EXERCISE 13.1

1. Evaluate the following:

(i) ${ }^{457}$
(ii) $\mathbf{i}^{\mathbf{5 2 8}}$
(iii) $1 / \mathrm{i}^{58}$
(iv) $\mathrm{i}^{37}+1 / \mathrm{i}^{67}$
(v) $\left[\mathbf{i}^{41}+1 / \mathbf{i}^{257}\right]$
(vi) $\left(\mathbf{i}^{77}+\mathbf{i}^{70}+\mathbf{i}^{87}+\mathbf{i}^{414}\right)^{3}$
(vii) $\mathrm{i}^{30}+\mathrm{i}^{40}+\mathrm{i}^{60}$
(viii) $\mathbf{i}^{49}+\mathrm{i}^{68}+\mathrm{i}^{89}+\mathrm{i}^{110}$

Solution:

(i) i^{457}

Let us simplify we get,

$$
\begin{aligned}
\mathrm{i}^{457} & =\mathrm{i}(456+1) \\
& =\mathrm{i}^{(4(14)} \times \mathrm{i} \\
& =(1)^{114} \times \mathrm{i} \\
& =\mathrm{i}\left[\text { since } \mathrm{i}^{4}=1\right]
\end{aligned}
$$

(ii) i^{528}

Let us simplify we get,

$$
\begin{aligned}
\mathrm{i}^{528} & =\mathrm{i}^{4(132)} \\
& =(1)^{132} \\
& =1\left[\text { since } \mathrm{i}^{4}=1\right]
\end{aligned}
$$

(iii) $1 / \mathrm{i}^{58}$

Let us simplify we get,

$$
\begin{aligned}
1 / \mathrm{i}^{58} & =1 / \mathrm{i}^{56+2} \\
& =1 / \mathrm{i}^{56} \times \mathrm{i}^{2} \\
& =1 /\left(\mathrm{i}^{4}\right)^{14} \times \mathrm{i}^{2} \\
& =1 / \mathrm{i}^{2}\left[\text { since }, \mathrm{i}^{4}=1\right] \\
& =1 /-1\left[\text { since, } \mathrm{i}^{2}=-1\right] \\
& =-1
\end{aligned}
$$

(iv) $\mathrm{i}^{37}+1 / \mathrm{i}^{67}$

Let us simplify we get,

$$
\begin{aligned}
\mathrm{i}^{37}+1 / \mathrm{i}^{67} & =\mathrm{i}^{36+1}+1 / \mathrm{i}^{64+3} \\
& =\mathrm{i}+1 / \mathrm{i}^{3}\left[\text { since }, \mathrm{i}^{4}=1\right] \\
& =\mathrm{i}+\mathrm{i} / \mathrm{i}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{i}+\mathrm{i} \\
& =2 \mathrm{i}
\end{aligned}
$$

(v) $\left[\mathrm{i}^{41}+1 / \mathrm{i}^{257}\right]$

Let us simplify we get,

$$
\begin{aligned}
{\left[\mathrm{i}^{41}+1 / \mathrm{i}^{257}\right] } & =\left[\mathrm{i}^{40+1}+1 / \mathrm{i}^{256+1}\right] \\
& =[\mathrm{i}+1 / \mathrm{i}]^{9}[\text { since }, 1 / \mathrm{i}=-1] \\
& =[\mathrm{i}-\mathrm{i}] \\
& =0
\end{aligned}
$$

(vi) $\left(\mathrm{i}^{77}+\mathrm{i}^{70}+\mathrm{i}^{87}+\mathrm{i}^{414}\right)^{3}$

Let us simplify we get,

$$
\begin{aligned}
\left(\mathrm{i}^{77}+\mathrm{i}^{70}+\mathrm{i}^{87}+\mathrm{i}^{414}\right)^{3} & =\left(\mathrm{i}^{(76+1)}+\mathrm{i}^{(68+2)}+\mathrm{i}^{(84+3)}+\mathrm{i}^{(412+2)}\right)^{3} \\
& =\left(\mathrm{i}+\mathrm{i}^{2}+\mathrm{i}^{3}+\mathrm{i}^{2}\right)^{3}\left[\text { since } \mathrm{i}^{3}=-\mathrm{i}, \mathrm{i}^{2}=-1\right] \\
& =(\mathrm{i}+(-1)+(-\mathrm{i})+(-1))^{3} \\
& =(-2)^{3} \\
& =-8
\end{aligned}
$$

(vii) $\mathrm{i}^{30}+\mathrm{i}^{40}+\mathrm{i}^{60}$

Let us simplify we get,

$$
\begin{aligned}
\mathrm{i}^{30}+\mathrm{i}^{40}+\mathrm{i}^{60} & =\mathrm{i}^{(28+2)+\mathrm{i}^{40}+\mathrm{i}^{60}} \\
& =\left(\mathrm{i}^{4}\right)^{7} \mathrm{i}^{2}+\left(\mathrm{i}^{4}\right)^{10}+\left(\mathrm{i}^{4}\right)^{15} \\
& =\mathrm{i}^{2}+1^{10}+1^{15} \\
& =-1+1+1 \\
& =1
\end{aligned}
$$

(viii) $\mathrm{i}^{49}+\mathrm{i}^{68}+\mathrm{i}^{89}+\mathrm{i}^{110}$

Let us simplify we get,

$$
\begin{aligned}
\mathrm{i}^{49}+\mathrm{i}^{68}+\mathrm{i}^{89}+\mathrm{i}^{110} & =\mathrm{i}^{(48+1)}+\mathrm{i}^{68}+\mathrm{i}^{(88+1)}+\mathrm{i}^{(116+2)} \\
& =\left(\mathrm{i}^{4}\right)^{12} \times \mathrm{i}+\left(\mathrm{i}^{4}\right)^{17}+\left(\mathrm{i}^{4}\right)^{22} \times \mathrm{i}+\left(\mathrm{i}^{4}\right)^{29} \times \mathrm{i}^{2} \\
& =\mathrm{i}+1+\mathrm{i}-1 \\
& =2 \mathrm{i}
\end{aligned}
$$

2. Show that $1+i^{10}+i^{20}+i^{30}$ is a real number? Solution:
Given:

$$
\begin{aligned}
1+\mathrm{i}^{10}+\mathrm{i}^{20}+\mathrm{i}^{30} & =1+\mathrm{i}^{(8+2)}+\mathrm{i}^{20}+\mathrm{i}^{(28+2)} \\
& =1+\left(\mathrm{i}^{4}\right)^{2} \times \mathrm{i}^{2}+\left(\mathrm{i}^{4}\right)^{5}+\left(\mathrm{i}^{4}\right)^{7} \times \mathrm{i}^{2} \\
& =1-1+1-1\left[\text { since, } \mathrm{i}^{4}=1, \mathrm{i}^{2}=-1\right] \\
& =0
\end{aligned}
$$

Hence, $1+\mathrm{i}^{10}+\mathrm{i}^{20}+\mathrm{i}^{30}$ is a real number.

3. Find the values of the following expressions:

(i) $\mathbf{i}^{49}+i^{68}+i^{89}+i^{110}$
(ii) $\mathbf{i}^{\mathbf{3 0}}+\mathbf{i}^{80}+\mathbf{i}^{120}$
(iii) $i+i^{2}+i^{3}+i^{4}$
(iv) $\mathbf{i}^{5}+\mathbf{i}^{10}+\mathbf{i}^{15}$
(v) $\left[i^{592}+i^{590}+i^{588}+i^{586}+i^{584}\right] /\left[i^{582}+i^{580}+i^{578}+i^{576}+i^{574}\right]$
(vi) $1+i^{2}+i^{4}+i^{6}+i^{8}+\ldots+i^{20}$
(vii) $(1+i)^{6}+(1-i)^{3}$

Solution:
(i) $i^{49}+i^{68}+i^{89}+i^{110}$

Let us simplify we get,
$\mathrm{i}^{49}+\mathrm{i}^{68}+\mathrm{i}^{89}+\mathrm{i}^{110}=\mathrm{i}^{(48+1)}+\mathrm{i}^{68}+\mathrm{i}^{(88+1)}+\mathrm{i}^{(108+2)}$
$=\left(i^{4}\right)^{12} \times i+\left(i^{4}\right)^{17}+\left(i^{4}\right)^{22} \times i+\left(i^{4}\right)^{27} \times i^{2}$
$=\mathrm{i}+1+\mathrm{i}-1$ [since $\left.\mathrm{i}^{4}=1, \mathrm{i}^{2}=-1\right]$
$=2 \mathrm{i}$
$\therefore \mathrm{i}^{49}+\mathrm{i}^{68}+\mathrm{i}^{89}+\mathrm{i}^{110}=2 \mathrm{i}$
(ii) $\mathrm{i}^{30}+\mathrm{i}^{80}+\mathrm{i}^{120}$

Let us simplify we get,

$$
\begin{aligned}
\mathrm{i}^{30}+\mathrm{i}^{80}+\mathrm{i}^{120} & =\mathrm{i}^{(28+2)}+\mathrm{i}^{80}+\mathrm{i}^{120} \\
& =\left(\mathrm{i}^{4}\right)^{7} \times \mathrm{i}^{2}+\left(\mathrm{i}^{4}\right)^{20}+\left(\mathrm{i}^{4}\right)^{30} \\
& =-1+1+1\left[\text { since } \mathrm{i}^{4}=1, \mathrm{i}^{2}=-1\right] \\
& =1 \\
\therefore \mathrm{i}^{30}+\mathrm{i}^{80}+\mathrm{i}^{120} & =1
\end{aligned}
$$

(iii) $i+i^{2}+i^{3}+i^{4}$

Let us simplify we get,

$$
\begin{aligned}
\mathrm{i}+\mathrm{i}^{2}+\mathrm{i}^{3}+\mathrm{i}^{4} & =\mathrm{i}+\mathrm{i}^{2}+\mathrm{i}^{2} \times \mathrm{i}+\mathrm{i}^{4} \\
& =\mathrm{i}-1+(-1) \times \mathrm{i}+1\left[\text { since } \mathrm{i}^{4}=1, \mathrm{i}^{2}=-1\right] \\
& =\mathrm{i}-1-\mathrm{i}+1 \\
& =0
\end{aligned}
$$

$\therefore \mathrm{i}+\mathrm{i}^{2}+\mathrm{i}^{3}+\mathrm{i}^{4}=0$
(iv) $\mathrm{i}^{5}+\mathrm{i}^{10}+\mathrm{i}^{15}$

Let us simplify we get,

$$
\begin{aligned}
\mathrm{i}^{5}+\mathrm{i}^{10}+\mathrm{i}^{15} & =\mathrm{i}^{(4+1)}+\mathrm{i}^{(8+2)}+\mathrm{i}^{(12+3)} \\
& =\left(\mathrm{i}^{4}\right)^{1} \times \mathrm{i}+\left(\mathrm{i}^{4}\right)^{2} \times \mathrm{i}^{2}+\left(\mathrm{i}^{4}\right)^{3} \times \mathrm{i}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \quad=\left(\mathrm{i}^{4}\right)^{1} \times \mathrm{i}+\left(\mathrm{i}^{4}\right)^{2} \times \mathrm{i}^{2}+\left(\mathrm{i}^{4}\right)^{3} \times \mathrm{i}^{2} \times \mathrm{i} \\
& =1 \times \mathrm{i}+1 \times(-1)+1 \times(-1) \times \mathrm{i} \\
& =\mathrm{i}-1-\mathrm{i} \\
& =-1 \\
& \therefore \mathrm{i}^{5}+\mathrm{i}^{10}+\mathrm{i}^{15}=-1
\end{aligned}
$$

(v) $\left[\mathrm{i}^{592}+\mathrm{i}^{590}+\mathrm{i}^{588}+\mathrm{i}^{586}+\mathrm{i}^{584}\right] /\left[\mathrm{i}^{582}+\mathrm{i}^{580}+\mathrm{i}^{578}+\mathrm{i}^{576}+\mathrm{i}^{574}\right]$

Let us simplify we get,

$$
\begin{aligned}
{\left[i^{592}+i^{590}+\mathrm{i}^{588}+\right.} & \left.\mathrm{i}^{586}+\mathrm{i}^{584}\right] /\left[\mathrm{i}^{582}+\mathrm{i}^{580}+\mathrm{i}^{578}+\mathrm{i}^{576}+\mathrm{i}^{574}\right] \\
& =\left[\mathrm{i}^{10}\left(\mathrm{i}^{582}+\mathrm{i}^{580}+\mathrm{i}^{578}+\mathrm{i}^{576}+\mathrm{i}^{574}\right) /\left(\mathrm{i}^{582}+\mathrm{i}^{580}+\mathrm{i}^{578}+\mathrm{i}^{576}+\mathrm{i}^{574}\right)\right] \\
& =\mathrm{i}^{10} \\
& =\mathrm{i}^{8} \mathrm{i}^{2} \\
& =\left(\mathrm{i}^{4}\right)^{2} \mathrm{i}^{2} \\
& =(1)^{2}(-1)\left[\text { since } \mathrm{i}^{4}=1, \mathrm{i}^{2}=-1\right] \\
& =-1 \\
\therefore\left[\mathrm{i}^{592}+\mathrm{i}^{550}+\mathrm{i}^{588}\right. & \left.+\mathrm{i}^{586}+\mathrm{i}^{584}\right] /\left[\mathrm{i}^{582}+\mathrm{i}^{580}+\mathrm{i}^{578}+\mathrm{i}^{576}+\mathrm{i}^{574}\right]=-1
\end{aligned}
$$

(vi) $1+\mathrm{i}^{2}+\mathrm{i}^{4}+\mathrm{i}^{6}+\mathrm{i}^{8}+\ldots+\mathrm{i}^{20}$

Let us simplify we get,
$1+\mathrm{i}^{2}+\mathrm{i}^{4}+\mathrm{i}^{6}+\mathrm{i}^{8}+\ldots+\mathrm{i}^{20}=1+(-1)+1+(-1)+1+\ldots+1$

$$
=1
$$

$\therefore 1+\mathrm{i}^{2}+\mathrm{i}^{4}+\mathrm{i}^{6}+\mathrm{i}^{8}+\ldots+\mathrm{i}^{20}=1$
(vii) $(1+i)^{6}+(1-i)^{3}$

Let us simplify we get,

$$
\begin{aligned}
(1+i)^{6}+(1-i)^{3} & =\left\{(1+i)^{2}\right\}^{3}+(1-i)^{2}(1-i) \\
& =\left\{1+i^{2}+2 \mathrm{i}\right\}^{3}+\left(1+\mathrm{i}^{2-} 2 \mathrm{i}\right)(1-\mathrm{i}) \\
& =\{1-1+2 \mathrm{i}\}^{3}+(1-1-2 \mathrm{i})(1-\mathrm{i}) \\
& =(2 \mathrm{i})^{3}+(-2 \mathrm{i})(1-\mathrm{i}) \\
& =8 i^{3}+(-2 \mathrm{i})+2 \mathrm{i}^{2} \\
& =-8 \mathrm{i}-2 \mathrm{i}-2\left[\text { since } \mathrm{i}^{3}=-\mathrm{i}, \mathrm{i}^{2}=-1\right] \\
& =-10 \mathrm{i}-2 \\
& =-2(1+5 \mathrm{i}) \\
& =-2-10 \mathrm{i}
\end{aligned}
$$

$\therefore(1+\mathrm{i})^{6}+(1-\mathrm{i})^{3}=-2-10 \mathrm{i}$

EXERCISE 13.2

1. Express the following complex numbers in the standard form a + ib:
(i) $(\mathbf{1}+\mathrm{i})(1+2 \mathrm{i})$
(ii) $(3+2 i) /(-2+i)$
(iii) $\mathbf{1}(\mathbf{2}+\mathrm{i})^{2}$
(iv) $(\mathbf{1 - i}) /(1+i)$
(v) $(2+i)^{3} /(2+3 i)$
(vi) $[(1+i)(1+\sqrt{3 i})] /(1-i)$
(vii) $(2+3 i) /(4+5 i)$
(viii) $(1-i)^{3} /\left(1-\mathbf{i}^{3}\right)$
(ix) $(1+2 \mathbf{i})^{-3}$
(x) $(3-4 i) /[(4-2 i)(1+i)]$
(xi)
$\left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)$
(xii) $(5+\sqrt{2} i) /(1-\sqrt{ } 2 i)$

Solution:
(i) $(1+i)(1+2 i)$

Let us simplify and express in the standard form of ($a+i b$),
$(1+\mathrm{i})(1+2 \mathrm{i})=(1+\mathrm{i})(1+2 \mathrm{i})$

$$
\begin{aligned}
& =1(1+2 \mathrm{i})+\mathrm{i}(1+2 \mathrm{i}) \\
& =1+2 \mathrm{i}+\mathrm{i}+2 \mathrm{i}^{2} \\
& =1+3 \mathrm{i}+2(-1)\left[\text { since, } \mathrm{i}^{2}=-1\right] \\
& =1+3 \mathrm{i}-2 \\
& =-1+3 \mathrm{i}
\end{aligned}
$$

\therefore The values of a, b are $-1,3$.
(ii) $(3+2 \mathrm{i}) /(-2+\mathrm{i})$

Let us simplify and express in the standard form of ($a+i b$),
$(3+2 \mathrm{i}) /(-2+\mathrm{i})=[(3+2 \mathrm{i}) /(-2+\mathrm{i})] \times(-2-\mathrm{i}) /(-2-\mathrm{i})[$ multiply and divide with $(-2-\mathrm{i})]$
$=[3(-2-i)+2 \mathrm{i}(-2-\mathrm{i})] /\left[(-2)^{2}-(\mathrm{i})^{2}\right]$
$=\left[-6-3 \mathrm{i}-4 \mathrm{i}-2 \mathrm{i}^{2}\right] /\left(4-\mathrm{i}^{2}\right)$
$=[-6-7 \mathrm{i}-2(-1)] /(4-(-1))\left[\right.$ since, $\left.\mathrm{i}^{2}=-1\right]$
$=[-4-7 i] / 5$
\therefore The values of a, b are $-4 / 5,-7 / 5$
(iii) $1 /(2+i)^{2}$

Let us simplify and express in the standard form of $(a+i b)$,

$$
\begin{aligned}
1 /(2+\mathrm{i})^{2} & =1 /\left(2^{2}+\mathrm{i}^{2}+2(2)(\mathrm{i})\right) \\
& =1 /(4-1+4 \mathrm{i})\left[\text { since, } \mathrm{i}^{2}=-1\right] \\
& =1 /(3+4 \mathrm{i})[\text { multiply and divide with }(3-4 \mathrm{i})] \\
& =1 /(3+4 \mathrm{i}) \times(3-4 \mathrm{i}) /(3-4 \mathrm{i})] \\
& =(3-4 \mathrm{i}) /\left(3^{2}-(4 \mathrm{i})^{2}\right) \\
& =(3-4 \mathrm{i}) /\left(9-16 \mathrm{i}^{2}\right) \\
& =(3-4 \mathrm{i}) /(9-16(-1))\left[\text { since, } \mathrm{i}^{2}=-1\right] \\
& =(3-4 \mathrm{i}) / 25
\end{aligned}
$$

\therefore The values of a, b are $3 / 25,-4 / 25$
(iv) $(1-i) /(1+i)$

Let us simplify and express in the standard form of $(a+i b)$,
$(1-\mathrm{i}) /(1+\mathrm{i})=(1-\mathrm{i}) /(1+\mathrm{i}) \times(1-\mathrm{i}) /(1-\mathrm{i})$ [multiply and divide with $(1-\mathrm{i})$]

$$
\begin{aligned}
& =\left(1^{2}+\mathrm{i}^{2}-2(1)(\mathrm{i})\right) /\left(1^{2}-\mathrm{i}^{2}\right) \\
& =(1+(-1)-2 \mathrm{i}) /(1-(-1)) \\
& =-2 \mathrm{i} / 2 \\
& =-\mathrm{i}
\end{aligned}
$$

\therefore The values of a, b are $0,-1$
(v) $(2+i)^{3} /(2+3 i)$

Let us simplify and express in the standard form of $(a+i b)$,
$(2+\mathrm{i})^{3} /(2+3 \mathrm{i})=\left(2^{3}+\mathrm{i}^{3}+3(2)^{2}(\mathrm{i})+3(\mathrm{i})^{2}(2)\right) /(2+3 \mathrm{i})$

$$
=\left(8+\left(\mathrm{i}^{2} \cdot \mathrm{i}\right)+3(4)(\mathrm{i})+6 \mathrm{i}^{2}\right) /(2+3 \mathrm{i})
$$

$$
=(8+(-1) \mathrm{i}+12 \mathrm{i}+6(-1)) /(2+3 \mathrm{i})
$$

$$
=(2+11 \mathrm{i}) /(2+3 \mathrm{i})
$$

[multiply and divide with (2-3i)]
$=(2+11 \mathrm{i}) /(2+3 \mathrm{i}) \times(2-3 \mathrm{i}) /(2-3 \mathrm{i})$
$=[2(2-3 \mathrm{i})+11 \mathrm{i}(2-3 \mathrm{i})] /\left(2^{2}-(3 \mathrm{i})^{2}\right)$
$=\left(4-6 \mathrm{i}+22 \mathrm{i}-33 \mathrm{i}^{2}\right) /\left(4-9 \mathrm{i}^{2}\right)$
$=(4+16 \mathrm{i}-33(-1)) /(4-9(-1))\left[\right.$ since, $\left.\mathrm{i}^{2}=-1\right]$
$=(37+16 i) / 13$
\therefore The values of a, b are 37/13, 16/13
(vi) $[(1+i)(1+\sqrt{3 i})] /(1-i)$

Let us simplify and express in the standard form of $(a+i b)$,

$$
\begin{aligned}
{[(1+\mathrm{i})(1+\sqrt{ } 3 \mathrm{i})] /(1-\mathrm{i}) } & =[1(1+\sqrt{ } 3 \mathrm{i})+\mathrm{i}(1+\sqrt{ } 3 \mathrm{i})] /(1-\mathrm{i}) \\
& =\left(1+\sqrt{ } \mathrm{i}+\mathrm{i}+\sqrt{ } \mathrm{i}^{2}\right) /(1-\mathrm{i}) \\
& =(1+(\sqrt{ } 3+1) \mathrm{i}+\sqrt{ } 3(-1)) /(1-\mathrm{i})\left[\text { since, } \mathrm{i}^{2}=-1\right] \\
& =[(1-\sqrt{ } 3)+(1+\sqrt{ } 3) \mathrm{i}] /(1-\mathrm{i})
\end{aligned}
$$

$$
\begin{aligned}
& \text { [multiply and divide with }(1+\mathrm{i})] \\
& =[(1-\sqrt{3})+(1+\sqrt{3}) \mathrm{i}] /(1-\mathrm{i}) \times(1+\mathrm{i}) /(1+\mathrm{i}) \\
& =[(1-\sqrt{3})(1+\mathrm{i})+(1+\sqrt{3}) \mathrm{i}(1+\mathrm{i})] /\left(1^{2}-\mathrm{i}^{2}\right) \\
& =\left[1-\sqrt{3}+(1-\sqrt{3}) \mathrm{i}+(1+\sqrt{3}) \mathrm{i}+(1+\sqrt{3}) \mathrm{i}^{2}\right] /(1-(-1)) \quad\left[\text { since, } \mathrm{i}^{2}=-1\right] \\
& =[(1-\sqrt{ } 3)+(1-\sqrt{3}+1+\sqrt{ } 3) \mathrm{i}+(1+\sqrt{3})(-1)] / 2 \\
& =(-2 \sqrt{ } 3+2 \mathrm{i}) / 2 \\
& =-\sqrt{3}+\mathrm{i}
\end{aligned}
$$

\therefore The values of a, b are $-\sqrt{ } 3,1$
(vii) $(2+3 i) /(4+5 i)$

Let us simplify and express in the standard form of ($a+i b$),
$(2+3 i) /(4+5 \mathrm{i})=[$ multiply and divide with $(4-5 \mathrm{i})]$

$$
\begin{aligned}
& =(2+3 \mathrm{i}) /(4+5 \mathrm{i}) \times(4-5 \mathrm{i}) /(4-5 \mathrm{i}) \\
& =[2(4-5 \mathrm{i})+3 \mathrm{i}(4-5 \mathrm{i})] /\left(4^{2}-(5 \mathrm{i})^{2}\right) \\
& =\left[8-10 \mathrm{i}+12 \mathrm{i}-15 \mathrm{i}^{2}\right] /\left(16-25 \mathrm{i}^{2}\right) \\
& =[8+2 \mathrm{i}-15(-1)] /(16-25(-1))\left[\text { since, } \mathrm{i}^{2}=-1\right] \\
& =(23+2 \mathrm{i}) / 41
\end{aligned}
$$

\therefore The values of a, b are 23/41, 2/41
(viii) $(1-\mathrm{i})^{3} /\left(1-\mathrm{i}^{3}\right)$

Let us simplify and express in the standard form of $(a+i b)$,
$(1-i)^{3} /\left(1-i^{3}\right)=\left[1^{3}-3(1)^{2} i+3(1)(i)^{2}-i^{3}\right] /\left(1-i^{2} . i\right)$

$$
\begin{aligned}
& =\left[1-3 \mathrm{i}+3(-1)-\mathrm{i}^{2} \cdot \mathrm{i}\right] /(1-(-1) \mathrm{i})\left[\text { since, } \mathrm{i}^{2}=-1\right] \\
& =[-2-3 \mathrm{i}-(-1) \mathrm{i}] /(1+\mathrm{i}) \\
& =[-2-4 \mathrm{i}] /(1+\mathrm{i}) \\
& {[\text { Multiply and divide with }(1-\mathrm{i})]} \\
& =[-2-4 \mathrm{i}] /(1+\mathrm{i}) \times(1-\mathrm{i}) /(1-\mathrm{i}) \\
& =[-2(1-\mathrm{i})-4 \mathrm{i}(1-\mathrm{i})] /\left(1^{2}-\mathrm{i}^{2}\right) \\
& =\left[-2+2 \mathrm{i}-4 \mathrm{i}+4 \mathrm{i}^{2}\right] /(1-(-1)) \\
& =[-2-2 \mathrm{i}+4(-1)] / 2 \\
& =(-6-2 \mathrm{i}) / 2 \\
& =-3-\mathrm{i}
\end{aligned}
$$

\therefore The values of a, b are $-3,-1$
(ix) $(1+2 \mathrm{i})^{-3}$

Let us simplify and express in the standard form of ($a+i b$),
$(1+2 \mathrm{i})^{-3}=1 /(1+2 \mathrm{i})^{3}$

$$
\begin{aligned}
& =1 /\left(1^{3}+3(1)^{2}(2 \mathrm{i})+2(1)(2 \mathrm{i})^{2}+(2 \mathrm{i})^{3}\right) \\
& =1 /\left(1+6 \mathrm{i}+4 \mathrm{i}^{2}+8 \mathrm{i}^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =1 /\left(1+6 \mathrm{i}+4(-1)+8 \mathrm{i}^{2} . \mathrm{i}\right)\left[\text { since, } \mathrm{i}^{2}=-1\right] \\
& =1 /(-3+6 \mathrm{i}+8(-1) \mathrm{i})\left[\text { since, } \mathrm{i}^{2}=-1\right] \\
& =1 /(-3-2 \mathrm{i}) \\
& =-1 /(3+2 \mathrm{i}) \\
& {[\text { Multiply and divide with }(3-2 \mathrm{i})]} \\
& =-1 /(3+2 \mathrm{i}) \times(3-2 \mathrm{i}) /(3-2 \mathrm{i}) \\
& =(-3+2 \mathrm{i}) /\left(3^{2}-(2 \mathrm{i})^{2}\right) \\
& =(-3+2 \mathrm{i}) /\left(9-4 \mathrm{i}^{2}\right) \\
& =(-3+2 \mathrm{i}) /(9-4(-1)) \\
& =(-3+2 \mathrm{i}) / 13
\end{aligned}
$$

\therefore The values of a, b are $-3 / 13,2 / 13$
(x) $(3-4 \mathrm{i}) /[(4-2 \mathrm{i})(1+\mathrm{i})]$

Let us simplify and express in the standard form of $(a+i b)$,
$(3-4 \mathrm{i}) /[(4-2 \mathrm{i})(1+\mathrm{i})]=(3-4 \mathrm{i}) /[4(1+\mathrm{i})-2 \mathrm{i}(1+\mathrm{i})]$

$$
\begin{aligned}
& =(3-4 \mathrm{i}) /\left[4+4 \mathrm{i}-2 \mathrm{i}-2 \mathrm{i}^{2}\right] \\
& =(3-4 \mathrm{i}) /[4+2 \mathrm{i}-2(-1)]\left[\text { since }, \mathrm{i}^{2}=-1\right] \\
& =(3-4 \mathrm{i}) /(6+2 \mathrm{i})
\end{aligned}
$$

[Multiply and divide with (6-2i)]
$=(3-4 \mathrm{i}) /(6+2 \mathrm{i}) \times(6-2 \mathrm{i}) /(6-2 \mathrm{i})$
$=[3(6-2 \mathrm{i})-4 \mathrm{i}(6-2 \mathrm{i})] /\left(6^{2}-(2 \mathrm{i})^{2}\right)$
$=\left[18-6 \mathrm{i}-24 \mathrm{i}+8 \mathrm{i}^{2}\right] /\left(36-4 \mathrm{i}^{2}\right)$
$=[18-30 \mathrm{i}+8(-1)] /(36-4(-1))\left[\right.$ since, $\left.\mathrm{i}^{2}=-1\right]$
$=[10-30 \mathrm{i}] / 40$
$=(1-3 i) / 4$
\therefore The values of a, b are $1 / 4,-3 / 4$
(xi)
$\left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)$
Let us simplify and express in the standard form of $(a+i b)$,

$$
\begin{aligned}
\left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right) & =\left(\frac{1+i-2(1-4 i)}{(1-4 i)(1+i)}\right)\left(\frac{3-4 i}{5+i}\right) \\
& =\left(\frac{1+i-2+8 i}{1(1+i)-4 i(1+i)}\right)\left(\frac{3-4 i}{5+i}\right) \\
& =\left(\frac{-1+9 i}{1+i-4 i-4 i^{2}}\right)\left(\frac{3-4 i}{5+i}\right) \\
& =\left(\frac{-1+9 i}{1-3 i-4(-1)}\right)\left(\frac{3-4 i}{5+i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(-1+9 i)(3-4 i)}{(5-3 i)(5+i)} \\
& =\frac{-1(3-4 i)+9 i(3-i)}{5(5+i)-3 i(5+i)} \\
& =\frac{-3+4 i+27 i-9 i^{2}}{25+5 i-15 i-3 i^{2}} \\
& =\frac{-3+31 i-9(-1)}{25-10 i-3(-1)} \\
& =\frac{6+31 i}{28-10 i}
\end{aligned}
$$

[Multiply and divide with (28+10i)]

$$
\begin{aligned}
& =\frac{6+31 i}{28-10 i} \times \frac{28+10 i}{28+10 i} \\
& =\frac{6(28+10 i)+31 i(28+10 i)}{28^{2}-(10 i)^{2}} \\
& =\frac{168+60 i+868 i+310 i^{2}}{784-100 i^{2}} \\
& =\frac{168+928 i+310(-1)}{784-100(-1)} \\
& =\frac{478+928 i}{884}
\end{aligned}
$$

Therefore value of a, b are 478/884, 928/884.
(xii) $(5+\sqrt{2} \mathrm{i}) /(1-\sqrt{2} \mathrm{i})$

Let us simplify and express in the standard form of $(a+i b)$, $(5+\sqrt{2} i) /(1-\sqrt{2} i)=[$ Multiply and divide with $(1+\sqrt{ } 2 i)]$

$$
\begin{aligned}
& =(5+\sqrt{ } 2 \mathrm{i}) /(1-\sqrt{ } 2 \mathrm{i}) \times(1+\sqrt{ } 2 \mathrm{i}) /(1+\sqrt{ } 2 \mathrm{i}) \\
& =[5(1+\sqrt{ } 2 \mathrm{i})+\sqrt{ } 2 \mathrm{i}(1+\sqrt{ } 2 \mathrm{i})] /\left(1^{2}-(\sqrt{ } 2)^{2}\right) \\
& =\left[5+5 \sqrt{ } 2 \mathrm{i}+\sqrt{ } 2 \mathrm{i}+2 \mathrm{i}^{2}\right] /\left(1-2 \mathrm{i}^{2}\right) \\
& =[5+6 \sqrt{ } 2 \mathrm{i}+2(-1)] /(1-2(-1))\left[\text { since, } \mathrm{i}^{2}=-1\right] \\
& =[3+6 \sqrt{ } 2 \mathrm{i}] / 3 \\
& =1+2 \sqrt{ } 2 \mathrm{i}
\end{aligned}
$$

\therefore The values of a, b are $1,2 \sqrt{ } 2$

2. Find the real values of x and y, if

(i) $(x+i y)(2-3 i)=4+i$
(ii) $(3 x-2 i y)(2+i)^{2}=10(1+i)$
(iii) $\frac{(1+\mathrm{i}) \mathrm{x}-2 \mathrm{i}}{3+\mathrm{i}}+\frac{(2-3 \mathrm{i}) \mathrm{y}+\mathrm{i}}{3-\mathrm{i}}=\mathrm{i}$
(iv) $(1+i)(x+i y)=2-5 i$

Solution:

(i) $(x+i y)(2-3 i)=4+i$

Given:
$(\mathrm{x}+\mathrm{iy})(2-3 \mathrm{i})=4+\mathrm{i}$
Let us simplify the expression we get,
$\mathrm{x}(2-3 \mathrm{i})+\mathrm{iy}(2-3 \mathrm{i})=4+\mathrm{i}$
$2 \mathrm{x}-3 \mathrm{xi}+2 \mathrm{yi}-3 \mathrm{yi}^{2}=4+\mathrm{i}$
$2 \mathrm{x}+(-3 \mathrm{x}+2 \mathrm{y}) \mathrm{i}-3 \mathrm{y}(-1)=4+\mathrm{i}\left[\right.$ since, $\left.\mathrm{i}^{2}=-1\right]$
$2 x+(-3 x+2 y) i+3 y=4+i\left[\right.$ since, $\left.i^{2}=-1\right]$
$(2 x+3 y)+i(-3 x+2 y)=4+i$
Equating Real and Imaginary parts on both sides, we get
$2 x+3 y=4 \ldots$ (i)
And $-3 x+2 y=1 \ldots$.
Multiply (i) by 3 and (ii) by 2 and add
On solving we get,
$6 x-6 x-9 y+4 y=12+2$
$13 y=14$
$y=14 / 13$
Substitute the value of y in (i) we get,
$2 x+3 y=4$
$2 \mathrm{x}+3(14 / 13)=4$
$2 \mathrm{x}=4-(42 / 13)$
$=(52-42) / 13$
$2 \mathrm{x}=10 / 13$
$\mathrm{x}=5 / 13$
$x=5 / 13, y=14 / 13$
\therefore The real values of x and y are $5 / 13,14 / 13$
(ii) $(3 x-2 i y)(2+i)^{2}=10(1+i)$

Given:
$(3 \mathrm{x}-2 \mathrm{iy})(2+\mathrm{i})^{2}=10(1+\mathrm{i})$
$(3 \mathrm{x}-2 \mathrm{yi})\left(2^{2}+\mathrm{i}^{2}+2(2)(\mathrm{i})\right)=10+10 \mathrm{i}$
$(3 \mathrm{x}-2 \mathrm{yi})(4+(-1)+4 \mathrm{i})=10+10 \mathrm{i}\left[\right.$ since, $\left.\mathrm{i}^{2}=-1\right]$
$(3 \mathrm{x}-2 \mathrm{yi})(3+4 \mathrm{i})=10+10 \mathrm{i}$
Let us divide with $3+4 i$ on both sides we get,
$(3 \mathrm{x}-2 \mathrm{yi})=(10+10 \mathrm{i}) /(3+4 \mathrm{i})$
= Now multiply and divide with (3-4i)
$=[10(3-4 \mathrm{i})+10 \mathrm{i}(3-4 \mathrm{i})] /\left(3^{2}-(4 \mathrm{i})^{2}\right)$

$$
\begin{aligned}
& =\left[30-40 \mathrm{i}+30 \mathrm{i}-40 \mathrm{i}^{2}\right] /\left(9-16 \mathrm{i}^{2}\right) \\
& =[30-10 \mathrm{i}-40(-1)] /(9-16(-1)) \\
& =[70-10 \mathrm{i}] / 25
\end{aligned}
$$

Now, equating Real and Imaginary parts on both sides we get
$3 \mathrm{x}=70 / 25$ and $-2 \mathrm{y}=-10 / 25$
$x=70 / 75$ and $y=1 / 5$
$x=14 / 15$ and $y=1 / 5$
\therefore The real values of x and y are 14/15, 1/5
(iii) $\frac{(1+\mathbf{i}) \mathbf{x}-2 \mathbf{i}}{3+\mathbf{i}}+\frac{(2-3 i) \mathbf{y}+\mathbf{i}}{3-\mathbf{i}}=\mathbf{i}$

Given:

$$
\begin{aligned}
& \frac{(\mathbf{1}+\mathbf{i}) \mathbf{x}-2 \mathbf{i}}{\mathbf{3 + \mathbf { i }}+\frac{(2-3 \mathbf{i}) \mathbf{y}+\mathbf{i}}{3-\mathbf{i}}=\mathbf{i}} \\
& \frac{(((1+i) x-2 i)(3-i))+(((2-3 i) y+i)(3+i))}{(3+i)(3-i)}=i \\
& \frac{((1+i)(3-i) x)-(2 i)(3-i)+((2-3 i)(3+i) y)+(i)(3+i)}{3^{2}-i^{2}}=i \\
& \frac{\left(3-i+3 i-i^{2}\right) x-6 i+2 i^{2}+\left(6+2 i-9 i-3 i^{2}\right) y+3 i+i^{2}}{9-(-1)}=i \\
& \frac{(3+2 i-(-1)) x-6 i+2(-1)+(6-7 i-3(-1)) y+3 i+(-1)}{10}=i\left[\text { since, } \mathrm{i}^{2}=-1\right]
\end{aligned}
$$

$(4+2 i) x-3 i-3+(9-7 i) y=10 i$
$(4 x+9 y-3)+i(2 x-7 y-3)=10 i$
Now, equating Real and Imaginary parts on both sides we get,
$4 x+9 y-3=0 \ldots$ (i)
And $2 \mathrm{x}-7 \mathrm{y}-3=10$
$2 x-7 y=13 \ldots$ (ii)
Multiply (i) by 7 and (ii) by 9 and add
On solving these equations we get
$28 x+18 x+63 y-63 y=117+21$
$46 x=117+21$
$46 x=138$

$$
\begin{aligned}
x & =138 / 46 \\
& =3
\end{aligned}
$$

Substitute the value of x in (i) we get, $4 x+9 y-3=0$
$9 y=-9$
$y=-9 / 9$
=-1
$\mathrm{x}=3$ and $\mathrm{y}=-1$
\therefore The real values of x and y are 3 and -1
(iv) $(1+i)(x+i y)=2-5 i$

Given:
$(1+\mathrm{i})(\mathrm{x}+\mathrm{iy})=2-5 \mathrm{i}$
Divide with $(1+\mathrm{i})$ on both the sides we get,
$(x+i y)=(2-5 i) /(1+i)$
Multiply and divide by (1-i)

$$
\begin{aligned}
& =(2-5 \mathrm{i}) /(1+\mathrm{i}) \times(1-\mathrm{i}) /(1-\mathrm{i}) \\
& =[2(1-\mathrm{i})-5 \mathrm{i}(1-\mathrm{i})] /\left(1^{2}-\mathrm{i}^{2}\right) \\
& =[2-7 \mathrm{i}+5(-1)] / 2\left[\text { since, } \mathrm{i}^{2}=-1\right] \\
& =(-3-7 \mathrm{i}) / 2
\end{aligned}
$$

Now, equating Real and Imaginary parts on both sides we get
$x=-3 / 2$ and $y=-7 / 2$
\therefore The real values of x and y are $-3 / 2,-7 / 2$

3. Find the conjugates of the following complex numbers:

(i) $4-5 i$
(ii) $1 /(3+5 i)$
(iii) $1 /(1+i)$
(iv) $(3-i)^{2} /(2+i)$
(v) $[(1+i)(2+i)] /(3+i)$
(vi) $[(3-2 i)(2+3 i)] /[(1+2 i)(2-i)]$

Solution:

(i) $4-5 \mathrm{i}$

Given:
4 - 5 i
We know the conjugate of a complex number $(a+i b)$ is $(a-i b)$
So,
\therefore The conjugate of $(4-5 \mathrm{i})$ is $(4+5 \mathrm{i})$
(ii) $1 /(3+5$ i)

Given:
$1 /(3+5 i)$
Since the given complex number is not in the standard form of $(a+i b)$

Let us convert to standard form by multiplying and dividing with (3-5i)
We get,

$$
\begin{aligned}
\frac{1}{3+5 i} & =\frac{1}{3+5 i} \times \frac{3-5 i}{3-5 i} \\
& =\frac{3-5 i}{3^{2}-(5 i)^{2}} \\
& =\frac{3-5 i}{9-25 i^{2}} \\
& =\frac{3-5 i}{9-25(-1)} \quad\left[\text { Since, } \mathrm{i}^{2}=-1\right] \\
& =\frac{3-5 i}{34}
\end{aligned}
$$

We know the conjugate of a complex number ($a+i b$) is ($a-i b$)
So,
\therefore The conjugate of $(3-5 \mathrm{i}) / 34$ is $(3+5 \mathrm{i}) / 34$
(iii) $1 /(1+\mathrm{i})$

Given:
$1 /(1+\mathrm{i})$
Since the given complex number is not in the standard form of $(a+i b)$
Let us convert to standard form by multiplying and dividing with ($1-\mathrm{i}$)
We get,

$$
\begin{aligned}
\frac{1}{1+i} & =\frac{1}{1+i} \times \frac{1-i}{1-i} \\
& =\frac{1-i}{1^{2}-i^{2}} \\
& =\frac{1-i}{1-(-1)}\left[\text { since }, \mathrm{i}^{2}=-1\right] \\
& =\frac{1-i}{2}
\end{aligned}
$$

We know the conjugate of a complex number $(a+i b)$ is $(a-i b)$
So,
\therefore The conjugate of $(1-\mathrm{i}) / 2$ is $(1+\mathrm{i}) / 2$
(iv) $(3-\mathrm{i})^{2} /(2+\mathrm{i})$

Given:
$(3-i)^{2} /(2+i)$
Since the given complex number is not in the standard form of $(a+i b)$
Let us convert to standard form,

$$
\begin{aligned}
\frac{(3-i)^{2}}{2+i} & =\frac{3^{2}+i^{2}-2(3)(i)}{2+i} \\
& =\frac{9+(-1)-6 i}{2+i} \quad\left[\text { Since, } \mathrm{i}^{2}=-1\right] \\
& =\frac{8-6 i}{2+i}
\end{aligned}
$$

Now, let us multiply and divide with ($2-\mathrm{i}$) we get,

$$
\begin{aligned}
\frac{8-6 i}{2+i} & =\frac{8-6 i}{2+i} \times \frac{2-i}{2-i} \\
& =\frac{8(2-i)-6 i(2-i)}{2^{2}-i^{2}} \\
& =\frac{16-8 i-12 i+6 i^{2}}{4-(-1)}\left[\text { Since, } \mathrm{i}^{2}=-1\right] \\
& =\frac{16-20 i+6(-1)}{5} \\
& =\frac{10-20 i}{5} \\
& =10 / 5-20 \mathrm{i} / 5 \\
& =2-4 \mathrm{i}
\end{aligned}
$$

We know the conjugate of a complex number ($a+i b$) is $(a-i b)$
So,
\therefore The conjugate of $(2-4 \mathrm{i})$ is $(2+4 \mathrm{i})$
(v) $[(1+\mathrm{i})(2+\mathrm{i})] /(3+\mathrm{i})$

Given:
$[(1+i)(2+i)] /(3+i)$
Since the given complex number is not in the standard form of $(a+i b)$
Let us convert to standard form,

$$
\begin{aligned}
\frac{(1+i)(2+i)}{3+i} & =\frac{1(2+i)+i(2+i)}{3+i} \\
& =\frac{2+i+2 i+i^{2}}{3+i} \\
& =\frac{2+3 i+(-1)}{3+i} \quad\left[\text { Since, } \mathrm{i}^{2}=-1\right] \\
& =\frac{1+3 i}{3+i}
\end{aligned}
$$

Now, let us multiply and divide with (3-i) we get,

$$
\frac{1+3 i}{3+i}=\frac{1+3 i}{3+i} \times \frac{3-i}{3-i}
$$

$$
\begin{aligned}
& =\frac{1(3-i)+3 i(3-i)}{3^{2}-i^{2}} \\
& =\frac{3-i+9 i-3 i^{2}}{9-(-1)} \quad\left[\text { Since, } \mathrm{i}^{2}=-1\right] \\
& =\frac{3+8 i-3(-1)}{10} \\
& =\frac{6+8 i}{10} \\
& =\frac{3}{5}+\frac{4 i}{5}
\end{aligned}
$$

We know the conjugate of a complex number $(a+i b)$ is $(a-i b)$ So,
\therefore The conjugate of $(3+4 \mathrm{i}) / 5$ is $(3-4 \mathrm{i}) / 5$
(vi) $[(3-2 \mathbf{i})(2+3 \mathrm{i})] /[(1+2 \mathrm{i})(2-\mathrm{i})]$

Given:
$[(3-2 \mathrm{i})(2+3 \mathrm{i})] /[(1+2 \mathrm{i})(2-\mathrm{i})]$
Since the given complex number is not in the standard form of $(a+i b)$
Let us convert to standard form,

$$
\begin{aligned}
\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)} & =\frac{3(2+3 i)-2 i(2+3 i)}{1(2-i)+2 i(2-i)} \\
& =\frac{6+9 i-4 i-6 i^{2}}{2-i+4 i-2 i^{2}} \\
& =\frac{6+5 i-6(-1)}{2+3 i-2(-1)} \\
& =\frac{12+5 i}{4+3 i}
\end{aligned}
$$

Now, let us multiply and divide with (4-3i) we get,

$$
\begin{aligned}
\frac{12+5 i}{4+3 i} & =\frac{12+5 i}{4+3 i} \times \frac{4-3 i}{4-3 i} \\
& =\frac{12(4-3 i)+5 i(4-3 i)}{4^{2}-(3 i)^{2}} \\
& =\frac{48-36 i+20 i-15 i^{2}}{16-9 i^{2}} \\
& =\frac{48-16 i-15(-1)}{16-9(-1)} \\
& =\frac{63-16 i}{25}
\end{aligned}
$$

We know the conjugate of a complex number $(a+i b)$ is $(a-i b)$

So,
\therefore The conjugate of $(63-16 \mathrm{i}) / 25$ is $(63+16 \mathrm{i}) / 25$
4. Find the multiplicative inverse of the following complex numbers:
(i) 1 - \mathbf{i}
(ii) $(1+\mathrm{i} \sqrt{ } 3)^{2}$
(iii) $4-3 i$
(iv) $\sqrt{ } 5+3 i$

Solution:

(i) $1-\mathrm{i}$

Given:
1 - i
We know the multiplicative inverse of a complex number (Z) is Z^{-1} or $1 / \mathrm{Z}$ So,

$$
\begin{aligned}
& \mathrm{Z}=1-\mathrm{i} \\
& Z^{-1}=\frac{1}{1-i}
\end{aligned}
$$

Let us multiply and divide by $(1+i)$ we get,

$$
\begin{aligned}
& =\frac{1}{1-i} \times \frac{1+i}{1+i} \\
& =\frac{1+i}{1^{2}-(i)^{2}} \\
& =\frac{1+i}{1-(-1)}\left[\text { Since, } \mathrm{i}^{2}=-1\right] \\
& =\frac{1+i}{2}
\end{aligned}
$$

\therefore The multiplicative inverse of $(1-\mathrm{i})$ is $(1+\mathrm{i}) / 2$
(ii) $(1+\mathrm{i} \sqrt{3})^{2}$

Given:
$(1+i \sqrt{ } 3)^{2}$
$\mathrm{Z}=(1+\mathrm{i} \sqrt{3})^{2}$
$=1^{2}+(\mathrm{i} \sqrt{3})^{2}+2(1)(\mathrm{i} \sqrt{ } 3)$
$=1+3 \mathrm{i}^{2}+2 \mathrm{i} \sqrt{ } 3$
$=1+3(-1)+2 \mathrm{i} \sqrt{ } 3\left[\right.$ since, $\left.\mathrm{i}^{2}=-1\right]$
$=1-3+2 \mathrm{i} \sqrt{ } 3$
$=-2+2 \mathrm{i} \sqrt{ } 3$
We know the multiplicative inverse of a complex number (Z) is Z^{-1} or $1 / \mathrm{Z}$
So,
$\mathrm{Z}=-2+2 \mathrm{i} \sqrt{ } 3$

$$
Z^{-1}=\frac{1}{-2+2 i \sqrt{3}}
$$

Let us multiply and divide by $-2-2 \mathrm{i} \sqrt{ } 3$, we get

$$
\begin{aligned}
& =\frac{1}{-2+2 \sqrt{3} i} \times \frac{-2-2 \sqrt{3} i}{-2-2 \sqrt{3} i} \\
& =\frac{-2-2 \sqrt{3} i}{(-2)^{2}-(2 \sqrt{3} i)^{2}} \\
& =\frac{-2-2 \sqrt{3} i}{4-12 i^{2}} \\
& =\frac{-2-2 \sqrt{3} i}{4-12(-1)} \\
& =\frac{-2-2 \sqrt{3} i}{16} \\
& =\frac{-1}{8} \frac{-i \sqrt{3}}{8}
\end{aligned}
$$

\therefore The multiplicative inverse of $(1+\mathrm{i} \sqrt{ } 3)^{2}$ is $(-1-\mathrm{i} \sqrt{ } 3) / 8$
(iii) $4-3 \mathrm{i}$

Given:
4-3i
We know the multiplicative inverse of a complex number (Z) is Z^{-1} or $1 / \mathrm{Z}$
So,
$\mathrm{Z}=4-3 \mathrm{i}$
$Z^{-1}=\frac{1}{4-3 i}$
Let us multiply and divide by $(4+3 i)$, we get

$$
\begin{aligned}
& =\frac{1}{4-3 i} \times \frac{4+3 i}{4+3 i} \\
& =\frac{4+3 i}{4^{2}-(3 i)^{2}} \\
& =\frac{4+3 i}{16-9 i^{2}} \\
& =\frac{4+3 i}{16-9(-1)} \\
& =\frac{4+3 i}{25}
\end{aligned}
$$

\therefore The multiplicative inverse of $(4-3 \mathrm{i})$ is $(4+3 \mathrm{i}) / 25$
(iv) $\sqrt{ } 5+3 i$

Given:
$\sqrt{5}+3 \mathrm{i}$
We know the multiplicative inverse of a complex number (Z) is Z^{-1} or $1 / \mathrm{Z}$
So,
$Z=\sqrt{ } 5+3 i$
$Z^{-1}=\frac{1}{\sqrt{5}+3 i}$
Let us multiply and divide by $(\sqrt{ } 5-3 i)$

$$
\begin{aligned}
& =\frac{1}{\sqrt{5}+3 i} \times \frac{\sqrt{5}-3 i}{\sqrt{5}-3 i} \\
& =\frac{\sqrt{5}-3 i}{(\sqrt{5})^{2}-(3 i)^{2}} \\
& =\frac{\sqrt{5}-3 i}{5-9 i^{2}} \\
& =\frac{\sqrt{5}-3 i}{5-9(-1)} \\
& =\frac{\sqrt{5}-3 i}{14}
\end{aligned}
$$

\therefore The multiplicative inverse of $(\sqrt{5}+3 \mathrm{i})$ is $(\sqrt{5}-3 \mathrm{i}) / 14$
5. If $z_{1}=2-i, z_{2}=1+i$, find
$\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|$

Solution:

Given:

$\mathrm{z}_{1}=(2-\mathrm{i})$ and $\mathrm{z}_{2}=(1+\mathrm{i})$
We know that, $|\mathrm{a} / \mathrm{b}|=|\mathrm{a}| /|\mathrm{b}|$
So,

$$
\begin{aligned}
\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right| & =\frac{\left|z_{1}+z_{2}+1\right|}{\left|z_{1}-z_{2}+i\right|} \\
& =\frac{|2-i+1+i+1|}{|2-i-(1+i)+i|} \\
& =\frac{|4|}{|1-i|}
\end{aligned}
$$

We know, $|\mathrm{a}+\mathrm{ib}|$ is $\sqrt{a^{2}+b^{2}}$
So now,

$$
\begin{aligned}
& =\frac{\sqrt{4^{2}+0^{2}}}{\sqrt{1^{2}+(-1)^{2}}} \\
& =\frac{4}{\sqrt{2}} \\
& =2 \sqrt{2}
\end{aligned}
$$

\therefore The value of $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|$ is $2 \sqrt{2}$
6. If $z_{1}=(2-i), z_{2}=(-2+i)$, find
(i) $\operatorname{Re}\left(\frac{z_{1} z_{2}}{\overline{z_{1}}}\right)$
(ii) $\operatorname{Im}\left(\frac{1}{z_{1} \overline{z_{1}}}\right)$

Solution:

Given:
$\mathrm{Z}_{1}=(2-\mathrm{i})$ and $\mathrm{z}_{2}=(-2+\mathrm{i})$
(i) $\operatorname{Re}\left(\frac{z_{1} z_{2}}{\overline{z_{1}}}\right)$

We shall rationalise the denominator, we get
$\frac{z_{1} z_{2}}{\bar{z}_{1}}=\frac{z_{1} z_{2}}{z_{1}} \times \frac{z_{1}}{z_{1}}$

$$
=\frac{\left(z_{1}\right)^{2} z_{2}}{z_{1} z_{1}}
$$

$$
=\frac{(2-i)^{2}(-2+i)}{\left|z_{1}\right|^{2}}\left[\text { since }, z \bar{z}=|z|^{2}\right]
$$

$$
=\frac{\left(2^{2}+i^{2}-2 \times 2 \times i\right)(-2+i)}{|2-i|^{2}}
$$

$$
=\frac{(4-1-4 i)(-2+i)}{2^{2}+(-1)^{2}}
$$

$$
=\frac{(3-4 i)(-2+i)}{4+i}
$$

$$
=\frac{3(-2+i)-4 i(-2+i)}{4+i}
$$

$$
=\frac{-6+3 i+8 i+4}{5}
$$

$$
=\frac{-2+11 \stackrel{\jmath}{i}}{5}
$$

\therefore The real value of $\left(\frac{z_{1} z_{2}}{\overline{z_{1}}}\right)$ is $\frac{-2}{5}$
(ii) $\operatorname{Im}\left(\frac{1}{z_{1} \overline{z_{1}}}\right)$
$\frac{1}{z_{1} \overline{z_{1}}}=\frac{1}{\left|z_{1}\right|^{2}}$

$$
=\frac{1}{|2-i|^{2}}
$$

$$
=\frac{1}{2^{2}+(-1)^{2}}
$$

$$
=\frac{1}{4+1}
$$

$$
=\frac{1}{5}
$$

\therefore The imaginary value of $\left(\frac{1}{z_{1} \overline{z_{1}}}\right)$ is 0

7. Find the modulus of $[(1+i) /(1-i)]-[(1-i) /(1+i)]$

Solution:

Given:
$[(1+i) /(1-i)]-[(1-i) /(1+i)]$
So,
$Z=[(1+i) /(1-i)]-[(1-i) /(1+i)]$
Let us simplify, we get

$$
\begin{aligned}
& =[(1+\mathrm{i})(1+\mathrm{i})-(1-\mathrm{i})(1-\mathrm{i})] /\left(1^{2}-\mathrm{i}^{2}\right) \\
& =\left[1^{2}+\mathrm{i}^{2}+2(1)(\mathrm{i})-\left(1^{2}+\mathrm{i}^{2}-2(1)(\mathrm{i})\right)\right] /(1-(-1))\left[\text { Since, } \mathrm{i}^{2}=-1\right] \\
& =4 \mathrm{i} / 2 \\
& =2 \mathrm{i}
\end{aligned}
$$

We know that for a complex number $Z=(a+i b)$ it's magnitude is given by $|z|=\sqrt{ }\left(a^{2}+b^{2}\right)$
So,
$|Z|=\sqrt{ }\left(0^{2}+2^{2}\right)$

$$
=2
$$

\therefore The modulus of $[(1+\mathrm{i}) /(1-\mathrm{i})]-[(1-\mathrm{i}) /(1+\mathrm{i})]$ is 2 .
8. If $x+i y=(a+i b) /(a-i b)$, prove that $x^{2}+y^{2}=1$

Solution:

Given:

$x+i y=(a+i b) /(a-i b)$
We know that for a complex number $Z=(a+i b)$ it's magnitude is given by $|z|=\sqrt{ }\left(a^{2}+b^{2}\right)$
So,
$|a / b|$ is $|a| /|b|$
Applying Modulus on both sides we get,

$$
|x+i y|=\left|\frac{a+i b}{a-i b}\right|
$$

$\sqrt{x^{2}+y^{2}}=\frac{|a+i b|}{|a-i b|}$

$$
\begin{aligned}
& =\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{a^{2}+(-b)^{2}}} \\
& =\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{a^{2}+b^{2}}} \\
& =1
\end{aligned}
$$

Squaring on both sides we get,
$\left(\sqrt{x^{2}+y^{2}}\right)^{2}=1^{2}$
$x^{2}+y^{2}=1$
\therefore Hence Proved.
9. Find the least positive integral value of n for which $[(1+i) /(1-i)]^{n}$ is real. Solution:
Given:
$[(1+\mathrm{i}) /(1-\mathrm{i})]^{\mathrm{n}}$
$\mathrm{Z}=[(1+\mathrm{i}) /(1-\mathrm{i})]^{\mathrm{n}}$
Now let us multiply and divide by (1+i), we get

$$
\begin{aligned}
& =\frac{1+i}{1-i} \times \frac{1+i}{1+i} \\
& =\frac{(1+i)^{2}}{1^{2}-i^{2}} \\
& =\frac{1^{2}+i^{2}+2(1)(i)}{1-(-1)} \\
& =\frac{1-1+2 i}{2} \\
& =\frac{2 i}{2} \\
& =\mathrm{i}[\text { which is not real }]
\end{aligned}
$$

For $\mathrm{n}=2$, we have

$$
\begin{aligned}
{[(1+\mathrm{i}) /(1-\mathrm{i})]^{2} } & =\mathrm{i}^{2} \\
& =-1[\text { which is real }]
\end{aligned}
$$

So, the smallest positive integral ' n ' that can make $[(1+\mathrm{i}) /(1-\mathrm{i})]^{\mathrm{n}}$ real is 2 .
\therefore The smallest positive integral value of ' n ' is 2 .
10. Find the real values of θ for which the complex number $(1+i \cos \theta) /(1-2 i \cos$ θ) is purely real.

Solution:

Given:
$(1+\mathrm{i} \cos \theta) /(1-2 \mathrm{i} \cos \theta)$
$\mathrm{Z}=(1+\mathrm{i} \cos \theta) /(1-2 \mathrm{i} \cos \theta)$
Let us multiply and divide by $(1+2 \mathrm{i} \cos \theta)$

$$
\begin{aligned}
& =\frac{1+i \cos \theta}{1-2 i \cos \theta} \times \frac{1+2 i \cos \theta}{1+2 i \cos \theta} \\
& =\frac{1(1+2 i \cos \theta)+i \cos \theta(1+2 i \cos \theta)}{1^{2}-(2 i \cos \theta)^{2}} \\
& =\frac{1+2 i \cos \theta+i \cos \theta+2 i^{2} \cos ^{2} \theta}{1-4 i^{2} \cos ^{2} \theta} \\
& =\frac{1+3 i \cos \theta+2(-1) \cos ^{2} \theta}{1-4(-1) \cos ^{2} \theta} \\
& =\frac{1-2 \cos ^{2} \theta+3 i \cos \theta}{1+4 \cos ^{2} \theta}
\end{aligned}
$$

For a complex number to be purely real, the imaginary part should be equal to zero.
So,
$\frac{3 \cos \theta}{1+4 \cos ^{2} \theta}=0$
$3 \cos \theta=0\left(\right.$ since, $\left.1+4 \cos ^{2} \theta \geq 1\right)$
$\cos \theta=0$
$\cos \theta=\cos \pi / 2$
$\theta=[(2 n+1) \pi] / 2$, for $n \in Z$
$=2 n \pi \pm \pi / 2$, for $n \in Z$
\therefore The values of θ to get the complex number to be purely real is $2 n \pi \pm \pi / 2$, for $n \in Z$
11. Find the smallest positive integer value of n for which $(1+i)^{n} /(1-i)^{n-2}$ is a real number.

Solution:

Given:
$(1+\mathrm{i})^{\mathrm{n}} /(1-\mathrm{i})^{\mathrm{n}-2}$
$\mathrm{Z}=(1+\mathrm{i})^{\mathrm{n}} /(1-\mathrm{i})^{\mathrm{n}-2}$

Let us multiply and divide by ($1-\mathrm{i})^{2}$

$$
\begin{aligned}
& =\frac{(1+i)^{n}}{(1-i)^{n-2}} \times \frac{(1-i)^{2}}{(1-i)^{2}} \\
& =\left(\frac{1+i}{1-i}\right)^{n} \times(1-i)^{2} \\
& =\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{n} \times\left(1^{2}+i^{2}-2(1)(i)\right) \\
& =\left(\frac{(1+i)^{2}}{1^{2}-i^{2}}\right)^{n} \times\left(1+i^{2}-2 i\right) \\
& =\left(\frac{1^{2}+i^{2}+2(1)(i)}{1-(-1)}\right)^{n} \times(1+(-1)-2 i) \\
& =\left(\frac{1-1+2 i}{2}\right)^{n} \times(-2 i) \\
& =\left(\frac{2 i}{2}\right)^{n} \times(-2 i) \\
& =i^{n} \times(-2 i) \\
& =-2 \mathrm{i}^{n+1}
\end{aligned}
$$

For $\mathrm{n}=1$,
$\mathrm{Z}=-2 \mathrm{i}^{1+1}$
$=-2 i^{2}$
$=2$, which is a real number.
\therefore The smallest positive integer value of n is 1 .

12. If $[(1+i) /(1-i)]^{3}-[(1-i) /(1+i)]^{3}=x+i y$, find ($\left.x, y\right)$

Solution:

Given:
$[(1+\mathrm{i}) /(1-\mathrm{i})]^{3}-[(1-\mathrm{i}) /(1+\mathrm{i})]^{3}=\mathrm{x}+\mathrm{iy}$
Let us rationalize the denominator, we get
$\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{3}-\left(\frac{1-i}{1+i} \times \frac{1-i}{1-i}\right)^{3}=x+i y$
$\left(\frac{(1+i)^{2}}{1^{2}-i^{2}}\right)^{3}-\left(\frac{(1-i)^{2}}{1^{2}-i^{2}}\right)^{3}=x+i y$
$\left(\frac{1^{2}+i^{2}+2(1)(i)}{1-(-1)}\right)^{3}-\left(\frac{1^{2}+i^{2}-2(1)(i)}{1-(-1)}\right)^{3}=x+i y$
$\left(\frac{1-1+2 i}{2}\right)^{3}-\left(\frac{1-1-2 i}{2}\right)^{3}=x+i y$
$\left(\frac{2 i}{2}\right)^{3}-\left(\frac{-2 i}{2}\right)^{3}=x+i y$
$\mathrm{i}^{3}-(-\mathrm{i})^{3}=\mathrm{x}+\mathrm{iy}$
$2 i^{3}=x+i y$
$2 \mathrm{i}^{2} . \mathrm{i}=\mathrm{x}+\mathrm{iy}$
$2(-1) I=x+i y$
$-2 i=x+i y$
Equating Real and Imaginary parts on both sides we get
$\mathrm{x}=0$ and $\mathrm{y}=-2$
\therefore The values of x and y are 0 and -2 .

13. If $(1+i)^{2} /(2-i)=x+i y$, find $x+y$

Solution:

Given:
$(1+\mathrm{i})^{2} /(2-\mathrm{i})=\mathrm{x}+\mathrm{iy}$
Upon expansion we get,

$$
\begin{aligned}
& \frac{1^{2}+i^{2}+2(1)(i)}{2-i}=x+i y \\
& \frac{1+(-1)+2 i}{2-i}=x+i y \\
& \frac{2 i}{2-i}=x+i y
\end{aligned}
$$

Now, let us multiply and divide by ($2+\mathrm{i}$), we get

$$
\begin{aligned}
& \frac{2 i}{2-i} \times \frac{2+i}{2+i}=x+i y \\
& \frac{4 i+2 i^{2}}{2^{2}-i^{2}}=x+i y \\
& \frac{2(-1)+4 i}{4-(-1)}=x+i y \\
& \frac{-2+4 i}{5}=x+i y
\end{aligned}
$$

Let us equate real and imaginary parts on both sides we get,
$x=-2 / 5$ and $y=4 / 5$
so,
$x+y=-2 / 5+4 / 5$

$$
=(-2+4) / 5
$$

$$
=2 / 5
$$

\therefore The value of $(\mathrm{x}+\mathrm{y})$ is $2 / 5$

EXERCISE 13.3

1. Find the square root of the following complex numbers.
(i) $-5+12 \mathrm{i}$
(ii) -7 - $24 i$
(iii) 1 - \mathbf{i}
(iv) - 8-6i
(v) $8-15 i$

(vii) $1+4 \sqrt{ }-3$
(viii) 4 i
(ix) -i

Solution:
if $b>0, \sqrt{a+i b}= \pm\left[\left(\frac{a+\sqrt{a^{2}+b^{2}}}{2}\right)^{\frac{1}{2}}+i\left(\frac{-a+\sqrt{a^{2}+b^{2}}}{2}\right)^{\frac{1}{2}}\right]$
if $b<0, \sqrt{a+i b}= \pm\left[\left(\frac{a+\sqrt{a^{2}+b^{2}}}{2}\right)^{\frac{1}{2}}-i\left(\frac{-a+\sqrt{a^{2}+b^{2}}}{2}\right)^{\frac{1}{2}}\right]$
(i) $-5+12 \mathrm{i}$

Given:
$-5+12 i$
We know, $\mathrm{Z}=\mathrm{a}+\mathrm{ib}$
So, $\sqrt{ }(a+i b)=\sqrt{ }(-5+12 i)$
Here, $\mathrm{b}>0$
Let us simplify now,

$$
\begin{aligned}
\sqrt{-5+12 i} & = \pm\left[\left(\frac{-5+\sqrt{(-5)^{2}+12^{2}}}{2}\right)^{\frac{1}{2}}+i\left(\frac{5+\sqrt{(-5)^{2}+12^{2}}}{2}\right)^{\frac{1}{2}}\right]_{[\text {Since, } \mathrm{b}>0]} \\
& = \pm\left[\left(\frac{-5+\sqrt{25+144}}{2}\right)^{\frac{1}{2}}+i\left(\frac{5+\sqrt{25+144}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{-5+\sqrt{169}}{2}\right)^{\frac{1}{2}}+i\left(\frac{5+\sqrt{169}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{-5+13}{2}\right)^{\frac{1}{2}}+i\left(\frac{5+13}{2}\right)^{\frac{1}{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& = \pm\left[\left(\frac{8}{2}\right)^{\frac{1}{2}}+i\left(\frac{18}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[4^{\frac{1}{2}}+i 9^{\frac{1}{2}}\right] \\
& = \pm[2+3 i]
\end{aligned}
$$

\therefore Square root of $(-5+12 i)$ is $\pm[2+3 i]$
(ii) $-7-24 \mathrm{i}$

Given:
-7-24i
We know, Z = $-7-24 \mathrm{i}$
So, $\sqrt{ }(a+i b)=\sqrt{ }(-7-24 i)$
Here, $\mathrm{b}<0$
Let us simplify now,

$$
\begin{aligned}
\sqrt{-7-24 i} & = \pm\left[\left(\frac{-7+\sqrt{(-7)^{2}+(-24)^{2}}}{2}\right)^{\frac{1}{2}}-i\left(\frac{7+\sqrt{(-7)^{2}+(-24)^{2}}}{2}\right)^{\frac{1}{2}}\right]_{[\text {Since, } \mathrm{b}<0]} \\
& = \pm\left[\left(\frac{-7+\sqrt{49+576}}{2}\right)^{\frac{1}{2}}-i\left(\frac{7+\sqrt{49+576}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{-7+\sqrt{625}}{2}\right)^{\frac{1}{2}}-i\left(\frac{7+\sqrt{625}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{-7+25}{2}\right)^{\frac{1}{2}}-i\left(\frac{7+25}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{18}{2}\right)^{\frac{1}{2}}-i\left(\frac{32}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[9^{1 / 2}-\mathrm{i} 16^{1 / 2}\right] \\
& = \pm[3-4 \mathrm{i}]
\end{aligned}
$$

\therefore Square root of $(-7-24 i)$ is $\pm[3-4 i]$
(iii) 1 - i

Given:
1 - i
We know, $\mathrm{Z}=(1-\mathrm{i})$
So, $\sqrt{ }(a+i b)=\sqrt{ }(1-i)$

Here, $\mathrm{b}<0$
Let us simplify now,

$$
\begin{aligned}
\sqrt{1-i} & = \pm\left[\left(\frac{1+\sqrt{(1)^{2}+(-1)^{2}}}{2}\right)^{\frac{1}{2}}-i\left(\frac{-1+\sqrt{(1)^{2}+(-1)^{2}}}{2}\right)^{\frac{1}{2}}\right]_{[\text {Since, } \mathrm{b}<0]} \\
& = \pm\left[\left(\frac{1+\sqrt{1+1}}{2}\right)^{\frac{1}{2}}-i\left(\frac{-1+\sqrt{1+1}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{1+\sqrt{2}}{2}\right)^{\frac{1}{2}}-i\left(\frac{-1+\sqrt{2}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\sqrt{\frac{\sqrt{2}+1}{2}}\right)-i\left(\sqrt{\frac{\sqrt{2}-1}{2}}\right)\right]
\end{aligned}
$$

\therefore Square root of $(1-\mathrm{i})$ is $\pm[(\sqrt{ }(\sqrt{ } 2+1) / 2)-\mathrm{i}(\sqrt{ }(\sqrt{ } 2-1) / 2)]$
(iv) $-8-6 \mathrm{i}$

Given:
-8 -6i
We know, $Z=-8-6 i$
So, $\sqrt{ }(a+i b)=-8-6 i$
Here, $\mathrm{b}<0$
Let us simplify now,

$$
\begin{aligned}
\sqrt{-8-6 i} & = \pm\left[\left(\frac{-8+\sqrt{(-8)^{2}+(-6)^{2}}}{2}\right)^{\frac{1}{2}}-i\left(\frac{8+\sqrt{(-8)^{2}+(-6)^{2}}}{2}\right)^{\frac{1}{2}}\right]_{[\text {Since, } \mathrm{b}<0]} \\
& = \pm\left[\left(\frac{-8+\sqrt{64+36}}{2}\right)^{\frac{1}{2}}-i\left(\frac{8+\sqrt{64+36}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{-8+\sqrt{100}}{2}\right)^{\frac{1}{2}}-i\left(\frac{8+\sqrt{100}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{-8+10}{2}\right)^{\frac{1}{2}}-i\left(\frac{8+10}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{2}{2}\right)^{\frac{1}{2}}-i\left(\frac{18}{2}\right)^{\frac{1}{2}}\right] \\
& =\left[1^{1 / 2}-\mathrm{i} 9^{1 / 2}\right]
\end{aligned}
$$

$$
= \pm[1-3 i]
$$

\therefore Square root of $(-8-6 \mathrm{i})$ is $\pm[1-3 \mathrm{i}]$
(v) $8-15 \mathrm{i}$

Given:
$8-15 i$
We know, $Z=8-15 i$
So, $\sqrt{ }(a+i b)=8-15 i$
Here, b < 0
Let us simplify now,

$$
\begin{aligned}
\sqrt{8-15 i} & = \pm\left[\left(\frac{8+\sqrt{8^{2}+(-15)^{2}}}{2}\right)^{\frac{1}{2}}-i\left(\frac{-8+\sqrt{8^{2}+(-15)^{2}}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{8+\sqrt{64+225}}{2}\right)^{\frac{1}{2}}-i\left(\frac{-8+\sqrt{64+225}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{8+\sqrt{289}}{2}\right)^{\frac{1}{2}}-i\left(\frac{-8+\sqrt{289}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{8+17}{2}\right)^{\frac{1}{2}}-i\left(\frac{-8+17}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{25}{2}\right)^{\frac{1}{2}}-i\left(\frac{9}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\frac{5}{\sqrt{2}}-\frac{i 3}{\sqrt{2}}\right] \\
& = \pm 1 / \sqrt{ } 2(5-3 \mathrm{i})
\end{aligned}
$$

\therefore Square root of $(8-15 i)$ is $\pm 1 / \sqrt{ } 2(5-3 i)$
(vi) $-11-60 \sqrt{ }-1$

Given:
$-11-60 \sqrt{ }-1$
We know, $Z=-11-60 \sqrt{ }-1$
So, $\sqrt{ }(a+i b)=-11-60 \sqrt{ }-1$

$$
=-11-60 \mathrm{i}
$$

Here, b < 0
Let us simplify now,

$$
\begin{aligned}
\sqrt{-11-60 i} & = \pm\left[\left(\frac{-11+\sqrt{(-11)^{2}+(-60)^{2}}}{2}\right)^{\frac{1}{2}}-i\left(\frac{11+\sqrt{(-11)^{2}+(60)^{2}}}{2}\right)^{\frac{1}{2}}\right]_{[\text {Since, } \mathrm{b}<0]} \\
& = \pm\left[\left(\frac{-11+\sqrt{121+3600}}{2}\right)^{\frac{1}{2}}-i\left(\frac{11+\sqrt{121+3600}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{-11+\sqrt{3721}}{2}\right)^{\frac{1}{2}}-i\left(\frac{11+\sqrt{3721}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{-11+61}{2}\right)^{\frac{1}{2}}-i\left(\frac{11+61}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{50}{2}\right)^{\frac{1}{2}}-i\left(\frac{72}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[25^{\frac{1}{2}}-i 36^{\frac{1}{2}}\right] \\
& = \pm(5-6 \mathrm{i})
\end{aligned}
$$

$$
\begin{aligned}
& = \pm\left[\left(\frac{1+7}{2}\right)^{\frac{1}{2}}+i\left(\frac{-1+7}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{8}{2}\right)^{\frac{1}{2}}+i\left(\frac{6}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[4^{\frac{1}{2}}+i 3^{\frac{1}{2}}\right] \\
& = \pm[2+\sqrt{3} i]
\end{aligned}
$$

\therefore Square root of $(1+4 \sqrt{ }-3)$ is $\pm(2+\sqrt{ } 3 i)$
(viii) 4i

Given:
4i
We know, $Z=4 i$
So, $\sqrt{ }(a+i b)=4 i$
Here, $b>0$
Let us simplify now,

$$
\begin{aligned}
\sqrt{4 i} & = \pm\left[\left(\frac{0+\sqrt{0^{2}+4^{2}}}{2}\right)^{\frac{1}{2}}+i\left(\frac{0+\sqrt{0^{2}+4^{2}}}{2}\right)^{\frac{1}{2}}\right]_{[\text {Since, } \mathrm{b}>0]} \\
& = \pm\left[\left(\frac{0+\sqrt{0+16}}{2}\right)^{\frac{1}{2}}+i\left(\frac{0+\sqrt{0+16}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{0+\sqrt{16}}{2}\right)^{\frac{1}{2}}+i\left(\frac{0+\sqrt{16}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{0+4}{2}\right)^{\frac{1}{2}}+i\left(\frac{0+4}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{4}{2}\right)^{\frac{1}{2}}+i\left(\frac{4}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[2^{\frac{1}{2}}+i 2^{\frac{1}{2}}\right] \\
& = \pm[\sqrt{2}+\sqrt{2} i] \\
& = \pm \sqrt{2}(1+\mathrm{i})
\end{aligned}
$$

\therefore Square root of 4 i is $\pm \sqrt{ } 2(1+\mathrm{i})$
(ix) -i

Given:
-i
We know, $\mathrm{Z}=-\mathrm{i}$
So, $\sqrt{ }(a+i b)=-i$
Here, b < 0
Let us simplify now,

$$
\begin{aligned}
\sqrt{-i} & = \pm\left[\left(\frac{0+\sqrt{0^{2}+(-1)^{2}}}{2}\right)^{\frac{1}{2}}-i\left(\frac{0+\sqrt{0^{2}+(-1)^{2}}}{2}\right)^{\frac{1}{2}}\right]_{[\text {Since, } \mathrm{b}<0]} \\
& = \pm\left[\left(\frac{0+\sqrt{0+1}}{2}\right)^{\frac{1}{2}}-i\left(\frac{0+\sqrt{0+1}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{0+\sqrt{1}}{2}\right)^{\frac{1}{2}}-i\left(\frac{0+\sqrt{1}}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{0+1}{2}\right)^{\frac{1}{2}}-i\left(\frac{0+1}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\left(\frac{1}{2}\right)^{\frac{1}{2}}-i\left(\frac{1}{2}\right)^{\frac{1}{2}}\right] \\
& = \pm\left[\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right] \\
& = \pm 1 / \sqrt{2}(1-\mathrm{i})
\end{aligned}
$$

\therefore Square root of -i is $\pm 1 / \sqrt{2}(1-\mathrm{i})$

EXERCISE 13.4

PAGE NO: 13.57

1. Find the modulus and argument of the following complex numbers and hence express each of them in the polar form:
(i) $1+\mathbf{i}$
(ii) $\sqrt{ } \mathbf{3}+\mathbf{i}$
(iii) 1 - i
(iv) $(\mathbf{1}-\mathbf{i}) /(1+i)$
(v) $1 /(1+i)$
(vi) $(1+2 i) /(1-3 i)$
(vii) $\sin 120^{\circ}-i \cos 120^{\circ}$
(viii) $-16 /(1+i \sqrt{ } 3)$

Solution:

We know that the polar form of a complex number $\mathrm{Z}=\mathrm{x}+\mathrm{iy}$ is given by $\mathrm{Z}=|\mathrm{Z}|(\cos \theta+$ $\mathrm{i} \sin \theta$)
Where,
$|Z|=$ modulus of complex number $=\sqrt{ }\left(x^{2}+y^{2}\right)$
$\theta=\arg (\mathrm{z})=$ argument of complex number $=\tan ^{-1}(|\mathrm{y}| /|\mathrm{x}|)$
(i) $1+\mathrm{i}$

Given: $\mathrm{Z}=1+\mathrm{i}$
So now,
$|Z|=\sqrt{ }\left(x^{2}+y^{2}\right)$
$=\sqrt{ }\left(1^{2}+1^{2}\right)$
$=\sqrt{ }(1+1)$
$=\sqrt{ } 2$
$\theta=\tan ^{-1}(|\mathrm{y}| /|\mathrm{x}|)$
$=\tan ^{-1}(1 / 1)$
$=\tan ^{-1} 1$
Since $\mathrm{x}>0, \mathrm{y}>0$ complex number lies in $1^{\text {st }}$ quadrant and the value of θ is $0^{0} \leq \theta \leq 90^{\circ}$.
$\theta=\pi / 4$
$\mathrm{Z}=\sqrt{2}(\cos (\pi / 4)+\mathrm{i} \sin (\pi / 4))$
\therefore Polar form of $(1+\mathrm{i})$ is $\sqrt{ } 2(\cos (\pi / 4)+\mathrm{i} \sin (\pi / 4))$
(ii) $\sqrt{3}+\mathrm{i}$

Given: $Z=\sqrt{3}+i$
So now,

$$
\begin{aligned}
|Z| & =\sqrt{ }\left(x^{2}+y^{2}\right) \\
& =\sqrt{ }\left((\sqrt{ } 3)^{2}+1^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{ }(3+1) \\
& =\sqrt{ } 4 \\
& =2 \\
\theta & =\tan ^{-1}(|y| /|x|) \\
& =\tan ^{-1}(1 / \sqrt{ } 3)
\end{aligned}
$$

Since $x>0, y>0$ complex number lies in $1^{\text {st }}$ quadrant and the value of θ is $0^{0} \leq \theta \leq 90^{\circ}$. $\theta=\pi / 6$
$\mathrm{Z}=2(\cos (\pi / 6)+\mathrm{i} \sin (\pi / 6))$
\therefore Polar form of $(\sqrt{ } 3+\mathrm{i})$ is $2(\cos (\pi / 6)+\mathrm{i} \sin (\pi / 6))$
(iii) 1 - i

Given: Z = 1 - i
So now,

$$
\begin{aligned}
|\mathrm{Z}| & =\sqrt{ }\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \\
& =\sqrt{ }\left(1^{2}+(-1)^{2}\right) \\
& =\sqrt{ }(1+1) \\
& =\sqrt{ } 2 \\
\theta & =\tan ^{-1}(|y| /|\mathrm{x}|) \\
& =\tan ^{-1}(1 / 1) \\
& =\tan ^{-1} 1
\end{aligned}
$$

Since $\mathrm{x}>0, \mathrm{y}<0$ complex number lies in $2^{\text {nd }}$ quadrant and the value of θ is $-90^{\circ} \leq \theta \leq 0^{0}$.
$\theta=-\pi / 4$
$\mathrm{Z}=\sqrt{ } 2(\cos (-\pi / 4)+\mathrm{i} \sin (-\pi / 4))$
$=\sqrt{ } 2(\cos (\pi / 4)-\mathrm{i} \sin (\pi / 4))$
\therefore Polar form of $(1-\mathrm{i})$ is $\sqrt{2}(\cos (\pi / 4)-\mathrm{i} \sin (\pi / 4))$
(iv) $(1-\mathrm{i}) /(1+\mathrm{i})$

Given: $Z=(1-i) /(1+i)$
Let us multiply and divide by ($1-\mathrm{i}$), we get

$$
\begin{aligned}
z & =\frac{1-i}{1+i} \times \frac{1-i}{1-i} \\
& =\frac{(1-i)^{2}}{1^{2}-i^{2}} \\
& =\frac{1^{2}+i^{2}-2(1)(i)}{1-(-1)} \\
& =\frac{1+(-1)-2 i}{2} \\
& =\frac{-2 i}{2} \\
& =0-\mathrm{i}
\end{aligned}
$$

So now,

$$
\begin{aligned}
|Z| & =\sqrt{ }\left(x^{2}+y^{2}\right) \\
& =\sqrt{ }\left(0^{2}+(-1)^{2}\right) \\
& =\sqrt{ }(0+1) \\
& =\sqrt{ } 1 \\
\theta & =\tan ^{-1}(|y| /|x|) \\
& =\tan ^{-1}(1 / 0) \\
& =\tan ^{-1} \infty
\end{aligned}
$$

Since $x \geq 0, y<0$ complex number lies in $4^{\text {th }}$ quadrant and the value of θ is $-90^{\circ} \leq \theta \leq 0^{0}$.
$\theta=-\pi / 2$
$\mathrm{Z}=1(\cos (-\pi / 2)+\mathrm{i} \sin (-\pi / 2))$ $=1(\cos (\pi / 2)-\mathrm{i} \sin (\pi / 2))$
\therefore Polar form of $(1-i) /(1+i)$ is $1(\cos (\pi / 2)-i \sin (\pi / 2))$
(v) $1 /(1+i)$

Given: $Z=1 /(1+\mathrm{i})$
Let us multiply and divide by ($1-i$), we get

$$
\begin{aligned}
Z & =\frac{1}{1+i} \times \frac{1-i}{1-i} \\
& =\frac{1-i}{1^{2}-i^{2}} \\
& =\frac{1-i}{1-(-1)} \\
& =\frac{1-i}{2}
\end{aligned}
$$

So now,

$$
\begin{aligned}
|\mathrm{Z}| & =\sqrt{ }\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \\
& =\sqrt{ }\left((1 / 2)^{2}+(-1 / 2)^{2}\right) \\
& =\sqrt{ }(1 / 4+1 / 4) \\
& =\sqrt{ }(2 / 4) \\
& =1 / \sqrt{ } 2 \\
\theta & =\tan ^{-1}(|y| /|\mathrm{x}|) \\
& =\tan ^{-1}((1 / 2) /(1 / 2)) \\
& =\tan ^{-1} 1
\end{aligned}
$$

Since $\mathrm{x}>0, \mathrm{y}<0$ complex number lies in $4^{\text {th }}$ quadrant and the value of θ is $-90^{0} \leq \theta \leq 0^{0}$.
$\theta=-\pi / 4$
$\mathrm{Z}=1 / \sqrt{2}(\cos (-\pi / 4)+\mathrm{i} \sin (-\pi / 4))$
$=1 / \sqrt{2}(\cos (\pi / 4)-\mathrm{i} \sin (\pi / 4))$
\therefore Polar form of $1 /(1+\mathrm{i})$ is $1 / \sqrt{2}(\cos (\pi / 4)-\mathrm{i} \sin (\pi / 4))$
(vi) $(1+2 \mathrm{i}) /(1-3 \mathrm{i})$

Given: $Z=(1+2 \mathrm{i}) /(1-3 \mathrm{i})$
Let us multiply and divide by $(1+3 \mathrm{i})$, we get

$$
\begin{aligned}
z & =\frac{1+2 i}{1-3 i} \times \frac{1+3 i}{1+3 i} \\
& =\frac{1(1+3 i)+2 i(1+3 i)}{1^{2}-(3 i)^{2}} \\
& =\frac{1+3 i+2 i+6 i^{2}}{1-i^{2}} \\
& =\frac{1+5 i+6(-1)}{1-9(-1)} \\
& =\frac{-5+5 i}{10} \\
& =\frac{-1+i}{2}
\end{aligned}
$$

So now,

$$
\begin{aligned}
|\mathrm{Z}| & =\sqrt{ }\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \\
& =\sqrt{ }\left((-1 / 2)^{2}+(1 / 2)^{2}\right) \\
& =\sqrt{ }(1 / 4+1 / 4) \\
& =\sqrt{ }(2 / 4) \\
& =1 / \sqrt{ } 2 \\
\theta & =\tan ^{-1}(|\mathrm{y}| /|\mathrm{x}|) \\
& =\tan ^{-1}((1 / 2) /(1 / 2)) \\
& =\tan ^{-1} 1
\end{aligned}
$$

Since $\mathrm{x}<0, \mathrm{y}>0$ complex number lies in $2^{\text {nd }}$ quadrant and the value of θ is $90^{\circ} \leq \theta \leq 180^{\circ}$.
$\theta=3 \pi / 4$
$\mathrm{Z}=1 / \sqrt{2}(\cos (3 \pi / 4)+\mathrm{i} \sin (3 \pi / 4))$
\therefore Polar form of $(1+2 \mathrm{i}) /(1-3 \mathrm{i})$ is $1 / \sqrt{2}(\cos (3 \pi / 4)+\mathrm{i} \sin (3 \pi / 4))$
(vii) $\sin 120^{\circ}-\mathrm{i} \cos 120^{\circ}$

Given: $\mathrm{Z}=\sin 120^{\circ}-\mathrm{i} \cos 120^{\circ}$

$$
\begin{aligned}
& =\sqrt{ } 3 / 2-i(-1 / 2) \\
& =\sqrt{ } 3 / 2+i(1 / 2)
\end{aligned}
$$

So now,

$$
\begin{aligned}
|Z| & =\sqrt{ }\left(x^{2}+y^{2}\right) \\
& =\sqrt{ }\left((\sqrt{ } 3 / 2)^{2}+(1 / 2)^{2}\right) \\
& =\sqrt{ }(3 / 4+1 / 4) \\
& =\sqrt{ }(4 / 4) \\
& =\sqrt{ } 1 \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
\theta & =\tan ^{-1}(|y| /|\mathrm{x}|) \\
& =\tan ^{-1}((1 / 2) /(\sqrt{ } 3 / 2)) \\
& =\tan ^{-1}(1 / \sqrt{ } 3)
\end{aligned}
$$

Since $x>0, y>0$ complex number lies in $1^{\text {st }}$ quadrant and the value of θ is $0^{0} \leq \theta \leq 90^{0}$.
$\theta=\pi / 6$
$\mathrm{Z}=1(\cos (\pi / 6)+\mathrm{i} \sin (\pi / 6))$
\therefore Polar form of $\sqrt{3} / 2+\mathrm{i}(1 / 2)$ is $1(\cos (\pi / 6)+\mathrm{i} \sin (\pi / 6))$
(viii) $-16 /(1+\mathrm{i} \sqrt{ } 3)$

Given: $Z=-16 /(1+i \sqrt{ } 3)$
Let us multiply and divide by ($1-\mathrm{i} \sqrt{ } 3$), we get

$$
\begin{aligned}
Z & =\frac{-16}{1+i \sqrt{3}} \times \frac{1-i \sqrt{3}}{1-i \sqrt{3}} \\
& =\frac{-16+i 16 \sqrt{3}}{1^{2}-(i \sqrt{3})^{2}} \\
& =\frac{-16+i 16 \sqrt{3}}{1-3 i^{2}} \\
& =\frac{-16+i 16 \sqrt{3}}{1-3(-1)} \\
& =\frac{-16+i 16 \sqrt{3}}{4} \\
& =-4+\mathrm{i} 4 \sqrt{3}
\end{aligned}
$$

So now,

$$
\begin{aligned}
|\mathrm{Z}| & =\sqrt{ }\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \\
& =\sqrt{ }\left((-4)^{2}+(4 \sqrt{ } 3)^{2}\right) \\
& =\sqrt{ }(16+48) \\
& =\sqrt{ }(64) \\
& =8 \\
\theta & =\tan ^{-1}(|y| /|x|) \\
& =\tan ^{-1}((4 \sqrt{ } 3) / 4) \\
& =\tan ^{-1}(\sqrt{ } 3)
\end{aligned}
$$

Since $\mathrm{x}<0, \mathrm{y}>0$ complex number lies in $2^{\text {nd }}$ quadrant and the value of θ is $90^{\circ} \leq \theta \leq 180^{\circ}$.
$\theta=2 \pi / 3$
$\mathrm{Z}=8(\cos (2 \pi / 3)+\mathrm{i} \sin (2 \pi / 3))$
\therefore Polar form of $-16 /(1+\mathrm{i} \sqrt{ } 3)$ is $8(\cos (2 \pi / 3)+\mathrm{i} \sin (2 \pi / 3))$

2. Write $\left(\mathbf{i}^{25}\right)^{3}$ in polar form.

Solution:

Given: $Z=\left(\mathrm{i}^{25}\right)^{3}$

$$
=i^{75}
$$

$$
\begin{aligned}
& =\mathrm{i}^{74} \cdot \mathrm{i} \\
& =\left(\mathrm{i}^{2}\right)^{37} \cdot \mathrm{i} \\
& =(-1)^{37} \cdot \mathrm{i} \\
& =(-1) \cdot \mathrm{i} \\
& =-\mathrm{i} \\
& =0-\mathrm{i}
\end{aligned}
$$

So now,

$$
\begin{aligned}
|Z| & =\sqrt{ }\left(x^{2}+y^{2}\right) \\
& =\sqrt{ }\left(0^{2}+(-1)^{2}\right) \\
& =\sqrt{ }(0+1) \\
& =\sqrt{ } 1 \\
\theta & =\tan ^{-1}(|y| /|x|) \\
& =\tan ^{-1}(1 / 0) \\
& =\tan ^{-1} \infty
\end{aligned}
$$

Since $x \geq 0, y<0$ complex number lies in $4^{\text {th }}$ quadrant and the value of θ is $-90^{\circ} \leq \theta \leq 0^{0}$.
$\theta=-\pi / 2$
$\mathrm{Z}=1(\cos (-\pi / 2)+\mathrm{i} \sin (-\pi / 2))$
$=1(\cos (\pi / 2)-\mathrm{i} \sin (\pi / 2))$
\therefore Polar form of $\left(\mathrm{i}^{25}\right)^{3}$ is $1(\cos (\pi / 2)-\mathrm{i} \sin (\pi / 2))$
3. Express the following complex numbers in the form $r(\cos \theta+i \sin \theta)$:
(i) $1+i \tan \alpha$
(ii) $\boldsymbol{\operatorname { t a n }} \alpha-\mathrm{i}$
(iii) $1-\sin \alpha+i \cos \alpha$
(iv) $(\mathbf{1}-\mathrm{i}) /(\cos \pi / 3+i \sin \pi / 3)$

Solution:

(i) $1+i \tan \alpha$

Given: $Z=1+i \tan \alpha$
We know that the polar form of a complex number $\mathrm{Z}=\mathrm{x}+\mathrm{iy}$ is given by $\mathrm{Z}=|\mathrm{Z}|(\cos \theta+$ $\mathrm{i} \sin \theta$)
Where,
$|Z|=$ modulus of complex number $=\sqrt{ }\left(x^{2}+y^{2}\right)$
$\theta=\arg (\mathrm{z})=$ argument of complex number $=\tan ^{-1}(|\mathrm{y}| /|\mathrm{x}|)$
We also know that $\tan \alpha$ is a periodic function with period π.
So α is lying in the interval $[0, \pi / 2) \cup(\pi / 2, \pi]$.
Let us consider case 1:
$\alpha \in[0, \pi / 2)$
So now,
$|Z|=r=\sqrt{ }\left(x^{2}+y^{2}\right)$
$=\sqrt{ }\left(1^{2}+\tan ^{2} \alpha\right)$
$=\sqrt{ }\left(\sec ^{2} \alpha\right)$
$=|\sec \alpha| \operatorname{since}, \sec \alpha$ is positive in the interval $[0, \pi / 2)$
$\theta=\tan ^{-1}(|y| /|x|)$
$=\tan ^{-1}(\tan \alpha / 1)$
$=\tan ^{-1}(\tan \alpha)$
$=\alpha$ since, $\tan \alpha$ is positive in the interval $[0, \pi / 2)$
\therefore Polar form is $\mathrm{Z}=\sec \alpha(\cos \alpha+\mathrm{i} \sin \alpha)$

Let us consider case 2:

$\alpha \in(\pi / 2, \pi]$
So now,

$$
\begin{aligned}
&|\mathrm{Z}|=\mathrm{r}=\sqrt{ }\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \\
&=\sqrt{ }\left(1^{2}+\tan ^{2} \alpha\right) \\
&=\sqrt{ }\left(\sec ^{2} \alpha\right) \\
&=|\sec \alpha| \\
&=-\sec \alpha \operatorname{since}, \sec \alpha \text { is negative in the interval }(\pi / 2, \pi] \\
& \theta=\tan ^{-1}(|y| /|\mathrm{x}|) \\
&= \tan ^{-1}(\tan \alpha / 1) \\
&= \tan ^{-1}(\tan \alpha) \\
&=-\pi+\alpha \operatorname{since}, \tan \alpha \text { is negative in the interval }(\pi / 2, \pi] \\
& \theta=--\pi+\alpha\left[\operatorname{since}, \theta \operatorname{lies} \text { in } 4^{\text {th }} \text { quadrant }\right] \\
& \mathrm{Z}=-\sec \alpha(\cos (\alpha-\pi)+\mathrm{i} \sin (\alpha-\pi)) \\
& \therefore \text { Polar form is } \mathrm{Z}=-\sec \alpha(\cos (\alpha-\pi)+\mathrm{i} \sin (\alpha-\pi))
\end{aligned}
$$

(ii) $\tan \alpha-\mathrm{i}$

Given: $Z=\tan \alpha-i$
We know that the polar form of a complex number $Z=x+$ iy is given by $Z=|Z|(\cos \theta+$ $\mathrm{i} \sin \theta$)
Where,
$|Z|=$ modulus of complex number $=\sqrt{ }\left(x^{2}+y^{2}\right)$
$\theta=\arg (\mathrm{z})=\operatorname{argument}$ of complex number $=\tan ^{-1}(|\mathrm{y}| /|\mathrm{x}|)$
We also know that $\tan \alpha$ is a periodic function with period π.
So α is lying in the interval $[0, \pi / 2) \cup(\pi / 2, \pi]$.

Let us consider case 1:

$\alpha \in[0, \pi / 2)$
So now,

$$
\begin{aligned}
|\mathrm{Z}|=\mathrm{r} & =\sqrt{ }\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \\
& =\sqrt{ }\left(\tan ^{2} \alpha+1^{2}\right) \\
& =\sqrt{ }\left(\sec ^{2} \alpha\right) \\
& =|\sec \alpha| \operatorname{since}, \sec \alpha \text { is positive in the interval }[0, \pi / 2) \\
& =\sec \alpha \\
\theta= & \tan ^{-1}(|\mathrm{y}| /|\mathrm{x}|) \\
= & \tan ^{-1}(1 / \tan \alpha) \\
= & \tan ^{-1}(\cot \alpha) \operatorname{since}, \cot \alpha \text { is positive in the interval }[0, \pi / 2) \\
= & \alpha-\pi / 2\left[\text { since, } \theta \text { lies in } 4^{\text {th }} \text { quadrant }\right]
\end{aligned}
$$

$\mathrm{Z}=\sec \alpha(\cos (\alpha-\pi / 2)+\mathrm{i} \sin (\alpha-\pi / 2))$
\therefore Polar form is $\mathrm{Z}=\sec \alpha(\cos (\alpha-\pi / 2)+\mathrm{i} \sin (\alpha-\pi / 2))$

Let us consider case 2:

$\alpha \in(\pi / 2, \pi]$
So now,

$$
\begin{aligned}
|\mathrm{Z}|= & \mathrm{r}
\end{aligned}=\sqrt{ }\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) .
$$

$$
\theta=\tan ^{-1}(|\mathrm{y}| /|\mathrm{x}|)
$$

$$
=\tan ^{-1}(1 / \tan \alpha)
$$

$$
=\tan ^{-1}(\cot \alpha)
$$

$$
=\pi / 2+\alpha \text { since, } \cot \alpha \text { is negative in the interval }(\pi / 2, \pi]
$$

$$
\theta=\pi / 2+\alpha\left[\text { since, } \theta \text { lies in } 3^{\text {th }} \text { quadrant }\right]
$$

$\mathrm{Z}=-\sec \alpha(\cos (\pi / 2+\alpha)+\mathrm{i} \sin (\pi / 2+\alpha))$
\therefore Polar form is $\mathrm{Z}=-\sec \alpha(\cos (\pi / 2+\alpha)+\mathrm{i} \sin (\pi / 2+\alpha))$
(iii) $1-\sin \alpha+i \cos \alpha$

Given: $Z=1-\sin \alpha+i \cos \alpha$
By using the formulas,
$\operatorname{Sin}^{2} \theta+\cos ^{2} \theta=1$
$\operatorname{Sin} 2 \theta=2 \sin \theta \cos \theta$
$\operatorname{Cos} 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
So,

$$
\begin{aligned}
z & =\left(\sin ^{2}\left(\frac{\alpha}{2}\right)+\cos ^{2}\left(\frac{\alpha}{2}\right)-2 \sin \left(\frac{\alpha}{2}\right) \cos \left(\frac{\alpha}{2}\right)\right)+i\left(\cos ^{2}\left(\frac{\alpha}{2}\right)-\sin ^{2}\left(\frac{\alpha}{2}\right)\right) \\
& =\left(\cos \left(\frac{\alpha}{2}\right)-\sin \left(\frac{\alpha}{2}\right)\right)^{2}+i\left(\cos ^{2}\left(\frac{\alpha}{2}\right)-\sin ^{2}\left(\frac{\alpha}{2}\right)\right)
\end{aligned}
$$

We know that the polar form of a complex number $\mathrm{Z}=\mathrm{x}+$ iy is given by $\mathrm{Z}=|\mathrm{Z}|(\cos \theta+$ $\mathrm{i} \sin \theta$)
Where,
$|Z|=$ modulus of complex number $=\sqrt{ }\left(x^{2}+y^{2}\right)$
$\theta=\arg (\mathrm{z})=\operatorname{argument}$ of complex number $=\tan ^{-1}(|\mathrm{y}| /|\mathrm{x}|)$
Now,

$$
\begin{aligned}
|z| & =\sqrt{(1-\sin \alpha)^{2}+\cos ^{2} \alpha} \\
& =\sqrt{1+\sin ^{2} \alpha-2 \sin \alpha+\cos ^{2} \alpha} \\
& =\sqrt{1+1-2 \sin \alpha} \\
& =\sqrt{(2)(1-\sin \alpha)} \\
& =\sqrt{(2)\left(\sin ^{2}\left(\frac{\alpha}{2}\right)+\cos ^{2}\left(\frac{\alpha}{2}\right)-2 \sin \left(\frac{\alpha}{2}\right) \cos \left(\frac{\alpha}{2}\right)\right)} \\
& =\sqrt{(2)\left(\cos \left(\frac{\alpha}{2}\right)-\sin \left(\frac{\alpha}{2}\right)\right)^{2}} \\
& =\left|\sqrt{2}\left(\cos \left(\frac{\alpha}{2}\right)-\sin \left(\frac{\alpha}{2}\right)\right)\right| \\
\theta & =\tan ^{-1}\left(\frac{\cos 2\left(\frac{\alpha}{2}\right)-\sin 2\left(\frac{\alpha}{2}\right)}{\left(\cos \left(\frac{\alpha}{2}\right)-\sin \left(\frac{\alpha}{2}\right)\right)^{2}}\right) \\
& =\tan ^{-1}\left(\frac{\left(\cos \left(\frac{\alpha}{2}\right)-\sin \left(\frac{\alpha}{2}\right)\right)\left(\cos \left(\frac{\alpha}{2}\right)+\sin \left(\frac{\alpha}{2}\right)\right)}{\left(\cos \left(\frac{\alpha}{2}\right)-\sin \left(\frac{\alpha}{2}\right)\right)^{2}}\right) \\
& =\tan ^{-1}\left(\frac{\cos \left(\frac{\alpha}{2}\right)+\sin \left(\frac{\alpha}{2}\right)}{\cos \left(\frac{\alpha}{2}\right)-\sin \left(\frac{\alpha}{2}\right)}\right) \\
& =\tan ^{-1}\left(\frac{\cos \left(\frac{\alpha}{2}\right)\left(1+\tan \left(\frac{\alpha}{2}\right)\right)}{\cos \left(\frac{\alpha}{2}\right)\left(1-\tan \left(\frac{\alpha}{2}\right)\right)}\right) \\
& =\tan ^{-1}\left(\frac{\tan \left(\frac{\pi}{4}\right)+\tan \left(\frac{\alpha}{2}\right)}{1-\tan \left(\frac{\pi}{4}\right) \tan \left(\frac{\alpha}{2}\right)}\right) \\
& =\tan ^{-1}\left(\tan \left(\frac{\pi}{4}+\frac{\alpha}{2}\right)\right) \\
& =1
\end{aligned}
$$

We know that sine and cosine functions are periodic with period 2π Here we have 3 intervals:
$0 \leq \alpha \leq \pi / 2$
$\pi / 2 \leq \alpha \leq 3 \pi / 2$
$3 \pi / 2 \leq \alpha \leq 2 \pi$

Let us consider case 1:

In the interval $0 \leq \alpha \leq \pi / 2$
$\operatorname{Cos}(\alpha / 2)>\sin (\alpha / 2)$ and also $0<\pi / 4+\alpha / 2<\pi / 2$
So,

$$
\begin{aligned}
|z| & =\left|\sqrt{2}\left(\cos \left(\frac{\alpha}{2}\right)-\sin \left(\frac{\alpha}{2}\right)\right)\right| \\
& =\sqrt{2}\left(\cos \left(\frac{\alpha}{2}\right)-\sin \left(\frac{\alpha}{2}\right)\right) \\
\theta & =\tan ^{-1}\left(\tan \left(\frac{\pi}{4}+\frac{\alpha}{2}\right)\right) \\
& =\pi / 4+\alpha / 2\left[\text { since, } \theta \text { lies in } 1^{\text {st }} \text { quadrant }\right]
\end{aligned}
$$

\therefore Polar form is $Z=\sqrt{ } 2(\cos (\alpha / 2)-\sin (\alpha / 2))(\cos (\pi / 4+\alpha / 2)+\mathrm{i} \sin (\pi / 4+\alpha / 2))$

Let us consider case 2:

In the interval $\pi / 2 \leq \alpha \leq 3 \pi / 2$
$\operatorname{Cos}(\alpha / 2)<\sin (\alpha / 2)$ and also $\pi / 2<\pi / 4+\alpha / 2<\pi$ So,

$$
\begin{aligned}
|z| & =\left|\sqrt{2}\left(\cos \left(\frac{\alpha}{2}\right)-\sin \left(\frac{\alpha}{2}\right)\right)\right| \\
& =-\sqrt{2}\left(\cos \left(\frac{\alpha}{2}\right)-\sin \left(\frac{\alpha}{2}\right)\right) \\
& =\sqrt{2}\left(\sin \left(\frac{\alpha}{2}\right)-\cos \left(\frac{\alpha}{2}\right)\right) \\
\theta & =\tan ^{-1}\left(\tan \left(\frac{\pi}{4}+\frac{\alpha}{2}\right)\right) \\
& =\pi-[\pi / 4+\alpha / 2]\left[\text { since, } \theta \text { lies in } 4^{\text {th }} \text { quadrant }\right] \\
& =3 \pi / 4-\alpha / 2
\end{aligned}
$$

Since, $(1-\sin \alpha)>0$ and $\cos \alpha<0$ [Z lies in $4^{\text {th }}$ quadrant]

$$
=\alpha / 2-3 \pi / 4
$$

\therefore Polar form is $Z=-\sqrt{2}(\cos (\alpha / 2)-\sin (\alpha / 2))(\cos (\alpha / 2-3 \pi / 4)+\mathrm{i} \sin (\alpha / 2-3 \pi / 4))$
Let us consider case 3:
In the interval $3 \pi / 2 \leq \alpha \leq 2 \pi$
$\operatorname{Cos}(\alpha / 2)<\sin (\alpha / 2)$ and also $\pi<\pi / 4+\alpha / 2<5 \pi / 4$
So,

$$
\begin{aligned}
|z| & =\left|\sqrt{2}\left(\cos \left(\frac{\alpha}{2}\right)-\sin \left(\frac{\alpha}{2}\right)\right)\right| \\
& =-\sqrt{2}\left(\cos \left(\frac{\alpha}{2}\right)-\sin \left(\frac{\alpha}{2}\right)\right) \\
& =\sqrt{2}\left(\sin \left(\frac{\alpha}{2}\right)-\cos \left(\frac{\alpha}{2}\right)\right) \\
\theta & =\tan ^{-1}(\tan (\pi / 4+\alpha / 2)) \\
& =\pi-(\pi / 4+\alpha / 2)[\text { since, } \theta \text { lies in 1st quadrant and tan's period is } \pi] \\
& =\alpha / 2-3 \pi / 4
\end{aligned}
$$

\therefore Polar form is $Z=-\sqrt{2}(\cos (\alpha / 2)-\sin (\alpha / 2))(\cos (\alpha / 2-3 \pi / 4)+\mathrm{i} \sin (\alpha / 2-3 \pi / 4))$
(iv) $(1-\mathrm{i}) /(\cos \pi / 3+i \sin \pi / 3)$

Given: $Z=(1-i) /(\cos \pi / 3+i \sin \pi / 3)$
Let us multiply and divide by ($1-\mathrm{i} \sqrt{ } 3$), we get

$$
\begin{aligned}
z & =\frac{1-i}{\frac{1}{2}+\frac{\sqrt{3}}{2}} \\
& =2 \times \frac{1-i}{1+i \sqrt{3}} \times \frac{1-i \sqrt{3}}{1-i \sqrt{3}} \\
& =2 \times \frac{1+i^{2} \sqrt{3}-i(1+\sqrt{3})}{1-i^{2} 3} \\
& =2 \times \frac{(1+(-\sqrt{3})-i(1+\sqrt{3}))}{1-(-3)} \\
& =2 \times \frac{(1-\sqrt{3})-i(1+\sqrt{3})}{4} \\
& =\frac{(1-\sqrt{3})-i(1+\sqrt{3})}{2}
\end{aligned}
$$

We know that the polar form of a complex number $\mathrm{Z}=\mathrm{x}+$ iy is given by $\mathrm{Z}=|\mathrm{Z}|(\cos \theta+$ $i \sin \theta$)
Where,
$|Z|=$ modulus of complex number $=\sqrt{ }\left(x^{2}+y^{2}\right)$
$\theta=\arg (\mathrm{z})=\operatorname{argument}$ of complex number $=\tan ^{-1}(|\mathrm{y}| /|\mathrm{x}|)$
Now,

$$
\begin{aligned}
|z| & =\sqrt{\left(\frac{1-\sqrt{3}}{2}\right)^{2}+\left(\frac{-1-\sqrt{3}}{2}\right)^{2}} \\
& =\sqrt{\frac{1+3-2 \sqrt{3}+1+2+2 \sqrt{3}}{4}} \\
& =\sqrt{\frac{8}{4}} \\
& =\sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\left|\frac{\frac{1+\sqrt{3}}{2}}{\frac{1-\sqrt{3}}{2}}\right|\right) \\
& =\tan ^{-1}\left(\left|\frac{1+\sqrt{3}}{1-\sqrt{3}}\right|\right) \\
& =\tan ^{-1}\left(\left|\frac{(1+\sqrt{3})(1+\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})}\right|\right) \\
& =\tan ^{-1}\left(\left|\frac{1+3+2 \sqrt{3}}{1-3}\right|\right) \\
& =\tan ^{-1}\left(\frac{4+2 \sqrt{3}}{2}\right)
\end{aligned}
$$

Since $x<0, y<0$ complex number lies in $3^{\text {rd }}$ quadrant and the value of θ is $180^{\circ} \leq \theta \leq-90^{\circ}$.

$$
\begin{aligned}
& =\tan ^{-1}(2+\sqrt{ } 3) \\
& =-7 \pi / 12
\end{aligned}
$$

$\mathrm{Z}=\sqrt{ } 2(\cos (-7 \pi / 12)+\mathrm{i} \sin (-7 \pi / 12))$
$=\sqrt{ } 2(\cos (7 \pi / 12)-i \sin (7 \pi / 12))$
\therefore Polar form of $(1-\mathrm{i}) /(\cos \pi / 3+\mathrm{i} \sin \pi / 3)$ is $\sqrt{ } 2(\cos (7 \pi / 12)-\mathrm{i} \sin (7 \pi / 12))$
4. If z_{1} and z_{2} are two complex number such that $\left|z_{1}\right|=\left|z_{2}\right| \operatorname{and} \arg \left(z_{1}\right)+\arg \left(z_{2}\right)=\pi$, then show that $z_{1}=-\overline{\mathbf{z}_{2}}$

Solution:

Given:
$\left|\mathrm{z}_{1}\right|=\left|\mathrm{z}_{2}\right|$ and $\arg \left(\mathrm{z}_{1}\right)+\arg \left(\mathrm{z}_{2}\right)=\pi$
Let us assume $\arg \left(\mathrm{z}_{1}\right)=\theta$
$\arg \left(\mathrm{z}_{2}\right)=\pi-\theta$
We know that in the polar form, $\mathrm{z}=|\mathrm{z}|(\cos \theta+\mathrm{i} \sin \theta)$

$$
\begin{align*}
z_{1} & =\left|z_{1}\right|(\cos \theta+i \sin \theta) \ldots \ldots \ldots \ldots \tag{i}\\
z_{2} & =\left|z_{2}\right|(\cos (\pi-\theta)+i \sin (\pi-\theta)) \\
& =\left|z_{2}\right|(-\cos \theta+i \sin \theta) \\
& =-\left|z_{2}\right|(\cos \theta-i \sin \theta)
\end{align*}
$$

Now let us find the conjugate of

$$
\overline{z_{2}}=-\left|z_{2}\right|(\cos \theta+i \sin \theta) \ldots \ldots \text { (ii) (since, }\left|\overline{z_{2}}=\left|z_{2}\right|\right)
$$

Now,

$$
\begin{aligned}
\mathrm{z}_{1} / \overline{z_{2}} & =\left[\left|\mathrm{z}_{1}\right|(\cos \theta+\mathrm{i} \sin \theta)\right] /\left[-\left|\mathrm{z}_{2}\right|(\cos \theta+\mathrm{i} \sin \theta)\right] \\
& =-\left|\mathrm{z}_{1}\right| /\left|\mathrm{z}_{2}\right|\left[\text { since, }\left|\mathrm{z}_{1}\right|=\left|\mathrm{z}_{2}\right|\right] \\
& =-1
\end{aligned}
$$

When we cross multiply we get,
$\mathrm{z}_{1}=-\bar{z}_{2}$
Hence proved.
5. If z_{1}, z_{2} and z_{3}, z_{4} are two pairs of conjugate complex numbers, prove that arg $\left(z_{1} / z_{4}\right)+\arg \left(z_{2} / z_{3}\right)=0$

Solution:

Given:

$$
\begin{aligned}
& z_{1}=\overline{z_{2}} \\
& z_{3}=\bar{z}_{4}
\end{aligned}
$$

We know that $\arg \left(z_{1} / z_{2}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$
So,

$$
\begin{aligned}
\arg \left(z_{1} / z_{4}\right)+\arg \left(z_{2} / z_{3}\right) & =\arg \left(z_{1}\right)-\arg \left(z_{4}\right)+\arg \left(z_{2}\right)-\arg \left(z_{3}\right) \\
& =\arg \left(\bar{z}_{2}\right)-\arg \left(z_{4}\right)+\arg \left(z_{2}\right)-\arg \left(\bar{z}_{4}\right) \\
& =\left[\arg \left(z_{2}\right)+\arg \left(\bar{z}_{2}\right)\right]-\left[\arg \left(z_{4}\right)+\arg \left(\bar{z}_{4}\right)\right] \\
& =0-0\left[\operatorname{since}, \arg \left(z_{)}\right)+\arg (\bar{z})=0\right] \\
& =0
\end{aligned}
$$

Hence proved.
6. Express $\sin \pi / 5+\mathrm{i}(1-\cos \pi / 5)$ in polar form.

Solution:

Given:
$\mathrm{Z}=\sin \pi / 5+\mathrm{i}(1-\cos \pi / 5)$
By using the formula,
$\sin 2 \theta=2 \sin \theta \cos \theta$
$1-\cos 2 \theta=2 \sin ^{2} \theta$
So,
$\mathrm{Z}=2 \sin \pi / 10 \cos \pi / 10+\mathrm{i}\left(2 \sin ^{2} \pi / 10\right)$
$=2 \sin \pi / 10(\cos \pi / 10+\mathrm{i} \sin \pi / 10)$
\therefore The polar form of $\sin \pi / 5+\mathrm{i}(1-\cos \pi / 5)$ is $2 \sin \pi / 10(\cos \pi / 10+\mathrm{i} \sin \pi / 10)$

