (-\pi/2) + i \sin (-\pi/2))$ $= 1 (\cos (\pi/2) - i \sin (\pi/2))$: Polar form of (1 - i) / (1 + i) is 1 (cos $(\pi/2)$ - i sin $(\pi/2)$) (v) 1/(1 + i)Given: Z = 1 / (1 + i)Let us multiply and divide by (1 - i), we get $Z = \frac{1}{1+i} \times \frac{1-i}{1-i}$ $=\frac{1-i}{1^2-i^2}$ $=\frac{1-i}{1-(-1)}$ $=\frac{1-i}{2}$ So now, $|\mathbf{Z}| = \sqrt{(\mathbf{x}^2 + \mathbf{y}^2)}$ $=\sqrt{((1/2)^2 + (-1/2)^2)}$ $=\sqrt{(1/4+1/4)}$ $=\sqrt{(2/4)}$ $= 1/\sqrt{2}$ $\theta = \tan^{-1} (|y| / |x|)$ $= \tan^{-1} \left((1/2) / (1/2) \right)$ $= \tan^{-1} 1$ Since x > 0, y < 0 complex number lies in 4th quadrant and the value of θ is $-90^{0} \le \theta \le 0^{0}$. $\theta = -\pi/4$ $Z = 1/\sqrt{2} (\cos(-\pi/4) + i \sin(-\pi/4))$ $= 1/\sqrt{2} (\cos (\pi/4) - i \sin (\pi/4))$ \therefore Polar form of 1/(1 + i) is $1/\sqrt{2} (\cos (\pi/4) - i \sin (\pi/4))$

(vi) (1 + 2i) / (1 - 3i)Given: Z = (1 + 2i) / (1 - 3i)Let us multiply and divide by (1 + 3i), we get $Z = \frac{1+2i}{1-3i} \times \frac{1+3i}{1+3i}$ $=\frac{1(1+3i)+2i(1+3i)}{1^2-(3i)^2}$ $=\frac{1+3i+2i+6i^2}{1-9i^2}$ $=\frac{1+5i+6(-1)}{1-9(-1)}$ $=\frac{-5+5i}{2}$ 10 $=\frac{-1+i}{2}$ So now, $|Z| = \sqrt{(x^2 + y^2)}$ $=\sqrt{((-1/2)^2 + (1/2)^2)}$ $=\sqrt{(1/4+1/4)}$ $=\sqrt{(2/4)}$ $= 1/\sqrt{2}$ $\theta = \tan^{-1} (|y| / |x|)$ $= \tan^{-1} ((1/2) / (1/2))$ $= \tan^{-1} 1$ Since x < 0, y > 0 complex number lies in 2^{nd} quadrant and the value of θ is $90^0 \le \theta \le 180^0$. $\theta = 3\pi/4$ $Z = 1/\sqrt{2} (\cos (3\pi/4) + i \sin (3\pi/4))$: Polar form of (1 + 2i) / (1 - 3i) is $1/\sqrt{2} (\cos (3\pi/4) + i \sin (3\pi/4))$ (vii) $\sin 120^{\circ} - i \cos 120^{\circ}$ Given: $Z = \sin 120^\circ - i \cos 120^\circ$ $=\sqrt{3/2}-i(-1/2)$ $=\sqrt{3/2} + i(1/2)$ So now, $|\mathbf{Z}| = \sqrt{(\mathbf{x}^2 + \mathbf{y}^2)}$ $=\sqrt{((\sqrt{3/2})^2 + (1/2)^2)}$ $=\sqrt{(3/4+1/4)}$ $=\sqrt{(4/4)}$ $=\sqrt{1}$ = 1

 $\theta = \tan^{-1} (|y| / |x|)$ $= \tan^{-1} \left((1/2) / (\sqrt{3}/2) \right)$ $= \tan^{-1} (1/\sqrt{3})$ Since x > 0, y > 0 complex number lies in 1st quadrant and the value of θ is $0^0 \le \theta \le 90^0$. $\theta = \pi/6$ $Z = 1 (\cos (\pi/6) + i \sin (\pi/6))$: Polar form of $\sqrt{3}/2 + i(1/2)$ is $1(\cos(\pi/6) + i\sin(\pi/6))$ (viii) $-16/(1+i\sqrt{3})$ Given: $Z = -16 / (1 + i\sqrt{3})$ Let us multiply and divide by $(1 - i\sqrt{3})$, we get $Z = \frac{-16}{1 + i\sqrt{3}} \times \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}}$ $=\frac{-16+i16\sqrt{3}}{1^2-(i\sqrt{3})^2}$ $=\frac{-16+i16\sqrt{3}}{1-3i^2}$ $=\frac{-16+i16\sqrt{3}}{}$ 1 - 3(-1) $=\frac{-16+i16\sqrt{3}}{}$ 4 = - 4 + i 4√3 So now, $|Z| = \sqrt{(x^2 + y^2)}$ $=\sqrt{((-4)^2+(4\sqrt{3})^2)}$ $=\sqrt{(16+48)}$ $=\sqrt{64}$ = 8 $\theta = tan^{-1} (|y| / |x|)$ $= \tan^{-1} ((4\sqrt{3}) / 4)$ $= \tan^{-1}(\sqrt{3})$ Since x < 0, y > 0 complex number lies in 2^{nd} quadrant and the value of θ is $90^0 \le \theta \le 180^0$. $\theta = 2\pi/3$ $Z = 8 (\cos (2\pi/3) + i \sin (2\pi/3))$: Polar form of $-16 / (1 + i\sqrt{3})$ is 8 (cos $(2\pi/3) + i \sin(2\pi/3)$)

2. Write $(i^{25})^3$ in polar form. Solution: Given: $Z = (i^{25})^3$ $= i^{75}$

$$= i^{74} \cdot i$$

$$= (i^{2})^{37} \cdot i$$

$$= (-1)^{37} \cdot i$$

$$= (-1) \cdot i$$

$$= -i$$

$$= 0 - i$$

So now,
 $|Z| = \sqrt{(x^{2} + y^{2})}$

$$= \sqrt{(0^{2} + (-1)^{2})}$$

$$= \sqrt{(0 + 1)}$$

$$= \sqrt{1}$$

 $\theta = \tan^{-1} (|y| / |x|)$

$$= \tan^{-1} \infty$$

Since $x \ge 0$, $y < 0$ complex number lies in 4th quadrant and the value of θ is $-90^{0} \le \theta \le 0^{0}$.
 $\theta = -\pi/2$
 $Z = 1 (\cos (-\pi/2) + i \sin (-\pi/2))$

$$= 1 (\cos (\pi/2) - i \sin (\pi/2))$$

 \therefore Polar form of $(i^{25})^{3}$ is 1 (cos ($\pi/2$) - i sin ($\pi/2$))

3. Express the following complex numbers in the form r (cos θ + i sin θ):

(i) 1 + i tan α (ii) tan α - i (iii) 1 - sin α + i cos α (iv) (1 - i) / (cos $\pi/3$ + i sin $\pi/3$) Solution: (i) 1 + i tan α Given: Z = 1 + i tan α We know that the polar form of a complex number Z = x + iy is given by Z = |Z| (cos θ + i sin θ) Where, $|Z| = \text{modulus of complex number} = \sqrt{(x^2 + y^2)}$ $\theta = \arg(z) = \operatorname{argument of complex number} = \tan^{-1}(|y| / |x|)$ We also know that tan α is a periodic function with period π . So α is lying in the interval $[0, \pi/2) \cup (\pi/2, \pi]$.

Let us consider case 1: $\alpha \in [0, \pi/2)$ So now,

 $|Z| = r = \sqrt{(x^2 + y^2)}$ $=\sqrt{(1^2+\tan^2\alpha)}$ $=\sqrt{(\sec^2 \alpha)}$ = $|\sec \alpha|$ since, sec α is positive in the interval $[0, \pi/2)$ $\theta = tan^{-1} (|y| / |x|)$ $= \tan^{-1} (\tan \alpha / 1)$ $= \tan^{-1} (\tan \alpha)$ = α since, tan α is positive in the interval [0, $\pi/2$) \therefore Polar form is Z = sec α (cos α + i sin α) Let us consider case 2: $\alpha \in (\pi/2, \pi]$ So now, $|\mathbf{Z}| = \mathbf{r} = \sqrt{(\mathbf{x}^2 + \mathbf{y}^2)}$ $=\sqrt{(1^2+\tan^2\alpha)}$ $=\sqrt{(\sec^2 \alpha)}$ $= | \sec \alpha |$ = - sec α since, sec α is negative in the interval $(\pi/2, \pi)$ $\theta = \tan^{-1} (|y| / |x|)$ $= \tan^{-1} (\tan \alpha / 1)$ $= \tan^{-1} (\tan \alpha)$ = $-\pi + \alpha$ since, tan α is negative in the interval $(\pi/2, \pi]$ $\theta = -\pi + \alpha$ [since, θ lies in 4th quadrant] $Z = -\sec \alpha \left(\cos \left(\alpha - \pi \right) + i \sin \left(\alpha - \pi \right) \right)$: Polar form is Z = -sec α (cos (α - π) + i sin (α - π)) (ii) $\tan \alpha - i$ Given: $Z = \tan \alpha - i$ We know that the polar form of a complex number Z = x + iy is given by $Z = |Z| (\cos \theta + i)$ $i \sin \theta$) Where, |Z| = modulus of complex number = $\sqrt{(x^2 + y^2)}$ $\theta = \arg(z) = \text{argument of complex number} = \tan^{-1}(|y| / |x|)$

We also know that $\tan \alpha$ is a periodic function with period π .

So α is lying in the interval $[0, \pi/2) \cup (\pi/2, \pi]$.

Let us consider case 1: $\alpha \in [0, \pi/2)$ So now,

B BYJU'S

RD Sharma Solutions for Class 11 Maths Chapter 13 – Complex Numbers

 $|Z| = r = \sqrt{(x^2 + y^2)}$ $=\sqrt{(\tan^2\alpha+1^2)}$ $=\sqrt{(\sec^2 \alpha)}$ = $|\sec \alpha|$ since, sec α is positive in the interval $[0, \pi/2)$ $= \sec \alpha$ $\theta = \tan^{-1} (|y| / |x|)$ $= \tan^{-1} (1/\tan \alpha)$ $= \tan^{-1} (\cot \alpha)$ since, $\cot \alpha$ is positive in the interval $[0, \pi/2)$ $= \alpha - \pi/2$ [since, θ lies in 4th quadrant] $Z = \sec \alpha \left(\cos \left(\alpha - \pi/2 \right) + i \sin \left(\alpha - \pi/2 \right) \right)$: Polar form is Z = sec α (cos (α - $\pi/2$) + i sin (α - $\pi/2$)) Let us consider case 2: $\alpha \in (\pi/2, \pi]$ So now, $|\mathbf{Z}| = \mathbf{r} = \sqrt{(\mathbf{x}^2 + \mathbf{y}^2)}$ $=\sqrt{(\tan^2\alpha+1^2)}$ $=\sqrt{(\sec^2 \alpha)}$ $= |\sec \alpha|$ = - sec α since, sec α is negative in the interval $(\pi/2, \pi)$ $\theta = \tan^{-1} (|y| / |x|)$ $= \tan^{-1} (1/\tan \alpha)$ $= \tan^{-1} (\cot \alpha)$ $=\pi/2 + \alpha$ since, cot α is negative in the interval $(\pi/2, \pi)$ $\theta = \pi/2 + \alpha$ [since, θ lies in 3th quadrant] $Z = -\sec \alpha \left(\cos \left(\frac{\pi}{2} + \alpha \right) + i \sin \left(\frac{\pi}{2} + \alpha \right) \right)$: Polar form is Z = -sec α (cos ($\pi/2 + \alpha$) + i sin ($\pi/2 + \alpha$)) (iii) $1 - \sin \alpha + i \cos \alpha$ Given: $Z = 1 - \sin \alpha + i \cos \alpha$ By using the formulas, $\sin^2 \theta + \cos^2 \theta = 1$ $\sin 2\theta = 2 \sin \theta \cos \theta$ $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ So. $z = \left(\sin^2\left(\frac{\alpha}{2}\right) + \cos^2\left(\frac{\alpha}{2}\right) - 2\sin\left(\frac{\alpha}{2}\right)\cos\left(\frac{\alpha}{2}\right)\right) + i\left(\cos^2\left(\frac{\alpha}{2}\right) - \sin^2\left(\frac{\alpha}{2}\right)\right)$ $= \left(\cos\left(\frac{\alpha}{2}\right) - \sin\left(\frac{\alpha}{2}\right)\right)^2 + i\left(\cos^2\left(\frac{\alpha}{2}\right) - \sin^2\left(\frac{\alpha}{2}\right)\right)$

We know that the polar form of a complex number Z=x+iy is given by Z=|Z| (cos $\theta+i\sin\theta)$

Where, $|Z| = \text{modulus of complex number} = \sqrt{(x^2 + y^2)}$ $\theta = \arg(z) = \text{argument of complex number} = \tan^{-1}(|y| / |x|)$ Now,

$$\begin{split} |z| &= \sqrt{(1 - \sin\alpha)^2 + \cos^2 \alpha} \\ &= \sqrt{1 + \sin^2 \alpha - 2\sin\alpha + \cos^2 \alpha} \\ &= \sqrt{1 + 1 - 2\sin\alpha} \\ &= \sqrt{(2)(1 - \sin\alpha)} \\ &= \sqrt{(2)(\sin^2 \left(\frac{\alpha}{2}\right) + \cos^2 \left(\frac{\alpha}{2}\right) - 2\sin\left(\frac{\alpha}{2}\right)\cos\left(\frac{\alpha}{2}\right))} \\ &= \sqrt{(2)(\cos\left(\frac{\alpha}{2}\right) - \sin\left(\frac{\alpha}{2}\right))^2} \\ &= \left|\sqrt{2}\left(\cos\left(\frac{\alpha}{2}\right) - \sin\left(\frac{\alpha}{2}\right)\right)\right| \\ \theta &= \tan^{-1}\left(\frac{\cos^2 \left(\frac{\alpha}{2}\right) - \sin^2 \left(\frac{\alpha}{2}\right)}{\left(\cos\left(\frac{\alpha}{2}\right) - \sin\left(\frac{\alpha}{2}\right)\right)^2}\right) \\ &= \tan^{-1}\left(\frac{\left(\cos\left(\frac{\alpha}{2}\right) - \sin\left(\frac{\alpha}{2}\right)\right)(\cos\left(\frac{\alpha}{2}\right) + \sin\left(\frac{\alpha}{2}\right))}{\left(\cos\left(\frac{\alpha}{2}\right) - \sin\left(\frac{\alpha}{2}\right)\right)^2}\right) \\ &= \tan^{-1}\left(\frac{\cos\left(\frac{\alpha}{2}\right) + \sin\left(\frac{\alpha}{2}\right)}{\cos\left(\frac{\alpha}{2}\right) - \sin\left(\frac{\alpha}{2}\right)}\right) \\ &= \tan^{-1}\left(\frac{\cos\left(\frac{\alpha}{2}\right) + \sin\left(\frac{\alpha}{2}\right)}{\cos\left(\frac{\alpha}{2}\right) (1 - \tan\left(\frac{\alpha}{2}\right))}\right) \\ &= \tan^{-1}\left(\frac{\tan\left(\frac{\alpha}{4}\right) + \tan\left(\frac{\alpha}{2}\right)}{1 - \tan\left(\frac{\alpha}{4}\right) \tan\left(\frac{\alpha}{2}\right)}\right) \\ &= \tan^{-1}\left(\tan\left(\frac{\pi}{4} + \frac{\alpha}{2}\right)\right) \end{split}$$

We know that sine and cosine functions are periodic with period 2π Here we have 3 intervals:

 $\begin{array}{l} 0 \leq \alpha \leq \pi/2 \\ \pi/2 \leq \alpha \leq 3\pi/2 \\ 3\pi/2 \leq \alpha \leq 2\pi \end{array}$

Let us consider case 1: In the interval $0 \le \alpha \le \pi/2$ $\cos(\alpha/2) > \sin(\alpha/2)$ and also $0 < \pi/4 + \alpha/2 < \pi/2$ So. $|z| = \left|\sqrt{2}\left(\cos\left(\frac{\alpha}{2}\right) - \sin\left(\frac{\alpha}{2}\right)\right)\right|$ $=\sqrt{2}\left(\cos\left(\frac{\alpha}{2}\right)-\sin\left(\frac{\alpha}{2}\right)\right)$ $\theta = \tan^{-1}\left(\tan\left(\frac{\pi}{4} + \frac{\alpha}{2}\right)\right)$ $= \pi/4 + \alpha/2$ [since, θ lies in 1st quadrant] $\therefore \text{ Polar form is } Z = \sqrt{2} (\cos (\alpha/2) - \sin (\alpha/2)) (\cos (\pi/4 + \alpha/2) + i \sin (\pi/4 + \alpha/2))$ Let us consider case 2: In the interval $\pi/2 \le \alpha \le 3\pi/2$ $\cos(\alpha/2) < \sin(\alpha/2)$ and also $\pi/2 < \pi/4 + \alpha/2 < \pi$ So. $|z| = \left|\sqrt{2}\left(\cos\left(\frac{\alpha}{2}\right) - \sin\left(\frac{\alpha}{2}\right)\right)\right|$ $= -\sqrt{2}\left(\cos\left(\frac{\alpha}{2}\right) - \sin\left(\frac{\alpha}{2}\right)\right)$ $=\sqrt{2}\left(\sin\left(\frac{\alpha}{2}\right)-\cos\left(\frac{\alpha}{2}\right)\right)$ $\theta = \tan^{-1}\left(\tan\left(\frac{\pi}{4} + \frac{\alpha}{2}\right)\right)$ $=\pi - [\pi/4 + \alpha/2]$ [since, θ lies in 4th quadrant] $= 3\pi/4 - \alpha/2$ Since, $(1 - \sin \alpha) > 0$ and $\cos \alpha < 0$ [Z lies in 4th quadrant] $= \alpha/2 - 3\pi/4$ $\therefore \text{ Polar form is } Z = -\sqrt{2} (\cos (\alpha/2) - \sin (\alpha/2)) (\cos (\alpha/2 - 3\pi/4) + i \sin (\alpha/2 - 3\pi/4))$ Let us consider case 3:

In the interval $3\pi/2 \le \alpha \le 2\pi$ Cos ($\alpha/2$) < sin ($\alpha/2$) and also $\pi < \pi/4 + \alpha/2 < 5\pi/4$ So,

$$|z| = \left|\sqrt{2}\left(\cos\left(\frac{\alpha}{2}\right) - \sin\left(\frac{\alpha}{2}\right)\right)\right|$$
$$= -\sqrt{2}\left(\cos\left(\frac{\alpha}{2}\right) - \sin\left(\frac{\alpha}{2}\right)\right)$$
$$= \sqrt{2}\left(\sin\left(\frac{\alpha}{2}\right) - \cos\left(\frac{\alpha}{2}\right)\right)$$

 $\theta = \tan^{-1} (\tan (\pi/4 + \alpha/2))$ = $\pi - (\pi/4 + \alpha/2)$ [since, θ lies in 1st quadrant and tan's period is π] = $\alpha/2 - 3\pi/4$ \therefore Polar form is Z = $-\sqrt{2} (\cos (\alpha/2) - \sin (\alpha/2)) (\cos (\alpha/2 - 3\pi/4) + i \sin (\alpha/2 - 3\pi/4))$

(iv) $(1 - i) / (\cos \pi/3 + i \sin \pi/3)$ Given: $Z = (1 - i) / (\cos \pi/3 + i \sin \pi/3)$ Let us multiply and divide by $(1 - i\sqrt{3})$, we get $Z = \frac{1 - i}{\frac{1}{2} + \frac{i\sqrt{3}}{2}}$ $= 2 \times \frac{1 - i}{1 + i\sqrt{3}} \times \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}}$ $= 2 \times \frac{1 + i^2 \sqrt{3} - i(1 + \sqrt{3})}{1 - i^2 3}$ $= 2 \times \frac{(1 + (-\sqrt{3}) - i(1 + \sqrt{3}))}{1 - (-3)}$ $= 2 \times \frac{(1 - \sqrt{3}) - i(1 + \sqrt{3})}{4}$ $= \frac{(1 - \sqrt{3}) - i(1 + \sqrt{3})}{2}$

We know that the polar form of a complex number Z = x + iy is given by $Z = |Z| (\cos \theta + i \sin \theta)$

Where,

|Z| = modulus of complex number = $\sqrt{(x^2 + y^2)}$ θ = arg (z) = argument of complex number = tan⁻¹ (|y| / |x|) Now,

$$|Z| = \sqrt{\left(\frac{1-\sqrt{3}}{2}\right)^2 + \left(\frac{-1-\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1+3-2\sqrt{3}+1+2+2\sqrt{3}}{4}} = \sqrt{\frac{8}{4}} = \sqrt{2}$$

$$\theta = \tan^{-1} \left(\left| \frac{\frac{1+\sqrt{3}}{2}}{\frac{1-\sqrt{3}}{2}} \right| \right)$$
$$= \tan^{-1} \left(\left| \frac{1+\sqrt{3}}{1-\sqrt{3}} \right| \right)$$
$$= \tan^{-1} \left(\left| \frac{(1+\sqrt{3})(1+\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})} \right| \right)$$
$$= \tan^{-1} \left(\left| \frac{1+3+2\sqrt{3}}{1-3} \right| \right)$$
$$= \tan^{-1} \left(\frac{4+2\sqrt{3}}{2} \right)$$

Since x < 0, y < 0 complex number lies in 3rd quadrant and the value of θ is 180⁰≤ θ ≤-90⁰. = tan⁻¹ (2 + $\sqrt{3}$) = -7 $\pi/12$

$$Z = \sqrt{2} (\cos (-7\pi/12) + i \sin (-7\pi/12))$$

= $\sqrt{2} (\cos (7\pi/12) - i \sin (7\pi/12))$

: Polar form of $(1 - i) / (\cos \pi/3 + i \sin \pi/3)$ is $\sqrt{2} (\cos (7\pi/12) - i \sin (7\pi/12))$

4. If z_1 and z_2 are two complex number such that $|z_1| = |z_2|$ and $\arg(z_1) + \arg(z_2) = \pi$, then show that $z_1 = -\bar{z_2}$ Solution:

Given:

 $|z_1| = |z_2|$ and $\arg(z_1) + \arg(z_2) = \pi$ Let us assume arg $(z_1) = \theta$ arg (z_2) = π - θ We know that in the polar form, $z = |z| (\cos \theta + i \sin \theta)$ $z_1 = |z_1| (\cos \theta + i \sin \theta) \dots (i)$ $z_2 = |z_2| \left(\cos \left(\pi - \theta \right) + i \sin \left(\pi - \theta \right) \right)$ $= |z_2| (-\cos \theta + i \sin \theta)$ $= - |z_2| (\cos \theta - i \sin \theta)$ Now let us find the conjugate of $\bar{z}_2 = -|z_2| (\cos \theta + i \sin \theta) \dots (ii) (since, |\bar{z}_2 = |z_2|)$ Now. $z_1 / \overline{z_2} = [|z_1| (\cos \theta + i \sin \theta)] / [-|z_2| (\cos \theta + i \sin \theta)]$ $= - |z_1| / |z_2|$ [since, $|z_1| = |z_2|$] = -1When we cross multiply we get, $z_1 = -\bar{z_2}$ Hence proved.

5. If z_1 , z_2 and z_3 , z_4 are two pairs of conjugate complex numbers, prove that arg $(z_1/z_4) + \arg(z_2/z_3) = 0$ Solution:

Given: $z_1 = \bar{z}_2$ $z_3 = \bar{z}_4$ We know that $\arg(z_1/z_2) = \arg(z_1) - \arg(z_2)$ So, $\arg(z_1/z_4) + \arg(z_2/z_3) = \arg(z_1) - \arg(z_4) + \arg(z_2) - \arg(z_3)$ $= \arg(\bar{z}_2) - \arg(z_4) + \arg(z_2) - \arg(\bar{z}_4)$ $= [\arg(z_2) + \arg(\bar{z}_2)] - [\arg(z_4) + \arg(\bar{z}_4)]$ $= 0 - 0 [\text{since, } \arg(z) + \arg(\bar{z}) = 0]$ = 0

Hence proved.

6. Express $\sin \pi/5 + i (1 - \cos \pi/5)$ in polar form. Solution:

Given:

 $Z = \sin \pi/5 + i (1 - \cos \pi/5)$ By using the formula, $\sin 2\theta = 2 \sin \theta \cos \theta$ 1- cos 2\theta = 2 sin² \theta So, $Z = 2 \sin \pi/10 \cos \pi/10 + i (2 \sin^2 \pi/10)$ = 2 sin \pi/10 (cos \pi/10 + i sin \pi/10) :\theta The polar form of sin \pi/5 + i (1 - cos \pi/5) is 2 sin \pi/10 (cos \pi/10 + i sin \pi/10)