EXERCISE 14.1

Solve the following quadratic equations by factorization method only:

1. $x^{2}+1=0$

Solution:

Given: $x^{2}+1=0$
We know, $\mathrm{i}^{2}=-1 \Rightarrow 1=-\mathrm{i}^{2}$
By substituting $1=-\mathrm{i}^{2}$ in the above equation, we get
$\mathrm{x}^{2}-\mathrm{i}^{2}=0$
[By using the formula, $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$]
$(\mathrm{x}+\mathrm{i})(\mathrm{x}-\mathrm{i})=0$
$\mathrm{x}+\mathrm{i}=0$ or $\mathrm{x}-\mathrm{i}=0$
$\mathrm{x}=-\mathrm{i}$ or $\mathrm{x}=\mathrm{i}$
\therefore The roots of the given equation are i , -i
2. $9 x^{2}+4=0$

Solution:

Given: $9 x^{2}+4=0$
$9 \mathrm{x}^{2}+4 \times 1=0$
We know, $\mathrm{i}^{2}=-1 \Rightarrow 1=-\mathrm{i}^{2}$
By substituting $1=-\mathrm{i}^{2}$ in the above equation, we get
So,
$9 \mathrm{x}^{2}+4\left(-\mathrm{i}^{2}\right)=0$
$9 \mathrm{x}^{2}-4 \mathrm{i}^{2}=0$
$(3 \mathrm{x})^{2}-(2 \mathrm{i})^{2}=0$
[By using the formula, $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$]
$(3 \mathrm{x}+2 \mathrm{i})(3 \mathrm{x}-2 \mathrm{i})=0$
$3 \mathrm{x}+2 \mathrm{i}=0$ or $3 \mathrm{x}-2 \mathrm{i}=0$
$3 \mathrm{x}=-2 \mathrm{i}$ or $3 \mathrm{x}=2 \mathrm{i}$
$\mathrm{x}=-2 \mathrm{i} / 3$ or $\mathrm{x}=2 \mathrm{i} / 3$
\therefore The roots of the given equation are $2 \mathrm{i} / 3,-2 \mathrm{i} / 3$
3. $x^{2}+2 x+5=0$

Solution:

Given: $x^{2}+2 x+5=0$
$x^{2}+2 x+1+4=0$
$x^{2}+2(x)(1)+1^{2}+4=0$
$(x+1)^{2}+4=0\left[\right.$ since, $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right]$
$(\mathrm{x}+1)^{2}+4 \times 1=0$
We know, $\mathrm{i}^{2}=-1 \Rightarrow 1=-\mathrm{i}^{2}$
By substituting $1=-\mathrm{i}^{2}$ in the above equation, we get
$(\mathrm{x}+1)^{2}+4\left(-\mathrm{i}^{2}\right)=0$
$(\mathrm{x}+1)^{2}-4 \mathrm{i}^{2}=0$
$(x+1)^{2}-(2 \mathrm{i})^{2}=0$
[By using the formula, $\left.a^{2}-b^{2}=(a+b)(a-b)\right]$
$(\mathrm{x}+1+2 \mathrm{i})(\mathrm{x}+1-2 \mathrm{i})=0$
$\mathrm{x}+1+2 \mathrm{i}=0$ or $\mathrm{x}+1-2 \mathrm{i}=0$
$\mathrm{x}=-1-2 \mathrm{i}$ or $\mathrm{x}=-1+2 \mathrm{i}$
\therefore The roots of the given equation are $-1+2 \mathrm{i},-1-2 \mathrm{i}$
4. $4 x^{2}-12 x+25=0$

Solution:

Given: $4 x^{2}-12 x+25=0$
$4 x^{2}-12 x+9+16=0$
$(2 \mathrm{x})^{2}-2(2 \mathrm{x})(3)+3^{2}+16=0$
$(2 x-3)^{2}+16=0\left[\right.$ Since, $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right]$
$(2 x-3)^{2}+16 \times 1=0$
We know, $\mathrm{i}^{2}=-1 \Rightarrow 1=-\mathrm{i}^{2}$
By substituting $1=-\mathrm{i}^{2}$ in the above equation, we get
$(2 x-3)^{2}+16\left(-\mathrm{i}^{2}\right)=0$
$(2 \mathrm{x}-3)^{2}-16 \mathrm{i}^{2}=0$
$(2 x-3)^{2}-(4 i)^{2}=0$
[By using the formula, $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$]
$(2 \mathrm{x}-3+4 \mathrm{i})(2 \mathrm{x}-3-4 \mathrm{i})=0$
$2 \mathrm{x}-3+4 \mathrm{i}=0$ or $2 \mathrm{x}-3-4 \mathrm{i}=0$
$2 \mathrm{x}=3-4 \mathrm{i}$ or $2 \mathrm{x}=3+4 \mathrm{i}$
$\mathrm{x}=3 / 2-2 \mathrm{i}$ or $\mathrm{x}=3 / 2+2 \mathrm{i}$
\therefore The roots of the given equation are $3 / 2+2 i, 3 / 2-2 i$
5. $x^{2}+x+1=0$

Solution:

Given: $x^{2}+x+1=0$
$x^{2}+x+1 / 4+3 / 4=0$
$x^{2}+2(x)(1 / 2)+(1 / 2)^{2}+3 / 4=0$
$(x+1 / 2)^{2}+3 / 4=0\left[\right.$ Since, $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right]$
$(x+1 / 2)^{2}+3 / 4 \times 1=0$
We know, $\mathrm{i}^{2}=-1 \Rightarrow 1=-\mathrm{i}^{2}$

By substituting $1=-\mathrm{i}^{2}$ in the above equation, we get
$(x+1 / 2)^{2}+3 / 4(-1)^{2}=0$
$(x+1 / 2)^{2}+3 / 4 i^{2}=0$
$(x+1 / 2)^{2}-(\sqrt{3} \mathrm{i} / 2)^{2}=0$
[By using the formula, $\left.a^{2}-b^{2}=(a+b)(a-b)\right]$
$(x+1 / 2+\sqrt{ } 3 \mathrm{i} / 2)(\mathrm{x}+1 / 2-\sqrt{3} \mathrm{i} / 2)=0$
$(x+1 / 2+\sqrt{3} i / 2)=0$ or $(x+1 / 2-\sqrt{3} i / 2)=0$
$x=-1 / 2-\sqrt{ } 3 \mathrm{i} / 2$ or $\mathrm{x}=-1 / 2+\sqrt{ } 3 \mathrm{i} / 2$
\therefore The roots of the given equation are $-1 / 2+\sqrt{ } 3 \mathrm{i} / 2,-1 / 2-\sqrt{ } 3 \mathrm{i} / 2$
6. $4 x^{2}+1=0$

Solution:
Given: $4 \mathrm{x}^{2}+1=0$
We know, $\mathrm{i}^{2}=-1 \Rightarrow 1=-\mathrm{i}^{2}$
By substituting $1=-\mathrm{i}^{2}$ in the above equation, we get
$4 \mathrm{x}^{2}-\mathrm{i}^{2}=0$
$(2 \mathrm{x})^{2}-\mathrm{i}^{2}=0$
[By using the formula, $\left.a^{2}-b^{2}=(a+b)(a-b)\right]$
$(2 \mathrm{x}+\mathrm{i})(2 \mathrm{x}-\mathrm{i})=0$
$2 \mathrm{x}+\mathrm{i}=0$ or $2 \mathrm{x}-\mathrm{i}=0$
$2 \mathrm{x}=-\mathrm{i}$ or $2 \mathrm{x}=\mathrm{i}$
$\mathrm{x}=-\mathrm{i} / 2$ or $\mathrm{x}=\mathrm{i} / 2$
\therefore The roots of the given equation are $\mathrm{i} / 2,-\mathrm{i} / 2$
7. $x^{2}-4 x+7=0$

Solution:

Given: $x^{2}-4 x+7=0$
$\mathrm{x}^{2}-4 \mathrm{x}+4+3=0$
$\mathrm{x}^{2}-2(\mathrm{x})(2)+2^{2}+3=0$
$(\mathrm{x}-2)^{2}+3=0\left[\right.$ Since, $\left.(\mathrm{a}-\mathrm{b})^{2}=\mathrm{a}^{2}-2 \mathrm{ab}+\mathrm{b}^{2}\right]$
$(\mathrm{x}-2)^{2}+3 \times 1=0$
We know, $\mathrm{i}^{2}=-1 \Rightarrow 1=-\mathrm{i}^{2}$
By substituting $1=-\mathrm{i}^{2}$ in the above equation, we get
$(\mathrm{x}-2)^{2}+3\left(-\mathrm{i}^{2}\right)=0$
$(\mathrm{x}-2)^{2}-3 \mathrm{i}^{2}=0$
$(x-2)^{2}-(\sqrt{ } 3 i)^{2}=0$
[By using the formula, $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$]
$(x-2+\sqrt{3} i)(x-2-\sqrt{3} i)=0$
$(x-2+\sqrt{ } 3 i)=0$ or $(x-2-\sqrt{ } 3 i)=0$
$x=2-\sqrt{ } 3 i$ or $x=2+\sqrt{ } 3 i$
$x=2 \pm \sqrt{ } 3 i$
\therefore The roots of the given equation are $2 \pm \sqrt{ } 3 \mathrm{i}$
8. $x^{2}+2 x+2=0$

Solution:

Given: $\mathrm{x}^{2}+2 \mathrm{x}+2=0$
$x^{2}+2 x+1+1=0$
$\mathrm{x}^{2}+2(\mathrm{x})(1)+1^{2}+1=0$
$(\mathrm{x}+1)^{2}+1=0\left[\because(\mathrm{a}+\mathrm{b})^{2}=\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}\right]$
We know, $\mathrm{i}^{2}=-1 \Rightarrow 1=-\mathrm{i}^{2}$
By substituting $1=-\mathrm{i}^{2}$ in the above equation, we get
$(\mathrm{x}+1)^{2}+\left(-\mathrm{i}^{2}\right)=0$
$(\mathrm{x}+1)^{2}-\mathrm{i}^{2}=0$
$(\mathrm{x}+1)^{2}-(\mathrm{i})^{2}=0$
[By using the formula, $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$]
$(\mathrm{x}+1+\mathrm{i})(\mathrm{x}+1-\mathrm{i})=0$
$\mathrm{x}+1+\mathrm{i}=0$ or $\mathrm{x}+1-\mathrm{i}=0$
$\mathrm{x}=-1-\mathrm{i}$ or $\mathrm{x}=-1+\mathrm{i}$
$x=-1 \pm i$
\therefore The roots of the given equation are $-1 \pm \mathrm{i}$
9. $5 x^{2}-6 x+2=0$

Solution:

Given: $5 x^{2}-6 x+2=0$
We shall apply discriminant rule,
Where, $x=\left(-b \pm \sqrt{ }\left(b^{2}-4 a c\right)\right) / 2 a$
Here, $a=5, b=-6, c=2$
So,

$$
\begin{aligned}
& \mathrm{x}=\left(-(-6) \pm \sqrt{ }\left(-6^{2}-4(5)(2)\right)\right) / 2(5) \\
&=(6 \pm \sqrt{ }(36-40)) / 10 \\
&=(6 \pm \sqrt{ }(-4)) / 10 \\
&=(6 \pm \sqrt{ } 4(-1)) / 10 \\
& \text { We have } \mathrm{i}^{2}=-1
\end{aligned}
$$

By substituting $-1=\mathrm{i}^{2}$ in the above equation, we get

$$
\begin{aligned}
\mathrm{x} & =\left(6 \pm \sqrt{ } 4 \mathrm{i}^{2}\right) / 10 \\
& =(6 \pm 2 \mathrm{i}) / 10 \\
& =2(3 \pm \mathrm{i}) / 10 \\
& =(3 \pm \mathrm{i}) / 5
\end{aligned}
$$

$x=3 / 5 \pm i / 5$
\therefore The roots of the given equation are $3 / 5 \pm \mathrm{i} / 5$
10. $21 x^{2}+9 x+1=0$

Solution:

Given: $21 \mathrm{x}^{2}+9 \mathrm{x}+1=0$
We shall apply discriminant rule,
Where, $x=\left(-b \pm \sqrt{ }\left(b^{2}-4 a c\right)\right) / 2 a$
Here, $a=21, b=9, c=1$
So,

$$
\begin{aligned}
\mathrm{x} & =\left(-9 \pm \sqrt{ }\left(9^{2}-4(21)(1)\right)\right) / 2(21) \\
& =(-9 \pm \sqrt{ }(81-84)) / 42 \\
& =(-9 \pm \sqrt{ }(-3)) / 42 \\
& =(-9 \pm \sqrt{ } 3(-1)) / 42
\end{aligned}
$$

We have $\mathrm{i}^{2}=-1$
By substituting $-1=\mathrm{i}^{2}$ in the above equation, we get

$$
\begin{aligned}
\mathrm{x} & =\left(-9 \pm \sqrt{ } 3 \mathrm{i}^{2}\right) / 42 \\
& =\left(-9 \pm \sqrt{ }(\sqrt{ } 3 \mathrm{i})^{2} / 42\right. \\
& =(-9 \pm \sqrt{ } 3 \mathrm{i}) / 42 \\
& =-9 / 42 \pm \sqrt{ } 3 \mathrm{i} / 42 \\
& =-3 / 14 \pm \sqrt{ } 3 \mathrm{i} / 42
\end{aligned}
$$

\therefore The roots of the given equation are $-3 / 14 \pm \sqrt{3} \mathrm{i} / 42$
11. $\mathrm{x}^{2}-\mathrm{x}+1=0$

Solution:

Given: $x^{2}-x+1=0$
$x^{2}-x+1 / 4+3 / 4=0$
$\mathrm{x}^{2}-2(\mathrm{x})(1 / 2)+(1 / 2)^{2}+3 / 4=0$
$(x-1 / 2)^{2}+3 / 4=0\left[\right.$ Since, $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right]$
$(x-1 / 2)^{2}+3 / 4 \times 1=0$
We know, $\mathrm{i}^{2}=-1 \Rightarrow 1=-\mathrm{i}^{2}$
By substituting $1=-\mathrm{i}^{2}$ in the above equation, we get
$(x-1 / 2)^{2}+3 / 4(-1)^{2}=0$
$(x-1 / 2)^{2}+3 / 4(-i)^{2}=0$
$(x-1 / 2)^{2}-(\sqrt{3} \mathrm{i} / 2)^{2}=0$
[By using the formula, $\left.a^{2}-b^{2}=(a+b)(a-b)\right]$
$(x-1 / 2+\sqrt{ } 3 \mathrm{i} / 2)(\mathrm{x}-1 / 2-\sqrt{ } 3 \mathrm{i} / 2)=0$
$(\mathrm{x}-1 / 2+\sqrt{3} \mathrm{i} / 2)=0$ or $(\mathrm{x}-1 / 2-\sqrt{3} \mathrm{i} / 2)=0$
$\mathrm{x}=1 / 2-\sqrt{ } 3 \mathrm{i} / 2$ or $\mathrm{x}=1 / 2+\sqrt{ } 3 \mathrm{i} / 2$
\therefore The roots of the given equation are $1 / 2+\sqrt{ } 3 \mathrm{i} / 2,1 / 2-\sqrt{3} \mathrm{i} / 2$
12. $\mathrm{x}^{2}+\mathrm{x}+1=0$

Solution:

Given: $\mathrm{x}^{2}+\mathrm{x}+1=0$
$x^{2}+x+1 / 4+3 / 4=0$
$x^{2}+2(x)(1 / 2)+(1 / 2)^{2}+3 / 4=0$
$(x+1 / 2)^{2}+3 / 4=0\left[\right.$ Since, $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right]$
$(x+1 / 2)^{2}+3 / 4 \times 1=0$
We know, $\mathrm{i}^{2}=-1 \Rightarrow 1=-\mathrm{i}^{2}$
By substituting $1=-\mathrm{i}^{2}$ in the above equation, we get
$(x+1 / 2)^{2}+3 / 4(-1)^{2}=0$
$(x+1 / 2)^{2}+3 / 4 i^{2}=0$
$(x+1 / 2)^{2}-(\sqrt{3 i} / 2)^{2}=0$
[By using the formula, $\left.a^{2}-b^{2}=(a+b)(a-b)\right]$
$(x+1 / 2+\sqrt{3 i} / 2)(x+1 / 2-\sqrt{3} i / 2)=0$
$(x+1 / 2+\sqrt{3} i / 2)=0$ or $(x+1 / 2-\sqrt{3 i} / 2)=0$
$x=-1 / 2-\sqrt{ } 3 \mathrm{i} / 2$ or $x=-1 / 2+\sqrt{ } 3 \mathrm{i} / 2$
\therefore The roots of the given equation are $-1 / 2+\sqrt{ } 3 \mathrm{i} / 2,-1 / 2-\sqrt{ } 3 \mathrm{i} / 2$

13. $17 \mathrm{x}^{2}-8 \mathrm{x}+1=0$

Solution:

Given: $17 \mathrm{x}^{2}-8 \mathrm{x}+1=0$
We shall apply discriminant rule,
Where, $x=\left(-b \pm \sqrt{ }\left(b^{2}-4 a c\right)\right) / 2 a$
Here, $a=17, b=-8, c=1$
So,

$$
\begin{aligned}
\mathrm{x} & =\left(-(-8) \pm \sqrt{ }\left(-8^{2}-4(17)(1)\right)\right) / 2(17) \\
& =(8 \pm \sqrt{ }(64-68)) / 34 \\
& =(8 \pm \sqrt{ }(-4)) / 34 \\
& =(8 \pm \sqrt{ } 4(-1)) / 34
\end{aligned}
$$

We have $\mathrm{i}^{2}=-1$
By substituting $-1=\mathrm{i}^{2}$ in the above equation, we get

$$
\begin{aligned}
\mathrm{x} & =\left(8 \pm \sqrt{ }(2 \mathrm{i})^{2}\right) / 34 \\
& =(8 \pm 2 \mathrm{i}) / 34 \\
& =2(4 \pm \mathrm{i}) / 34 \\
& =(4 \pm \mathrm{i}) / 17 \\
x & =4 / 17 \pm \mathrm{i} / 17
\end{aligned}
$$

\therefore The roots of the given equation are $4 / 17 \pm \mathrm{i} / 17$

EXERCISE 14.2

1. Solving the following quadratic equations by factorization method:
(i) $x^{2}+10 i x-21=0$
(ii) $x^{2}+(1-2 i) x-2 i=0$
(iii) $x^{2}-(2 \sqrt{ } 3+3 i) x+6 \sqrt{3 i}=0$
(iv) $6 x^{2}-17 i x-12=0$

Solution:
(i) $x^{2}+10 i x-21=0$

Given: $x^{2}+10 i x-21=0$
$x^{2}+10 i x-21 \times 1=0$
We know, $\mathrm{i}^{2}=-1 \Rightarrow 1=-\mathrm{i}^{2}$
By substituting $1=-\mathrm{i}^{2}$ in the above equation, we get
$x^{2}+10 i x-21\left(-i^{2}\right)=0$
$\mathrm{x}^{2}+10 \mathrm{ix}+21 \mathrm{i}^{2}=0$
$x^{2}+3 i x+7 i x+21 i^{2}=0$
$x(x+3 i)+7 i(x+3 i)=0$
$(x+3 i)(x+7 i)=0$
$\mathrm{x}+3 \mathrm{i}=0$ or $\mathrm{x}+7 \mathrm{i}=0$
$\mathrm{x}=-3 \mathrm{i}$ or -7 i
\therefore The roots of the given equation are $-3 \mathrm{i},-7 \mathrm{i}$
(ii) $x^{2}+(1-2 i) x-2 i=0$

Given: $x^{2}+(1-2 i) x-2 i=0$
$x^{2}+x-2 i x-2 i=0$
$\mathrm{x}(\mathrm{x}+1)-2 \mathrm{i}(\mathrm{x}+1)=0$
$(x+1)(x-2 i)=0$
$\mathrm{x}+1=0$ or $\mathrm{x}-2 \mathrm{i}=0$
$x=-1$ or $2 i$
\therefore The roots of the given equation are $-1,2 \mathrm{i}$
(iii) $x^{2}-(2 \sqrt{ } 3+3 i) x+6 \sqrt{ } 3 i=0$

Given: $x^{2}-(2 \sqrt{3}+3 i) x+6 \sqrt{ } 3 i=0$
$\mathrm{x}^{2}-(2 \sqrt{3} \mathrm{x}+3 \mathrm{ix})+6 \sqrt{3} \mathrm{i}=0$
$\mathrm{x}^{2}-2 \sqrt{ } 3 \mathrm{x}-3 \mathrm{ix}+6 \sqrt{ } 3 \mathrm{i}=0$
$\mathrm{x}(\mathrm{x}-2 \sqrt{3})-3 \mathrm{i}(\mathrm{x}-2 \sqrt{3})=0$
$(\mathrm{x}-2 \sqrt{3})(\mathrm{x}-3 \mathrm{i})=0$
$(\mathrm{x}-2 \sqrt{ } 3)=0$ or $(\mathrm{x}-3 \mathrm{i})=0$
$\mathrm{x}=2 \sqrt{3}$ or $\mathrm{x}=3 \mathrm{i}$
\therefore The roots of the given equation are $2 \sqrt{ } 3,3 \mathrm{i}$
(iv) $6 x^{2}-17 i x-12=0$

Given: $6 \mathrm{x}^{2}-17 \mathrm{ix}-12=0$
$6 x^{2}-17 \mathrm{ix}-12 \times 1=0$
We know, $\mathrm{i}^{2}=-1 \Rightarrow 1=-\mathrm{i}^{2}$
By substituting $1=-\mathrm{i}^{2}$ in the above equation, we get
$6 x^{2}-17 i x-12\left(-i^{2}\right)=0$
$6 x^{2}-17 i x+12 i^{2}=0$
$6 x^{2}-9 i x-8 i x+12 i^{2}=0$
$3 x(2 x-3 i)-4 i(2 x-3 i)=0$
$(2 x-3 i)(3 x-4 i)=0$
$2 \mathrm{x}-3 \mathrm{i}=0$ or $3 \mathrm{x}-4 \mathrm{i}=0$
$2 \mathrm{x}=3 \mathrm{i}$ or $3 \mathrm{x}=4 \mathrm{i}$
$x=3 \mathrm{i} / 2$ or $\mathrm{x}=4 \mathrm{i} / 3$
\therefore The roots of the given equation are $3 \mathrm{i} / 2,4 \mathrm{i} / 3$
2. Solve the following quadratic equations:
(i) $x^{2}-(3 \sqrt{ } 2+2 i) x+6 \sqrt{ } 2 i=0$
(ii) $x^{2}-(5-i) x+(18+i)=0$
(iii) $(2+i) x^{2}-(5-i) x+2(1-i)=0$
(iv) $\mathrm{x}^{2}-(2+i) x-(1-7 i)=0$
(v) $i x^{2}-4 x-4 i=0$
(vi) $x^{2}+4 i x-4=0$
(vii) $2 \mathrm{x}^{2}+\sqrt{ } 15 i x-i=0$
(viii) $\mathrm{x}^{2}-\mathrm{x}+(1+\mathrm{i})=0$
(ix) $i x^{2}-x+12 i=0$
(x) $x^{2}-(3 \sqrt{ } 2-2 i) x-\sqrt{2} i=0$
(xi) $x^{2}-(\sqrt{2}+i) x+\sqrt{ } 2 i=0$
(xii) $2 \mathrm{x}^{2}-(3+7 \mathrm{i}) \mathrm{x}+(9 \mathrm{i}-3)=0$

Solution:
(i) $x^{2}-(3 \sqrt{2}+2 i) x+6 \sqrt{ } 2 i=0$

Given: $x^{2}-(3 \sqrt{2}+2 i) x+6 \sqrt{ } 2 i=0$
$x^{2}-(3 \sqrt{ } 2 x+2 i x)+6 \sqrt{ } 2 i=0$
$x^{2}-3 \sqrt{ } 2 x-2 i x+6 \sqrt{ } 2 i=0$
$\mathrm{x}(\mathrm{x}-3 \sqrt{ } 2)-2 \mathrm{i}(\mathrm{x}-3 \sqrt{ } 2)=0$
$(x-3 \sqrt{ } 2)(x-2 i)=0$
$(x-3 \sqrt{2})=0$ or $(x-2 i)=0$
$\mathrm{x}=3 \sqrt{ } 2$ or $\mathrm{x}=2 \mathrm{i}$
\therefore The roots of the given equation are $3 \sqrt{ } 2,2 \mathrm{i}$
(ii) $x^{2}-(5-i) x+(18+i)=0$

Given: $x^{2}-(5-i) x+(18+i)=0$
We shall apply discriminant rule,
Where, $x=\left(-b \pm \sqrt{ }\left(b^{2}-4 a c\right)\right) / 2 a$
Here, $\mathrm{a}=1, \mathrm{~b}=-(5-\mathrm{i}), \mathrm{c}=(18+\mathrm{i})$
So,

$$
\begin{aligned}
x & =\frac{-(-(5-i)) \pm \sqrt{(-(5-i))^{2}-4(1)(18+i)}}{2(1)} \\
& =\frac{(5-i) \pm \sqrt{(5-i)^{2}-4(18+i)}}{2} \\
& =\frac{(5-i) \pm \sqrt{25-10 i+i^{2}-72-4 i}}{2} \\
& =\frac{(5-i) \pm \sqrt{-47-14 i+i^{2}}}{2}
\end{aligned}
$$

We have $\mathrm{i}^{2}=-1$
By substituting $-1=\mathrm{i}^{2}$ in the above equation, we get

$$
\begin{aligned}
& =\frac{(5-i) \pm \sqrt{-47-14 i+(-1)}}{2} \\
& =\frac{(5-i) \pm \sqrt{-48-14 i}}{2} \\
& =\frac{(5-i) \pm \sqrt{(-1)(48+14 i)}}{2} \\
& =\frac{(5-i) \pm \sqrt{i^{2}(48+14 i)}}{2} \\
& =\frac{(5-i) \pm i \sqrt{48+14 i}}{2}
\end{aligned}
$$

We can write $48+14 \mathrm{i}=49-1+14 \mathrm{i}$
So,

$$
\begin{aligned}
48+14 \mathrm{i} & =49+\mathrm{i}^{2}+14 \mathrm{i}\left[\because \mathrm{i}^{2}=-1\right] \\
& =7^{2}+\mathrm{i}^{2}+2(7)(\mathrm{i}) \\
& =(7+\mathrm{i})^{2}\left[\text { Since },(\mathrm{a}+\mathrm{b})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab}\right]
\end{aligned}
$$

By using the result $48+14 i=(7+i)^{2}$, we get

$$
\begin{aligned}
& =\frac{(5-i) \pm i \sqrt{(7+i)^{2}}}{2} \\
& =\frac{(5-i) \pm i(7+i)}{2} \\
& =\frac{(5-i)+i(7+i)}{2} \text { or } \frac{(5-i)-i(7+i)}{2} \\
& =\frac{5-i+7 i+i^{2}}{2} \text { or } \frac{5-i-7 i-i^{2}}{2} \\
& =\frac{5+6 i+(-1)}{2} \text { or } \frac{5-8 i-(-1)}{2} \\
& =\frac{5+6 i-1}{2} \text { or } \frac{5-8 i+1}{2} \\
& =\frac{4+6 i}{2} \text { or } \frac{6-8 i}{2} \\
& =\frac{2(2+3 i)}{2} \text { or } \frac{2(3-4 i)}{2}
\end{aligned}
$$

$$
x=2+3 i \text { or } 3-4 i
$$

\therefore The roots of the given equation are $3-4 \mathrm{i}, 2+3 \mathrm{i}$
(iii) $(2+i) x^{2}-(5-i) x+2(1-i)=0$

Given: $(2+i) x^{2}-(5-i) x+2(1-i)=0$
We shall apply discriminant rule,
Where, $x=\left(-b \pm \sqrt{ }\left(b^{2}-4 a c\right)\right) / 2 a$
Here, $\mathrm{a}=(2+\mathrm{i}), \mathrm{b}=-(5-\mathrm{i}), \mathrm{c}=2(1-\mathrm{i})$
So,

$$
\begin{aligned}
x & =\frac{-(-(5-i)) \pm \sqrt{(-(5-i))^{2}-4(2+i)(2(1-i))}}{2(2+i)} \\
& =\frac{(5-i) \pm \sqrt{(5-i)^{2}-8(2+i)(1-i)}}{2(2+i)} \\
& =\frac{(5-i) \pm \sqrt{25-10 i+i^{2}-8\left(2-2 i+i-i^{2}\right)}}{2(2+i)}
\end{aligned}
$$

We have $\mathrm{i}^{2}=-1$
By substituting $-1=\mathrm{i}^{2}$ in the above equation, we get

$$
\begin{aligned}
& =\frac{(5-i) \pm \sqrt{25-10 i+(-1)-8(2-i-(-1))}}{2(2+i)} \\
& =\frac{(5-i) \pm \sqrt{24-10 i-8(3-i)}}{2(2+i)} \\
& =\frac{(5-i) \pm \sqrt{24-10 i-24+8 i}}{2(2+i)} \\
& =\frac{(5-i) \pm \sqrt{-2 i}}{2(2+i)}
\end{aligned}
$$

We can write $-2 \mathrm{i}=-2 \mathrm{i}+1-1$

$$
\begin{aligned}
-2 \mathrm{i} & =-2 \mathrm{i}+1+\mathrm{i}^{2}\left[\text { Since, } \mathrm{i}^{2}=-1\right] \\
& =1-2 \mathrm{i}+\mathrm{i}^{2} \\
& =1^{2}-2(1)(\mathrm{i})+\mathrm{i}^{2} \\
& =(1-\mathrm{i})^{2}\left[\text { By using the formula, }(a-b)^{2}=a^{2}-2 a b+b^{2}\right]
\end{aligned}
$$

By using the result $-2 \mathrm{i}=(1-\mathrm{i})^{2}$, we get

$$
\begin{aligned}
x & =\frac{(5-i) \pm \sqrt{(1-i)^{2}}}{2(2+i)} \\
& =\frac{(5-i) \pm(1-i)}{2(2+i)} \\
& =\frac{(5-i)+(1-i)}{2(2+i)} \text { or } \frac{(5-i)-(1-i)}{2(2+i)} \\
& =\frac{5-i+1-i}{2(2+i)} \text { or } \frac{5-i-1+i}{2(2+i)} \\
& =\frac{6-2 i}{2(2+i)} \text { or } \frac{4}{2(2+i)} \\
& =\frac{3-i}{2+i} \text { or } \frac{2}{2+i}
\end{aligned}
$$

Let us multiply and divide by ($2-\mathrm{i}$), we get

$$
\begin{aligned}
& =\frac{3-\mathrm{i}}{2+\mathrm{i}} \times \frac{2-\mathrm{i}}{2-\mathrm{i}} \text { or } \frac{2}{2+\mathrm{i}} \times \frac{2-\mathrm{i}}{2-\mathrm{i}} \\
& =\frac{(3-\mathrm{i})(2-\mathrm{i})}{(2+\mathrm{i})(2-\mathrm{i})} \text { or } \frac{2(2-\mathrm{i})}{(2+\mathrm{i})(2-\mathrm{i})} \\
& =\frac{6-3 \mathrm{i}-2 \mathrm{i}+\mathrm{i}^{2}}{2^{2}-\mathrm{i}^{2}} \text { or } \frac{4-2 \mathrm{i}}{2^{2}-\mathrm{i}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{6-5 i+(-1)}{4-(-1)} \text { or } \frac{4-2 i}{4-(-1)} \\
& =\frac{5-5 i}{4+1} \text { or } \frac{4-2 i}{4+1} \\
& =\frac{5(1-i)}{5} \text { or } \frac{4-2 i}{5}
\end{aligned}
$$

$\mathrm{x}=(1-\mathrm{i})$ or $4 / 5-2 \mathrm{i} / 5$
\therefore The roots of the given equation are $(1-\mathrm{i}), 4 / 5-2 \mathrm{i} / 5$
(iv) $x^{2}-(2+i) x-(1-7 i)=0$

Given: $\mathrm{x}^{2}-(2+\mathrm{i}) \mathrm{x}-(1-7 \mathrm{i})=0$
We shall apply discriminant rule,
Where, $x=\left(-b \pm \sqrt{ }\left(b^{2}-4 a c\right)\right) / 2 a$
Here, $\mathrm{a}=1, \mathrm{~b}=-(2+\mathrm{i}), \mathrm{c}=-(1-7 \mathrm{i})$
So,

$$
\begin{aligned}
x & =\frac{-(-(2+i)) \pm \sqrt{(-(2+i))^{2}-4(1)(-(1-7 \mathrm{i}))}}{2(1)} \\
& =\frac{(2+\mathrm{i}) \pm \sqrt{(2+\mathrm{i})^{2}+4(1-7 \mathrm{i})}}{2} \\
& =\frac{(2+\mathrm{i}) \pm \sqrt{4+4 \mathrm{i}+\mathrm{i}^{2}+4-28 \mathrm{i}}}{2} \\
& =\frac{(2+\mathrm{i}) \pm \sqrt{8-24 \mathrm{i}+\mathrm{i}^{2}}}{2}
\end{aligned}
$$

We have $\mathrm{i}^{2}=-1$
By substituting $-1=\mathrm{i}^{2}$ in the above equation, we get

$$
\begin{aligned}
& =\frac{(2+i) \pm \sqrt{8-24 i+(-1)}}{2} \\
& =\frac{(2+i) \pm \sqrt{7-24 i}}{2}
\end{aligned}
$$

We can write $7-24 \mathrm{i}=16-9-24 \mathrm{i}$

$$
\begin{aligned}
7-24 i & =16+9(-1)-24 i \\
& =16+9 i^{2}-24 i\left[\because i^{2}=-1\right] \\
& =4^{2}+(3 i)^{2}-2(4)(3 i) \\
& =(4-3 i)^{2}\left[\because(a-b)^{2}=a^{2}-b^{2}+2 a b\right]
\end{aligned}
$$

By using the result $7-24 \mathrm{i}=(4-3 \mathrm{i})^{2}$, we get

$$
\begin{aligned}
x & =\frac{(2+i) \pm \sqrt{(4-3 i)^{2}}}{2} \\
& =\frac{(2+i) \pm(4-3 i)}{2} \\
& =\frac{(2+i)+(4-3 i)}{2} \text { or } \frac{(2+i)-(4-3 i)}{2} \\
& =\frac{2+i+4-3 i}{2} \text { or } \frac{2+i-4+3 i}{2} \\
& =\frac{6-2 i}{2} \text { or } \frac{-2+4 i}{2} \\
& =\frac{2(3-i)}{2} \text { or } \frac{2(-1+2 i)}{2} \\
x & =3-i \text { or }-1+2 i
\end{aligned}
$$

\therefore The roots of the given equation are $(-1+2 i),(3-i)$
(v) $i x^{2}-4 x-4 i=0$

Given: $\mathrm{ix}^{2}-4 \mathrm{x}-4 \mathrm{i}=0$
$\mathrm{ix}^{2}+4 \mathrm{x}(-1)-4 \mathrm{i}=0$ [We know, $\mathrm{i}^{2}=-1$]
So by substituting $-1=\mathrm{i}^{2}$ in the above equation, we get
$i x^{2}+4 \mathrm{xi}^{2}-4 \mathrm{i}=0$
$i\left(x^{2}+4 i x-4\right)=0$
$x^{2}+4 i x-4=0$
$x^{2}+4 i x+4(-1)=0$
$x^{2}+4 i x+4 i^{2}=0\left[\right.$ Since, $\left.i^{2}=-1\right]$
$x^{2}+2 i x+2 i x+4 i^{2}=0$
$\mathrm{x}(\mathrm{x}+2 \mathrm{i})+2 \mathrm{i}(\mathrm{x}+2 \mathrm{i})=0$
$(\mathrm{x}+2 \mathrm{i})(\mathrm{x}+2 \mathrm{i})=0$
$(x+2 i)^{2}=0$
$\mathrm{x}+2 \mathrm{i}=0$
$x=-2 \mathrm{i},-2 \mathrm{i}$
\therefore The roots of the given equation are $-2 \mathrm{i},-2 \mathrm{i}$
(vi) $x^{2}+4 i x-4=0$

Given: $x^{2}+4 i x-4=0$
$x^{2}+4 i x+4(-1)=0\left[\right.$ We know, $\left.i^{2}=-1\right]$
So by substituting $-1=\mathrm{i}^{2}$ in the above equation, we get
$\mathrm{x}^{2}+4 \mathrm{ix}+4 \mathrm{i}^{2}=0$
$x^{2}+2 i x+2 i x+4 i^{2}=0$
$\mathrm{x}(\mathrm{x}+2 \mathrm{i})+2 \mathrm{i}(\mathrm{x}+2 \mathrm{i})=0$
$(\mathrm{x}+2 \mathrm{i})(\mathrm{x}+2 \mathrm{i})=0$
$(x+2 i)^{2}=0$
$\mathrm{x}+2 \mathrm{i}=0$
$\mathrm{x}=-2 \mathrm{i},-2 \mathrm{i}$
\therefore The roots of the given equation are $-2 \mathrm{i},-2 \mathrm{i}$
(vii) $2 \mathrm{x}^{2}+\sqrt{ } 15 \mathrm{ix}-\mathrm{i}=0$

Given: $2 \mathrm{x}^{2}+\sqrt{ } 15 \mathrm{ix}-\mathrm{i}=0$
We shall apply discriminant rule,
Where, $x=\left(-b \pm \sqrt{ }\left(b^{2}-4 a c\right)\right) / 2 a$
Here, $a=2, b=\sqrt{ } 15 i, c=-i$
So,

$$
\begin{aligned}
x & =\frac{-(\sqrt{15} \mathrm{i}) \pm \sqrt{(\sqrt{15} \mathrm{i})^{2}-4(2)(-\mathrm{i})}}{2(2)} \\
& =\frac{-\sqrt{15} \mathrm{i} \pm \sqrt{15 \mathrm{i}^{2}+8 \mathrm{i}}}{4}
\end{aligned}
$$

We have $\mathrm{i}^{2}=-1$
By substituting $-1=\mathrm{i}^{2}$ in the above equation, we get

$$
\begin{aligned}
& =\frac{-\sqrt{15} \mathrm{i} \pm \sqrt{15(-1)+8 \mathrm{i}}}{4} \\
& =\frac{-\sqrt{15} \mathrm{i} \pm \sqrt{8 \mathrm{i}-15}}{4} \\
& =\frac{-\sqrt{15} \mathrm{i} \pm \sqrt{(-1)(15-8 \mathrm{i})}}{4} \\
& =\frac{-\sqrt{15} \mathrm{i} \pm \sqrt{\mathrm{i}^{2}(15-8 \mathrm{i})}}{4} \\
& =\frac{-\sqrt{15} \mathrm{i} \pm \mathrm{i} \sqrt{15-8 \mathrm{i}}}{4}
\end{aligned}
$$

We can write $15-8 i=16-1-8 i$

$$
\begin{aligned}
15-8 \mathrm{i} & =16+(-1)-8 \mathrm{i} \\
& =16+\mathrm{i}^{2}-8 \mathrm{i}\left[\because \mathrm{i}^{2}=-1\right] \\
& =4^{2}+(\mathrm{i})^{2}-2(4)(\mathrm{i}) \\
& =(4-\mathrm{i})^{2}\left[\text { Since },(a-b)^{2}=a^{2}-b^{2}+2 \mathrm{ab}\right]
\end{aligned}
$$

By using the result $15-8 i=(4-i)^{2}$, we get

$$
\begin{aligned}
x & =\frac{-\sqrt{15} i \pm i \sqrt{(4-i)^{2}}}{4} \\
& =\frac{-\sqrt{15} i \pm i(4-i)}{4} \\
& =\frac{-\sqrt{15} i+i(4-i)}{4} \text { or } \frac{-\sqrt{15} i-i(4-i)}{4} \\
& =\frac{-\sqrt{15} i+4 i-i^{2}}{4} \text { or } \frac{-\sqrt{15} i-4 i+i^{2}}{4} \\
& =\frac{-\sqrt{15} i+4 i-(-1)}{4} \text { or } \frac{-\sqrt{15} i-4 i+(-1)}{4} \\
& =\frac{-\sqrt{15} i+4 i+1}{4} \text { or } \frac{-\sqrt{15} i-4 i-1}{4} \\
& =\frac{1+(4-\sqrt{15}) i}{4} \text { or } \frac{-1-(4+\sqrt{15}) i}{4}
\end{aligned}
$$

\therefore The roots of the given equation are $[1+(4-\sqrt{ } 15) \mathrm{i} / 4],[-1-(4+\sqrt{ } 15) \mathrm{i} / 4]$
(viii) $x^{2}-x+(1+i)=0$

Given: $\mathrm{x}^{2}-\mathrm{x}+(1+\mathrm{i})=0$
We shall apply discriminant rule,
Where, $x=\left(-b \pm \sqrt{ }\left(b^{2}-4 a c\right)\right) / 2 a$
Here, $a=1, b=-1, c=(1+i)$
So,

$$
\begin{aligned}
x & =\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(1+i)}}{2(1)} \\
& =\frac{1 \pm \sqrt{1-4(1+i)}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1 \pm \sqrt{1-4-4 \mathrm{i}}}{2} \\
& =\frac{1 \pm \sqrt{-3-4 \mathrm{i}}}{2} \\
& =\frac{1 \pm \sqrt{(-1)(3+4 \mathrm{i})}}{2}
\end{aligned}
$$

We have $\mathrm{i}^{2}=-1$
By substituting $-1=\mathrm{i}^{2}$ in the above equation, we get

$$
\begin{aligned}
& =\frac{1 \pm \sqrt{\mathrm{i}^{2}(3+4 \mathrm{i})}}{2} \\
& =\frac{1 \pm \mathrm{i} \sqrt{3+4 \mathrm{i}}}{2}
\end{aligned}
$$

We can write $3+4 \mathrm{i}=4-1+4 \mathrm{i}$
$3+4 i=4+i^{2}+4 i\left[\because i^{2}=-1\right]$
$=2^{2}+\mathrm{i}^{2}+2(2)$ (i)
$=(2+i)^{2}$ [Since, $\left.(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
By using the result $3+4 i=(2+i)^{2}$, we get

$$
\begin{aligned}
x & =\frac{1 \pm i \sqrt{(2+i)^{2}}}{2} \\
& =\frac{1 \pm i(2+i)}{2} \\
& =\frac{1+i(2+i)}{2} \text { or } \frac{1-i(2+i)}{2} \\
& =\frac{1+2 i+i^{2}}{2} \text { or } \frac{1-2 i-i^{2}}{2} \\
& =\frac{1+2 i+(-1)}{2} \text { or } \frac{1-2 i-(-1)}{2} \\
& =\frac{1+2 i-1}{2} \text { or } \frac{1-2 i+1}{2} \\
x & =2 i / 2 \text { or }(2-2 i) / 2 \\
x & =i \text { or } 2(1-i) / 2 \\
x & =i \text { or }(1-i)
\end{aligned}
$$

\therefore The roots of the given equation are (1-i), i
(ix) $i x^{2}-x+12 i=0$

Given: $\mathrm{ix}^{2}-\mathrm{x}+12 \mathrm{i}=0$
$\mathrm{ix}^{2}+\mathrm{x}(-1)+12 \mathrm{i}=0$ [We know, $\mathrm{i}^{2}=-1$]
so by substituting $-1=\mathrm{i}^{2}$ in the above equation, we get
$i x^{2}+\mathrm{xi}^{2}+12 \mathrm{i}=0$
$\mathrm{i}\left(\mathrm{x}^{2}+\mathrm{ix}+12\right)=0$
$x^{2}+i x+12=0$
$x^{2}+i x-12(-1)=0$
$\mathrm{x}^{2}+\mathrm{ix}-12 \mathrm{i}^{2}=0\left[\right.$ Since, $\left.\mathrm{i}^{2}=-1\right]$
$\mathrm{x}^{2}-3 \mathrm{ix}+4 \mathrm{ix}-12 \mathrm{i}^{2}=0$
$x(x-3 i)+4 i(x-3 i)=0$
$(x-3 i)(x+4 i)=0$
$x-3 i=0$ or $x+4 i=0$
$\mathrm{x}=3 \mathrm{i}$ or -4 i
\therefore The roots of the given equation are $-4 i, 3 i$
(x) $x^{2}-(3 \sqrt{2}-2 i) x-\sqrt{2} i=0$

Given: $x^{2}-(3 \sqrt{ } 2-2 i) x-\sqrt{ } 2 i=0$
We shall apply discriminant rule,
Where, $x=\left(-b \pm \sqrt{ }\left(b^{2}-4 a c\right)\right) / 2 a$
Here, $\mathrm{a}=1, \mathrm{~b}=-(3 \sqrt{ } 2-2 \mathrm{i}), \mathrm{c}=-\sqrt{ } 2 \mathrm{i}$
So,

$$
\begin{aligned}
x & =\frac{-(-(3 \sqrt{2}-2 i)) \pm \sqrt{(-(3 \sqrt{2}-2 i))^{2}-4(1)(-\sqrt{2} i)}}{2(1)} \\
& =\frac{(3 \sqrt{2}-2 i) \pm \sqrt{(3 \sqrt{2}-2 i)^{2}+4 \sqrt{2}} \mathrm{i}}{2} \\
& =\frac{(3 \sqrt{2}-2 \mathrm{i}) \pm \sqrt{18-12 \sqrt{2}} \mathrm{i}+4 \mathrm{i}^{2}+4 \sqrt{2} \mathrm{i}}{2} \\
& =\frac{(3 \sqrt{2}-2 \mathrm{i}) \pm \sqrt{18-8 \sqrt{2} i+4 \mathrm{i}^{2}}}{2}
\end{aligned}
$$

We have $\mathrm{i}^{2}=-1$
By substituting $-1=\mathrm{i}^{2}$ in the above equation, we get
$=\frac{(3 \sqrt{2}-2 i) \pm \sqrt{18-8 \sqrt{2} i+4(-1)}}{2}$

$$
\begin{aligned}
& =\frac{(3 \sqrt{2}-2 i) \pm \sqrt{18-8 \sqrt{2} i-4}}{2} \\
& =\frac{(3 \sqrt{2}-2 i) \pm \sqrt{14-8 \sqrt{2}} i}{2}
\end{aligned}
$$

We can write $14-8 \sqrt{2} \mathrm{i}=16-2-8 \sqrt{ } 2 \mathrm{i}$

$$
\begin{aligned}
14-8 \sqrt{ } 2 \mathrm{i} & =16+2(-1)-8 \sqrt{ } 2 \mathrm{i} \\
& =16+2 \mathrm{i}^{2}-8 \sqrt{ } 2 \mathrm{i}\left[\text { Since, } \mathrm{i}^{2}=-1\right] \\
& =4^{2}+(\sqrt{ } 2 \mathrm{i})^{2}-2(4)(\sqrt{ } 2 \mathrm{i}) \\
& =(4-\sqrt{ } 2 \mathrm{i})^{2}\left[\text { By using the formula, }(\mathrm{a}-\mathrm{b})^{2}=\mathrm{a}^{2}-2 \mathrm{ab}+\mathrm{b}^{2}\right]
\end{aligned}
$$

By using the result $14-8 \sqrt{2} i=(4-\sqrt{2} i)^{2}$, we get

$$
\begin{aligned}
x & =\frac{(3 \sqrt{2}-2 i) \pm \sqrt{(4-\sqrt{2} i)^{2}}}{2} \\
& =\frac{(3 \sqrt{2}-2 \mathrm{i}) \pm(4-\sqrt{2} \mathrm{i})}{2} \\
& =\frac{3 \sqrt{2}-2 i}{2} \pm \frac{4-\sqrt{2 i}}{2}
\end{aligned}
$$

\therefore The roots of the given equation are $\frac{3 \sqrt{2}-2 i}{2} \pm \frac{4-\sqrt{2 i}}{2}$
(xi) $x^{2}-(\sqrt{ } 2+i) x+\sqrt{ } 2 i=0$

Given: $\mathrm{x}^{2}-(\sqrt{ } 2+\mathrm{i}) \mathrm{x}+\sqrt{ } 2 \mathrm{i}=0$
$x^{2}-(\sqrt{2} x+i x)+\sqrt{2} i=0$
$x^{2}-\sqrt{ } 2 x-i x+\sqrt{ } 2 i=0$
$x(x-\sqrt{2})-i(x-\sqrt{2})=0$
$(x-\sqrt{2})(x-i)=0$
$(x-\sqrt{2})=0$ or $(x-i)=0$
$\mathrm{x}=\sqrt{ } 2$ or $\mathrm{x}=\mathrm{i}$
\therefore The roots of the given equation are $\mathrm{i}, \sqrt{ } 2$
(xii) $2 \mathrm{x}^{2}-(3+7 \mathrm{i}) \mathrm{x}+(9 \mathrm{i}-3)=0$

Given: $2 \mathrm{x}^{2}-(3+7 \mathrm{i}) \mathrm{x}+(9 \mathrm{i}-3)=0$
We shall apply discriminant rule,
Where, $x=\left(-b \pm \sqrt{ }\left(b^{2}-4 a c\right)\right) / 2 a$
Here, $\mathrm{a}=2, \mathrm{~b}=-(3+7 \mathrm{i}), \mathrm{c}=(9 \mathrm{i}-3)$
So,

$$
\begin{aligned}
x & =\frac{-(-(3+7 i)) \pm \sqrt{(-(3+7 i))^{2}-4(2)(9 i-3)}}{2(2)} \\
& =\frac{(3+7 i) \pm \sqrt{\left(3+7 i^{2}-8(9 i-3)\right.}}{4} \\
& =\frac{(3+7 i) \pm \sqrt{9+42 i+49 \mathrm{i}^{2}-72 \mathrm{i}+24}}{4} \\
& =\frac{(3+7 \mathrm{i}) \pm \sqrt{33-30 \mathrm{i}+49 \mathrm{i}^{2}}}{4}
\end{aligned}
$$

We have $\mathrm{i}^{2}=-1$
By substituting $-1=\mathrm{i}^{2}$ in the above equation, we get

$$
\begin{aligned}
& =\frac{(3+7 \mathrm{i}) \pm \sqrt{33-30 \mathrm{i}+49(-1)}}{4} \\
& =\frac{(3+7 \mathrm{i}) \pm \sqrt{33-30 \mathrm{i}-49}}{4} \\
& =\frac{(3+7 \mathrm{i}) \pm \sqrt{-16-30 \mathrm{i}}}{4} \\
& =\frac{(3+7 \mathrm{i}) \pm \sqrt{(-1)(16+30 \mathrm{i})}}{4} \\
& =\frac{(3+7 \mathrm{i}) \pm \sqrt{\mathrm{i}^{2}(16+30 \mathrm{i})}}{4} \\
& =\frac{(3+7 \mathrm{i}) \pm \mathrm{i} \sqrt{16+30 \mathrm{i}}}{4}
\end{aligned}
$$

We can write $16+30 \mathrm{i}=25-9+30 \mathrm{i}$

$$
16+30 \mathrm{i}=25+9(-1)+30 \mathrm{i}
$$

$$
=25+9 \mathrm{i}^{2}+30 \mathrm{i}\left[\because \mathrm{i}^{2}=-1\right]
$$

$$
=5^{2}+(3 i)^{2}+2(5)(3 i)
$$

$$
=(5+3 i)^{2}\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]
$$

By using the result $16+30 i=(5+3 i)^{2}$, we get
$x=\frac{(3+7 i) \pm i \sqrt{(5+3 i)^{2}}}{4}$

$$
=\frac{(3+7 i) \pm i(5+3 i)}{4}
$$

$$
\begin{aligned}
& =\frac{(3+7 i)+i(5+3 i)}{4} \text { or } \frac{(3+7 i)-i(5+3 i)}{4} \\
& =\frac{3+7 i+5 i+3 i^{2}}{4} \text { or } \frac{3+7 \mathrm{i}-5 i-3 \mathrm{i}^{2}}{4} \\
& =\frac{3+12 \mathrm{i}+3 \mathrm{i}^{2}}{4} \text { or } \frac{3+2 \mathrm{i}-3 \mathrm{i}^{2}}{4} \\
& =\frac{3+12 \mathrm{i}+3(-1)}{4} \text { or } \frac{3+2 \mathrm{i}-3(-1)}{4} \\
& =\frac{3+12 \mathrm{i}-3}{4} \text { or } \frac{3+2 \mathrm{i}+3}{4} \\
& =\frac{12}{4} \mathrm{i} \text { or } \frac{6+2 \mathrm{i}}{4} \\
& =3 \mathrm{i} \text { or } \frac{6}{4}+\frac{2}{4} \mathrm{i} \\
& x=3 \mathrm{i} \text { or } \frac{3}{2}+\frac{1}{2} \mathrm{i} \\
& =3 \mathrm{i} \text { or }(3+\mathrm{i}) / 2
\end{aligned}
$$

\therefore The roots of the given equation are $(3+\mathrm{i}) / 2,3 \mathrm{i}$

