EXERCISE 18.1

1. Using binomial theorem, write down the expressions of the following:
(i) $(2 x+3 y)^{5}$
(ii) $(2 x-3 y)^{4}$
(iii) $\left(x-\frac{1}{x}\right)^{6}$
(iv) $(1-3 x)^{7}$
(v) $\left(a x-\frac{b}{x}\right)^{6}$
(vi) $\left(\sqrt{\frac{x}{a}}-\sqrt{\frac{a}{x}}\right)^{6}$
(vii) $(\sqrt[3]{x}-\sqrt[3]{a})^{6}$
(viii) $\left(1+2 x-3 x^{2}\right)^{5}$
(ix) $\left(x+1-\frac{1}{x}\right)^{3}$
(x) $\left(1-2 x+3 x^{2}\right)^{3}$

Solution:

(i) $(2 x+3 y)^{5}$

Let us solve the given expression:

$$
\begin{aligned}
(2 \mathrm{x}+3 \mathrm{y})^{5} & ={ }^{5} \mathrm{C}_{0}(2 \mathrm{x})^{5}(3 \mathrm{y})^{0}+{ }^{5} \mathrm{C}_{1}(2 \mathrm{x})^{4}(3 \mathrm{y})^{1}+{ }^{5} \mathrm{C}_{2}(2 \mathrm{x})^{3}(3 \mathrm{y})^{2}+{ }^{5} \mathrm{C}_{3}(2 \mathrm{x})^{2}(3 \mathrm{y})^{3}+{ }^{5} \mathrm{C}_{4} \\
(2 \mathrm{x})^{1}(3 \mathrm{y})^{4} & +{ }^{5} \mathrm{C}_{5}(2 \mathrm{x})^{0}(3 \mathrm{y})^{5} \\
& =32 \mathrm{x}^{5}+5\left(16 \mathrm{x}^{4}\right)(3 \mathrm{y})+10\left(8 \mathrm{x}^{3}\right)(9 \mathrm{y})^{2}+10(4 \mathrm{x})^{2}(27 \mathrm{y})^{3}+5(2 \mathrm{x})\left(81 \mathrm{y}^{4}\right)+243 \mathrm{y}^{5} \\
& =32 \mathrm{x}^{5}+240 \mathrm{x}^{4} \mathrm{y}+720 \mathrm{x}^{2}+1080 \mathrm{x}^{2} \mathrm{y}^{3}+810 \mathrm{xy}{ }^{4}+243 y^{5}
\end{aligned}
$$

(ii) $(2 x-3 y)^{4}$

Let us solve the given expression:
$(2 \mathrm{x}-3 \mathrm{y})^{4}={ }^{4} \mathrm{C}_{0}(2 \mathrm{x})^{4}(3 \mathrm{y})^{0}-{ }^{4} \mathrm{C}_{1}(2 \mathrm{x})^{3}(3 \mathrm{y})^{1}+{ }^{4} \mathrm{C}_{2}(2 \mathrm{x})^{2}(3 \mathrm{y})^{2}-{ }^{4} \mathrm{C}_{3}(2 \mathrm{x})^{1}(3 \mathrm{y})^{3}+{ }^{4} \mathrm{C}_{4}(2 \mathrm{x})^{0}$ $(3 y)^{4}$

$$
\begin{aligned}
& =16 x^{4}-4\left(8 x^{3}\right)(3 y)+6\left(4 x^{2}\right)\left(9 y^{2}\right)-4(2 x)\left(27 y^{3}\right)+81 y^{4} \\
& =16 x^{4}-96 x^{3} y+216 x^{2} y^{2}-216 x y^{3}+81 y^{4}
\end{aligned}
$$

(iii) $\left(x-\frac{1}{x}\right)^{6}$

Let us solve the given expression:

$$
\begin{aligned}
& \left(x-\frac{1}{x}\right)^{6} \\
& ={ }^{6} C_{0} x^{6}\left(\frac{1}{x}\right)^{0}-{ }^{6} C_{1} x^{5}\left(\frac{1}{x}\right)^{1}+{ }^{6} C_{2} x^{4}\left(\frac{1}{x}\right)^{2}-{ }^{6} C_{3} x^{3}\left(\frac{1}{x}\right)^{3} \\
& +{ }^{6} C_{4} x^{2}\left(\frac{1}{x}\right)^{4}-{ }^{6} C_{5} x^{1}\left(\frac{1}{x}\right)^{5}+{ }^{6} C_{6} x^{0}\left(\frac{1}{x}\right)^{6} \\
& =x^{6}-6 x^{5} \times \frac{1}{x}+15 x^{4} \times \frac{1}{x^{2}}-20 x^{3} \times \frac{1}{x^{3}}+15 x^{2} \times \frac{1}{x^{4}}-6 x \times \frac{1}{x^{5}}+\frac{1}{x^{6}} \\
& =x^{6}-6 x^{4}+15 x^{2}-20+\frac{15}{x^{2}}-\frac{6}{x^{4}}+\frac{1}{x^{6}}
\end{aligned}
$$

(iv) $(1-3 x)^{7}$

Let us solve the given expression:
$(1-3 \mathrm{x})^{7}={ }^{7} \mathrm{C}_{0}(3 \mathrm{x})^{0}-{ }^{7} \mathrm{C}_{1}(3 \mathrm{x})^{1}+{ }^{7} \mathrm{C}_{2}(3 \mathrm{x})^{2}-{ }^{7} \mathrm{C}_{3}(3 \mathrm{x})^{3}+{ }^{7} \mathrm{C}_{4}(3 \mathrm{x})^{4}-{ }^{7} \mathrm{C}_{5}(3 \mathrm{x})^{5}-{ }_{-}^{7} \mathrm{C}_{6}(3 \mathrm{x})^{6}-{ }^{7} \mathrm{C}_{7}(3 \mathrm{x})^{7}$

$$
\begin{aligned}
& =1-7(3 x)+21(9 x)^{2}-35\left(27 x^{3}\right)+35\left(81 x^{4}\right)-21\left(243 x^{5}\right)+7\left(729 x^{6}\right)-2187\left(x^{7}\right) \\
& =1-21 x+189 x^{2}-945 x^{3}+2835 x^{4}-5103 x^{5}+5103 x^{6}-2187 x^{7}
\end{aligned}
$$

(v) $\left(a x-\frac{b}{x}\right)^{6}$

Let us solve the given expression:

$$
\begin{aligned}
& ={ }^{6} C_{0}(a x)^{6}\left(\frac{b}{x}\right)^{0}-{ }^{6} C_{1}(a x)^{5}\left(\frac{b}{x}\right)^{1}+{ }^{6} C_{2}(a x)^{4}\left(\frac{b}{x}\right)^{2}-{ }^{6} C_{3}(a x)^{3}\left(\frac{b}{x}\right)^{3} \\
& +{ }^{6} C_{4}(a x)^{2}\left(\frac{b}{x}\right)^{4}-{ }^{6} C_{5}(a x)^{1}\left(\frac{b}{x}\right)^{5}+{ }^{6} C_{6}(a x)^{0}\left(\frac{b}{x}\right)^{6} \\
& =a^{6} x^{6}-6 a^{5} x^{5} \times \frac{b}{x}+15 a^{4} x^{4} \times \frac{b^{2}}{x^{2}}-20 a^{3} b^{3} \times \frac{b^{3}}{x^{3}}+15 a^{2} x^{2} \times \frac{b^{4}}{x^{4}}-6 a x \times \frac{b^{5}}{x^{5}}+\frac{b^{6}}{x^{6}} \\
& =a^{6} x^{6}-6 a^{5} x^{4} b+15 a^{4} x^{2} b^{2}-20 a^{3} b^{3}+15 \frac{a^{2} b^{4}}{x^{2}}-6 \frac{a b^{5}}{x^{4}}+\frac{b^{6}}{x^{6}}
\end{aligned}
$$

(vi) $\left(\sqrt{\frac{\mathbf{x}}{a}}-\sqrt{\frac{a}{x}}\right)^{6}$

Let us solve the given expression:

$$
\begin{aligned}
& ={ }^{6} C_{0}\left(\sqrt{\frac{x}{a}}\right)^{6}\left(\sqrt{\frac{a}{x}}\right)^{0}-{ }^{6} C_{1}\left(\sqrt{\frac{x}{a}}\right)^{5}\left(\sqrt{\frac{a}{x}}\right)^{1}+{ }^{6} C_{2}\left(\sqrt{\frac{x}{a}}\right)^{4}\left(\sqrt{\frac{a}{x}}\right)^{2}-{ }^{6} C_{3}\left(\sqrt{\frac{x}{a}}\right)^{3}\left(\sqrt{\frac{a}{x}}\right)^{3} \\
& +{ }^{6} C_{4}\left(\sqrt{\frac{x}{a}}\right)^{2}\left(\sqrt{\frac{a}{x}}\right)^{4}-{ }^{6} C_{5}\left(\sqrt{\frac{x}{a}}\right)^{1}\left(\sqrt{\frac{a}{x}}\right)^{5}+{ }^{6} C_{6}\left(\sqrt{\frac{x}{a}}\right)^{0}\left(\sqrt{\frac{a}{x}}\right)^{6} \\
& =\frac{x^{3}}{a^{3}}-6 \frac{x^{2}}{a^{2}}+15 \frac{x}{a}-20+15 \frac{a}{x}-6 \frac{a^{2}}{x^{2}}+\frac{a^{3}}{x^{3}}
\end{aligned}
$$

(vii) $(\sqrt[3]{x}-\sqrt[3]{a})^{6}$

Let us solve the given expression:

$$
\begin{aligned}
& ={ }^{6} C_{0}(\sqrt[3]{x})^{6}(\sqrt[3]{a})^{0}-{ }^{6} C_{1}(\sqrt[3]{x})^{5}(\sqrt[3]{a})^{1}+{ }^{6} C_{2}(\sqrt[3]{x})^{4}(\sqrt[3]{a})^{2}-{ }^{6} C_{3}(\sqrt[3]{x})^{3}(\sqrt[3]{a})^{3} \\
& +{ }^{6} C_{4}(\sqrt[3]{x})^{2}(\sqrt[3]{a})^{4}-{ }^{6} C_{5}(\sqrt[3]{x})^{1}(\sqrt[3]{a})^{5}+{ }^{6} C_{6}(\sqrt[3]{x})^{0}(\sqrt[3]{a})^{6} \\
& =x^{2}-6 x^{5 / 3} a^{1 / 3}+15 x^{4 / 3} a^{2 / 3}-20 x a+15 x^{2 / 3} a^{4 / 3}-6 x^{1 / 3} a^{5 / 3}+a^{2}
\end{aligned}
$$

(viii) $\left(\mathbf{1}+2 \mathrm{x}-3 \mathrm{x}^{2}\right)^{\mathbf{5}}$

Let us solve the given expression:
Let us consider $(1+2 x)$ and $3 x^{2}$ as two different entities and apply the binomial theorem.
$\left(1+2 \mathrm{x}-3 \mathrm{x}^{2}\right)^{5}={ }^{5} \mathrm{C}_{0}(1+2 \mathrm{x})^{5}\left(3 \mathrm{x}^{2}\right)^{0}-{ }^{5} \mathrm{C}_{1}(1+2 \mathrm{x})^{4}\left(3 \mathrm{x}^{2}\right)^{1}+{ }^{5} \mathrm{C}_{2}(1+2 \mathrm{x})^{3}\left(3 \mathrm{x}^{2}\right)^{2}-{ }^{5} \mathrm{C}_{3}(1+$ $2 \mathrm{x})^{2}\left(3 \mathrm{x}^{2}\right)^{3}+{ }^{5} \mathrm{C}_{4}(1+2 \mathrm{x})^{1}\left(3 \mathrm{x}^{2}\right)^{4}-{ }^{5} \mathrm{C}_{5}(1+2 \mathrm{x})^{0}\left(3 \mathrm{x}^{2}\right)^{5}$

$$
=(1+2 x)^{5}-5(1+2 x)^{4}\left(3 x^{2}\right)+10(1+2 x)^{3}\left(9 x^{4}\right)-10(1+2 x)^{2}\left(27 x^{6}\right)+5
$$

$(1+2 x)\left(81 x^{8}\right)-243 x^{10}$

$$
={ }^{5} \mathrm{C}_{0}(2 \mathrm{x})^{0}+{ }^{5} \mathrm{C}_{1}(2 \mathrm{x})^{1}+{ }^{5} \mathrm{C}_{2}(2 \mathrm{x})^{2}+{ }^{5} \mathrm{C}_{3}(2 \mathrm{x})^{3}+{ }^{5} \mathrm{C}_{4}(2 \mathrm{x})^{4}+{ }^{5} \mathrm{C}_{5}(2 \mathrm{x})^{5}-
$$

$15 \mathrm{x}^{2}\left[^{4} \mathrm{C}_{0}(2 \mathrm{x})^{0}+{ }^{4} \mathrm{C}_{1}(2 \mathrm{x})^{1}+{ }^{4} \mathrm{C}_{2}(2 \mathrm{x})^{2}+{ }^{4} \mathrm{C}_{3}(2 \mathrm{x})^{3}+{ }^{4} \mathrm{C}_{4}(2 \mathrm{x})^{4}\right]+90 \mathrm{x}^{4}\left[1+8 \mathrm{x}^{3}+6 \mathrm{x}+\right.$ $\left.12 x^{2}\right]-270 x^{6}\left(1+4 x^{2}+4 x\right)+405 x^{8}+810 x^{9}-243 x^{10}$

$$
=1+10 x+40 x^{2}+80 x^{3}+80 x^{4}+32 x^{5}-15 x^{2}-120 x^{3}-360^{4}-480 x^{5}-
$$

$240 x^{6}+90 x^{4}+720 x^{7}+540 x^{5}+1080 x^{6}-270 x^{6}-1080 x^{8}-1080 x^{7}+405 x^{8}+810 x^{9}-$ $243 x^{10}$

$$
=1+10 x+25 x^{2}-40 x^{3}-190 x^{4}+92 x^{5}+570 x^{6}-360 x^{7}-675 x^{8}+810 x^{9}-
$$

$243 x^{10}$
(ix) $\left(x+1-\frac{1}{x}\right)^{3}$

Let us solve the given expression:

$$
\begin{aligned}
& ={ }^{3} C_{0}(x+1)^{3}\left(\frac{1}{x}\right)^{0}-{ }^{3} C_{1}(x+1)^{2}\left(\frac{1}{x}\right)^{1}+{ }^{3} C_{2}(x+1)^{1}\left(\frac{1}{x}\right)^{2}-{ }^{3} C_{3}(x+1)^{0}\left(\frac{1}{x}\right)^{3} \\
& =(x+1)^{3}-3(x+1)^{2} \times \frac{1}{x}+3 \frac{x+1}{x^{2}}-\frac{1}{x^{3}} \\
& =x^{3}+1+3 x+3 x^{2}-\frac{3 x^{2}+3+6 x}{x}+3 \frac{x+1}{x^{2}}-\frac{1}{x^{3}} \\
& =x^{3}+1+3 x+3 x^{2}-3 x-\frac{3}{x}-6+\frac{3}{x}+\frac{3}{x^{2}}-\frac{1}{x^{3}} \\
& =x^{3}+3 x^{2}-5+\frac{3}{x^{2}}-\frac{1}{x^{3}}
\end{aligned}
$$

(x) $\left(1-2 x+3 x^{2}\right)^{3}$

Let us solve the given expression:

$$
\begin{aligned}
& ={ }^{3} C_{0}(1-2 x)^{3}+{ }^{3} C_{1}(1-2 x)^{2}\left(3 x^{2}\right)+{ }^{3} C_{2}(1-2 x)\left(3 x^{2}\right)^{2}+{ }^{3} C_{3}\left(3 x^{2}\right)^{3} \\
& =(1-2 x)^{3}+9 x^{2}(1-2 x)^{2}+27 x^{4}(1-2 x)+27 x^{6} \\
& =1-8 x^{3}+12 x^{2}-6 x+9 x^{2}\left(1+4 x^{2}-4 x\right)+27 x^{4}-54 x^{5}+27 x^{6} \\
& =1-8 x^{3}+12 x^{2}-6 x+9 x^{2}+36 x^{4}-36 x^{3}+27 x^{4}-54 x^{5}+27 x^{6} \\
& =1-6 x+21 x^{2}-44 x^{3}+63 x^{4}-54 x^{5}+27 x^{6}
\end{aligned}
$$

2. Evaluate the following:

(i) $(\sqrt{x+1}+\sqrt{x-1})^{6}+(\sqrt{x+1}-\sqrt{x-1})^{6}$
(ii) $\left(x+\sqrt{x^{2}-1}\right)^{6}+\left(x-\sqrt{x^{2}-1}\right)^{6}$
(iii) $(1+2 \sqrt{x})^{5}+(1-2 \sqrt{x})^{5}$
(iv) $(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}$
(v) $(3+\sqrt{2})^{5}-(3-\sqrt{2})^{5}$
(vi) $(2+\sqrt{3})^{7}+(2-\sqrt{3})^{7}$
(vii) $(\sqrt{3}+1)^{5}-(\sqrt{3}-1)^{5}$
(viii) $(0.99)^{5}+(1.01)^{5}$
(ix) $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$
(x) $\left\{a^{2}+\sqrt{a^{2}-1}\right\}^{4}+\left\{a^{2}-\sqrt{a^{2}-1}\right\}^{4}$

Solution:

$$
\text { (i) }(\sqrt{x+1}+\sqrt{x-1})^{6}+(\sqrt{x+1}-\sqrt{x-1})^{6}
$$

Let us solve the given expression:

$$
\begin{aligned}
& =2\left[{ }^{6} C_{0}(\sqrt{x+1})^{6}(\sqrt{x-1})^{0}+{ }^{6} C_{2}(\sqrt{x+1})^{4}(\sqrt{x-1})^{2}\right. \\
& \left.+{ }^{6} C_{4}(\sqrt{x+1})^{2}(\sqrt{x-1})^{4}+{ }^{6} C_{6}(\sqrt{x+1})^{0}(\sqrt{x-1})^{6}\right] \\
& =2\left[(x+1)^{3}+15(x+1)^{2}(x-1)+15(x+1)(x-1)^{2}+(x-1)^{3}\right. \\
& =2\left[x^{3}+1+3 x+3 x^{2}+15\left(x^{2}+2 x+1\right)(x-1)+15(x+1)\left(x^{2}+1-2 x\right)+x^{3}-1+3 x-3 x^{2}\right] \\
& =2\left[2 x^{3}+6 x+15 x^{3}-15 x^{2}+30 x^{2}-30 x+15 x-15+15 x^{3}+15 x^{2}-30 x^{2}-30 x+15 x+15\right] \\
& =2\left[32 x^{3}-24 x\right] \\
& =16 x\left[4 x^{2}-3\right]
\end{aligned}
$$

$$
\text { (ii) }\left(x+\sqrt{x^{2}-1}\right)^{6}+\left(x-\sqrt{x^{2}-1}\right)^{6}
$$

Let us solve the given expression:

$$
\begin{aligned}
& =2\left[{ }^{6} C_{0} x^{6}\left(\sqrt{x^{2}-1}\right)^{0}+{ }^{6} C_{2} x^{4}\left(\sqrt{x^{2}-1}\right)^{2}+{ }^{6} C_{4} x^{2}\left(\sqrt{x^{2}-1}\right)^{4}+\right. \\
& \left.{ }^{6} C_{6} x^{0}\left(\sqrt{x^{2}-1}\right)^{6}\right] \\
& =2\left[x^{6}+15 x^{4}\left(x^{2}-1\right)+15 x^{2}\left(x^{2}-1\right)^{2}+\left(x^{2}-1\right)^{3}\right]
\end{aligned}
$$

$=2\left[x^{6}+15 x^{6}-15 x^{4}+15 x^{2}\left(x^{4}-2 x^{2}+1\right)+\left(x^{6}-1+3 x^{2}-3 x^{4}\right)\right]$
$=2\left[x^{6}+15 x^{6}-15 x^{4}+15 x^{6}-30 x^{4}+15 x^{2}+x^{6}-1+3 x^{2}-3 x^{4}\right]$
$=64 x^{6}-96 x^{4}+36 x^{2}-2$
(iii) $(1+2 \sqrt{x})^{5}+(1-2 \sqrt{x})^{5}$

Let us solve the given expression:
$=2\left[{ }^{5} \mathrm{C}_{0}(2 \sqrt{ } \mathrm{x})^{0}+{ }^{5} \mathrm{C}_{2}(2 \sqrt{ } \mathrm{x})^{2}+{ }^{5} \mathrm{C}_{4}(2 \sqrt{ } \mathrm{x})^{4}\right]$
$=2\left[1+10(4 \mathrm{x})+5\left(16 \mathrm{x}^{2}\right)\right]$
$=2\left[1+40 \mathrm{x}+80 \mathrm{x}^{2}\right]$

$$
\text { (iv) }(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}
$$

Let us solve the given expression:
$=2\left[{ }^{6} \mathrm{C}_{0}(\sqrt{ } 2)^{6}+{ }^{6} \mathrm{C}_{2}(\sqrt{ } 2)^{4}+{ }^{6} \mathrm{C}_{4}(\sqrt{ } 2)^{2}+{ }^{6} \mathrm{C}_{6}(\sqrt{ } 2)^{0}\right]$
$=2[8+15(4)+15(2)+1]$
$=2$ [99]
$=198$

$$
\text { (v) }(3+\sqrt{2})^{5}-(3-\sqrt{2})^{5}
$$

Let us solve the given expression:
$=2\left[{ }^{5} \mathrm{C}_{1}\left(3^{4}\right)(\sqrt{ } 2)^{1}+{ }^{5} \mathrm{C}_{3}\left(3^{2}\right)(\sqrt{ } 2)^{3}+{ }^{5} \mathrm{C}_{5}\left(3^{0}\right)(\sqrt{ } 2)^{5}\right]$
$=2[5(81)(\sqrt{ } 2)+10(9)(2 \sqrt{ } 2)+4 \sqrt{ } 2]$
$=2 \sqrt{2}(405+180+4)$
$=1178 \sqrt{ } 2$
(vi) $(2+\sqrt{3})^{7}+(2-\sqrt{3})^{7}$

Let us solve the given expression:
$=2\left[{ }^{7} \mathrm{C}_{0}\left(2^{7}\right)(\sqrt{ } 3)^{0}+{ }^{7} \mathrm{C}_{2}\left(2^{5}\right)(\sqrt{ } 3)^{2}+{ }^{7} \mathrm{C}_{4}\left(2^{3}\right)(\sqrt{ } 3)^{4}+{ }^{7} \mathrm{C}_{6}\left(2^{1}\right)(\sqrt{ } 3)^{6}\right]$
$=2[128+21(32)(3)+35(8)(9)+7(2)(27)]$
$=2[128+2016+2520+378]$
$=2$ [5042]
$=10084$
(vii) $(\sqrt{3}+1)^{5}-(\sqrt{3}-1)^{5}$

Let us solve the given expression:
$=2\left[{ }^{5} \mathrm{C}_{1}(\sqrt{ } 3)^{4}+{ }^{5} \mathrm{C}_{3}(\sqrt{ } 3)^{2}+{ }^{5} \mathrm{C}_{5}(\sqrt{ } 3)^{0}\right]$
$=2[5(9)+10(3)+1]$
$=2$ [76]
$=152$
(viii) $(0.99)^{5}+(1.01)^{5}$

Let us solve the given expression:
$=(1-0.01)^{5}+(1+0.01)^{5}$
$=2\left[{ }^{5} \mathrm{C}_{0}(0.01)^{0}+{ }^{5} \mathrm{C}_{2}(0.01)^{2}+{ }^{5} \mathrm{C}_{4}(0.01)^{4}\right]$
$=2[1+10(0.0001)+5(0.00000001)]$
$=2$ [1.00100005]
$=2.0020001$

$$
\text { (ix) }(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}
$$

Let us solve the given expression:
$=2\left[{ }^{6} \mathrm{C}_{1}(\sqrt{ } 3)^{5}(\sqrt{ } 2)^{1}+{ }^{6} \mathrm{C}_{3}(\sqrt{ } 3)^{3}(\sqrt{ } 2)^{3}+{ }^{6} \mathrm{C}_{5}(\sqrt{ } 3)^{1}(\sqrt{ } 2)^{5}\right]$
$=2[6(9 \sqrt{ } 3)(\sqrt{ } 2)+20(3 \sqrt{ } 3)(2 \sqrt{ } 2)+6(\sqrt{ } 3)(4 \sqrt{ } 2)]$
$=2[\sqrt{ } 6(54+120+24)]$
$=396 \sqrt{ } 6$
(x) $\left\{a^{2}+\sqrt{a^{2}-1}\right\}^{4}+\left\{a^{2}-\sqrt{a^{2}-1}\right\}^{4}$

Let us solve the given expression:

$$
\begin{aligned}
& =2\left[{ }^{4} C_{0}\left(a^{2}\right)^{4}\left(\sqrt{a^{2}-1}\right)^{0}+{ }^{4} C_{2}\left(a^{2}\right)^{2}\left(\sqrt{a^{2}-1}\right)^{2}+{ }^{4} C_{4}\left(a^{2}\right)^{0}\left(\sqrt{a^{2}-1}\right)^{4}\right] \\
& =2\left[a^{8}+6 a^{4}\left(a^{2}-1\right)+\left(a^{2}-1\right)^{2}\right] \\
& =2\left[\mathrm{a}^{8}+6 \mathrm{a}^{6}-6 \mathrm{a}^{4}+\mathrm{a}^{4}+1-2 \mathrm{a}^{2}\right] \\
& =2 \mathrm{a}^{8}+12 \mathrm{a}^{6}-10 \mathrm{a}^{4}-4 \mathrm{a}^{2}+2
\end{aligned}
$$

3. Find $(a+b)^{4}-(a-b){ }^{4}$. Hence, evaluate $(\sqrt{ } 3+\sqrt{ } 2)^{4}-(\sqrt{ } 3-\sqrt{ } 2)^{4}$. Solution:
Firstly, let us solve the given expression:
$(a+b)^{4}-(a-b)^{4}$

The above expression can be expressed as,

$$
\begin{aligned}
(a+b)^{4}-(a-b)^{4} & =2\left[{ }^{4} C_{1} a^{3} b^{1}+{ }^{4} C_{3} a^{1} b^{3}\right] \\
& =2\left[4 a^{3} b+4 a b^{3}\right] \\
& =8\left(a^{3} b+a b^{3}\right)
\end{aligned}
$$

Now,
Let us evaluate the expression:
$(\sqrt{3}+\sqrt{ } 2)^{4}-(\sqrt{3}-\sqrt{ } 2)^{4}$
So consider, $a=\sqrt{ } 3$ and $b=\sqrt{2}$ we get,

$$
\begin{aligned}
(\sqrt{ } 3+\sqrt{ } 2)^{4}-(\sqrt{ } 3-\sqrt{ } 2)^{4} & =8\left(a^{3} b+\mathrm{ab}^{3}\right) \\
& =8\left[(\sqrt{ } 3)^{3}(\sqrt{ } 2)+(\sqrt{ } 3)(\sqrt{ } 2)^{3}\right] \\
& =8[(3 \sqrt{6})+(2 \sqrt{ } 6)] \\
& =8(5 \sqrt{6}) \\
& =40 \sqrt{6}
\end{aligned}
$$

4. Find $(x+1)^{6}+(x-1)^{6}$. Hence, or otherwise evaluate $(\sqrt{ } 2+1)^{6}+(\sqrt{ } 2-1)^{6}$.

Solution:

Firstly, let us solve the given expression:
$(x+1)^{6}+(x-1)^{6}$
The above expression can be expressed as,

$$
\begin{aligned}
(\mathrm{x}+1)^{6}+(\mathrm{x}-1)^{6} & =2\left[{ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{6} \mathrm{x}^{0}\right] \\
& =2\left[\mathrm{x}^{6}+15 \mathrm{x}^{4}+15 \mathrm{x}^{2}+1\right]
\end{aligned}
$$

Now,
Let us evaluate the expression:
$(\sqrt{ } 2+1)^{6}+(\sqrt{ } 2-1)^{6}$
So consider, $\mathrm{x}=\sqrt{ } 2$ then we get,

$$
\begin{aligned}
(\sqrt{ } 2+1)^{6}+(\sqrt{ } 2-1)^{6} & =2\left[x^{6}+15 x^{4}+15 x^{2}+1\right] \\
& =2\left[(\sqrt{ } 2)^{6}+15(\sqrt{ } 2)^{4}+15(\sqrt{ } 2)^{2}+1\right] \\
& =2[8+15(4)+15(2)+1] \\
& =2[8+60+30+1] \\
& =198
\end{aligned}
$$

5. Using binomial theorem evaluate each of the following:
(i) $(96)^{3}$
(ii) $(102)^{5}$
(iii) $(\mathbf{1 0 1})^{4}$
(iv) $(98)^{5}$

Solution:
(i) $(96)^{3}$

We have,
(96) ${ }^{3}$

Let us express the given expression as two different entities and apply the binomial theorem.

$$
\begin{aligned}
(96)^{3} & =(100-4)^{3} \\
& ={ }^{3} \mathrm{C}_{0}(100)^{3}(4)^{0}-{ }^{3} \mathrm{C}_{1}(100)^{2}(4)^{1}+{ }^{3} \mathrm{C}_{2}(100)^{1}(4)^{2}-{ }^{3} \mathrm{C}_{3}(100)^{0}(4)^{3} \\
& =1000000-120000+4800-64 \\
& =884736
\end{aligned}
$$

(ii) $(102)^{5}$

We have,
(102) ${ }^{5}$

Let us express the given expression as two different entities and apply the binomial theorem.

$$
\begin{aligned}
(102)^{5} & =(100+2)^{5} \\
& ={ }^{5} \mathrm{C}_{0}(100)^{5}(2)^{0}+{ }^{5} \mathrm{C}_{1}(100)^{4}(2)^{1}+{ }^{5} \mathrm{C}_{2}(100)^{3}(2)^{2}+{ }^{5} \mathrm{C}_{3}(100)^{2}(2)^{3}+{ }^{5} \mathrm{C}_{4}(100)^{1}
\end{aligned}
$$

$(2)^{4}+{ }^{5} \mathrm{C}_{5}(100)^{0}(2)^{5}$
$=10000000000+1000000000+40000000+800000+8000+32$
$=11040808032$
(iii) $(101)^{4}$

We have,
(101) ${ }^{4}$

Let us express the given expression as two different entities and apply the binomial theorem.

$$
\begin{aligned}
(101)^{4} & =(100+1)^{4} \\
& ={ }^{4} \mathrm{C}_{0}(100)^{4}+{ }^{4} \mathrm{C}_{1}(100)^{3}+{ }^{4} \mathrm{C}_{2}(100)^{2}+{ }^{4} \mathrm{C}_{3}(100)^{1}+{ }^{4} \mathrm{C}_{4}(100)^{0} \\
& =100000000+400000+60000+400+1 \\
& =104060401
\end{aligned}
$$

(iv) $(98)^{5}$

We have,
(98) ${ }^{5}$

Let us express the given expression as two different entities and apply the binomial theorem.

$$
\begin{aligned}
(98)^{5} & =(100-2)^{5} \\
& ={ }^{5} \mathrm{C}_{0}(100)^{5}(2)^{0}-{ }^{5} \mathrm{C}_{1}(100)^{4}(2)^{1}+{ }^{5} \mathrm{C}_{2}(100)^{3}(2)^{2}-{ }^{5} \mathrm{C}_{3}(100)^{2}(2)^{3}+{ }^{5} \mathrm{C}_{4}(100)^{1}(2)^{4} \\
-{ }^{5} \mathrm{C}_{5} & (100)^{0}(2)^{5} \\
& =10000000000-1000000000+40000000-800000+8000-32 \\
& =9039207968
\end{aligned}
$$

6. Using binomial theorem, prove that $2^{3 n}-7 n-1$ is divisible by 49 , where $n \in N$. Solution:
Given:
$2^{3 n}-7 n-1$
So, $2^{3 n}-7 n-1=8^{n}-7 n-1$
Now,
$8^{n}-7 n-1$
$8^{\mathrm{n}}=7 \mathrm{n}+1$
$=(1+7)^{n}$
$={ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{1}(7)^{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}(7)^{2}+{ }^{\mathrm{n}} \mathrm{C}_{3}(7)^{3}+{ }^{\mathrm{n}} \mathrm{C}_{4}(7)^{2}+{ }^{\mathrm{n}} \mathrm{C}_{5}(7)^{1}+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}(7)^{\mathrm{n}}$
$8^{\mathrm{n}}=1+7 \mathrm{n}+49\left[{ }^{\mathrm{n}} \mathrm{C}_{2}+{ }^{\mathrm{n}} \mathrm{C}_{3}\left(7^{1}\right)+{ }^{\mathrm{n}} \mathrm{C}_{4}\left(7^{2}\right)+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}(7)^{\mathrm{n}-2}\right]$
$8^{n}-1-7 n=49$ (integer)
So now,
$8^{n}-1-7 n$ is divisible by 49
Or
$2^{3 n}-1-7 n$ is divisible by 49 .
Hence proved.

EXERCISE 18.2

1. Find the $11^{\text {th }}$ term from the beginning and the $11^{\text {th }}$ term from the end in the expansion of $\left(2 x-1 / x^{2}\right)^{25}$.
Solution:
Given:
$\left(2 \mathrm{x}-1 / \mathrm{x}^{2}\right)^{25}$
The given expression contains 26 terms.
So, the $11^{\text {th }}$ term from the end is the $(26-11+1)^{\text {th }}$ term from the beginning.
In other words, the $11^{\text {th }}$ term from the end is the $16^{\text {th }}$ term from the beginning.
Then,

$$
\begin{aligned}
\mathrm{T}_{16}=\mathrm{T}_{15+1} & ={ }^{25} \mathrm{C}_{15}(2 \mathrm{x})^{25-15}\left(-1 / \mathrm{x}^{2}\right)^{15} \\
& ={ }^{25} \mathrm{C}_{15}\left(2^{10}\right)(\mathrm{x})^{10}\left(-1 / \mathrm{x}^{30}\right) \\
& =-{ }^{25} \mathrm{C}_{15}\left(2^{10} / \mathrm{x}^{20}\right)
\end{aligned}
$$

Now we shall find the $11^{\text {th }}$ term from the beginning.

$$
\begin{aligned}
\mathrm{T}_{11}=\mathrm{T}_{10+1} & ={ }^{25} \mathrm{C}_{10}(2 \mathrm{x})^{25-10}\left(-1 / \mathrm{x}^{2}\right)^{10} \\
& ={ }^{25} \mathrm{C}_{10}\left(2^{15}\right)(\mathrm{x})^{15}\left(1 / \mathrm{x}^{20}\right) \\
& ={ }^{25} \mathrm{C}_{10}\left(2^{15} / \mathrm{x}^{5}\right)
\end{aligned}
$$

2. Find the $7^{\text {th }}$ term in the expansion of $\left(3 x^{2}-1 / x^{3}\right)^{10}$.

Solution:

Given:
$\left(3 x^{2}-1 / x^{3}\right)^{10}$
Let us consider the $7^{\text {th }}$ term as T_{7}
So,

$$
\begin{aligned}
\mathrm{T}_{7} & =\mathrm{T}_{6+1} \\
& ={ }^{10} \mathrm{C}_{6}\left(3 \mathrm{x}^{2}\right)^{10-6}\left(-1 / \mathrm{x}^{3}\right)^{6} \\
& ={ }^{10} \mathrm{C}_{6}(3)^{4}(\mathrm{x})^{8}\left(1 / \mathrm{x}^{18}\right) \\
& =[10 \times 9 \times 8 \times 7 \times 81] /\left[4 \times 3 \times 2 \times \mathrm{x}^{10}\right] \\
& =17010 / \mathrm{x}^{10}
\end{aligned}
$$

\therefore The $7^{\text {th }}$ term of the expression $\left(3 \mathrm{x}^{2}-1 / \mathrm{x}^{3}\right)^{10}$ is $17010 / \mathrm{x}^{10}$.
3. Find the $5^{\text {th }}$ term in the expansion of $\left(3 x-1 / x^{2}\right)^{10}$.

Solution:

Given:
$\left(3 \mathrm{x}-1 / \mathrm{x}^{2}\right)^{10}$
The $5^{\text {th }}$ term from the end is the $(11-5+1)$ th, is., $7^{\text {th }}$ term from the beginning. So,

$$
\begin{aligned}
\mathrm{T}_{7} & =\mathrm{T}_{6+1} \\
& ={ }^{10} \mathrm{C}_{6}(3 \mathrm{x})^{10-6}\left(-1 / \mathrm{x}^{2}\right)^{6} \\
& ={ }^{10} \mathrm{C}_{6}(3)^{4}(\mathrm{x})^{4}\left(1 / \mathrm{x}^{12}\right) \\
& =[10 \times 9 \times 8 \times 7 \times 81] /\left[4 \times 3 \times 2 \times \mathrm{x}^{8}\right] \\
& =17010 / \mathrm{x}^{8}
\end{aligned}
$$

\therefore The $5^{\text {th }}$ term of the expression $\left(3 x-1 / x^{2}\right)^{10}$ is $17010 / x^{8}$.
4. Find the $8^{\text {th }}$ term in the expansion of $\left(\mathbf{x}^{3 / 2} \mathbf{y}^{1 / 2}-\mathbf{x}^{1 / 2} \mathbf{y}^{3 / 2}\right)^{10}$.

Solution:

Given:
$\left(x^{3 / 2} y^{1 / 2}-x^{1 / 2} y^{3 / 2}\right)^{10}$
Let us consider the $8^{\text {th }}$ term as T_{8}
So,
$\mathrm{T}_{8}=\mathrm{T}_{7+1}$
$={ }^{10} \mathrm{C}_{7}\left(\mathrm{x}^{3 / 2} \mathrm{y}^{1 / 2}\right)^{10-7}\left(-\mathrm{x}^{1 / 2} \mathrm{y}^{3 / 2}\right)^{7}$
$=-[10 \times 9 \times 8] /[3 \times 2] x^{9 / 2} y^{3 / 2}\left(x^{7 / 2} y^{21 / 2}\right)$
$=-120 x^{8} y^{12}$
\therefore The $8^{\text {th }}$ term of the expression $\left(\mathrm{x}^{3 / 2} \mathrm{y}^{1 / 2}-\mathrm{x}^{1 / 2} \mathrm{y}^{3 / 2}\right)^{10}$ is $-120 \mathrm{x}^{8} \mathrm{y}^{12}$.
5. Find the $7^{\text {th }}$ term in the expansion of $(4 x / 5+5 / 2 x)^{8}$.

Solution:

Given:
$(4 x / 5+5 / 2 x)^{8}$
Let us consider the $7^{\text {th }}$ term as T_{7}
So,
$\mathrm{T}_{7}=\mathrm{T}_{6+1}$

$$
\begin{aligned}
& ={ }^{8} C_{6}\left(\frac{4 x}{5}\right)^{8-6}\left(\frac{5}{2 x}\right)^{6} \\
& =\frac{8 \times 7 \times 4 \times 4 \times 125 \times 125}{2 \times 1 \times 25 \times 64} x^{2}\left(\frac{1}{x^{6}}\right) \\
& =\frac{4375}{x^{4}}
\end{aligned}
$$

\therefore The $7^{\text {th }}$ term of the expression $(4 \mathrm{x} / 5+5 / 2 \mathrm{x})^{8}$ is $4375 / \mathrm{x}^{4}$.
6. Find the $4^{\text {th }}$ term from the beginning and $4^{\text {th }}$ term from the end in the expansion of $(x+2 / x)^{9}$.

Solution:

Given:
$(x+2 / x)^{9}$
Let $\mathrm{T}_{\mathrm{r}+1}$ be the 4th term from the end.

Then, $\mathrm{T}_{\mathrm{r}+1}$ is $(10-4+1)$ th, i.e., 7 th, term from the beginning.

$$
\begin{aligned}
\mathrm{T}_{7} & =\mathrm{T}_{6+1} \\
& ={ }^{9} C_{6}\left(x^{9-6}\right)\left(\frac{2}{x}\right)^{6} \\
& =\frac{9 \times 8 \times 7}{3 \times 2}\left(x^{3}\right)\left(\frac{64}{x^{6}}\right) \\
& =\frac{5336}{x^{3}}
\end{aligned}
$$

4th term from the beginning $=\mathrm{T}_{4}=\mathrm{T}_{3+1}$

$$
\begin{aligned}
T_{4} & ={ }^{9} C_{3}\left(x^{9-3}\right)\left(\frac{2}{x}\right)^{3} \\
& =\frac{9 \times 8 \times 7}{3 \times 2}\left(x^{6}\right)\left(\frac{8}{x^{3}}\right) \\
& =672 \mathrm{x}^{3}
\end{aligned}
$$

7. Find the $4^{\text {th }}$ term from the end in the expansion of $(4 x / 5-5 / 2 x){ }^{9}$.

 Solution:Given:
$(4 x / 5-5 / 2 x)^{9}$
Let $\mathrm{T}_{\mathrm{r}+1}$ be the 4th term from the end of the given expression.
Then, $\mathrm{T}_{\mathrm{r}+1}$ is $(10-4+1)$ th term, i.e., 7 th term, from the beginning.
$\mathrm{T}_{7}=\mathrm{T}_{6+1}$

$$
\begin{aligned}
& ={ }^{9} C_{6}\left(\frac{4 x}{5}\right)^{9-6}\left(\frac{5}{2 x}\right)^{6} \\
& =\frac{9 \times 8 \times 7}{3 \times 2}\left(\frac{64}{125} x^{3}\right)\left(\frac{125 \times 125}{64 x^{6}}\right) \\
& =\frac{1050}{x^{3}}
\end{aligned}
$$

\therefore The $4^{\text {th }}$ term from the end is $10500 / \mathrm{x}^{3}$.
8. Find the 7th term from the end in the expansion of $\left(2 x^{2}-3 / 2 x\right)^{8}$. Solution:
Given:
$\left(2 x^{2}-3 / 2 x\right)^{8}$
Let $\mathrm{T}_{\mathrm{r}+1}$ be the 4th term from the end of the given expression.
Then, $\mathrm{T}_{\mathrm{r}+1}$ is $(9-7+1)$ th term, i.e., 3rd term, from the beginning.

$$
\mathrm{T}_{3}=\mathrm{T}_{2+1}
$$

$$
\begin{aligned}
& ={ }^{8} C_{2}\left(2 x^{2}\right)^{8-2}\left(-\frac{3}{2 x}\right)^{2} \\
& =\frac{8 \times 7}{2 \times 1}\left(64 x^{12}\right) \frac{9}{4 x^{2}} \\
& =4032 x^{10}
\end{aligned}
$$

\therefore The $7^{\text {th }}$ term from the end is $4032 \mathrm{x}^{10}$.

9. Find the coefficient of:

(i) x^{10} in the expansion of $\left(2 \mathrm{x}^{2}-1 / \mathrm{x}\right)^{\mathbf{2 0}}$
(ii) \mathbf{x}^{7} in the expansion of $\left(x-1 / x^{2}\right)^{40}$
(iii) x^{-15} in the expansion of $\left(3 x^{2}-a / 3 x^{3}\right)^{10}$
(iv) x^{9} in the expansion of $\left(x^{2}-1 / 3 x\right)^{9}$
(v) x^{m} in the expansion of $(x+1 / x)^{n}$
(vi) x in the expansion of $\left(1-2 x^{3}+3 x^{5}\right)(1+1 / x)^{8}$
(vii) $a^{5} b^{7}$ in the expansion of $(a-2 b)^{12}$
(viii) x in the expansion of $\left(1-3 x+7 x^{2}\right)(1-x)^{16}$

Solution:

(i) x^{10} in the expansion of $\left(2 \mathrm{x}^{2}-1 / \mathrm{x}\right)^{20}$

Given:
$\left(2 x^{2}-1 / x\right)^{20}$
If x^{10} occurs in the $(r+1)$ th term in the given expression.
Then, we have:
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{nr}} \mathrm{a}^{\mathrm{r}}$

$$
\begin{aligned}
T_{r+1} & ={ }^{20} C_{r}\left(2 x^{2}\right)^{20-r}\left(\frac{-1}{x}\right)^{r} \\
& =(-1)^{r}{ }^{20} C_{r}\left(2^{20-r}\right)\left(x^{40-2 r-r}\right)
\end{aligned}
$$

For this term to contain x^{10}, we must have:
$40-3 \mathrm{r}=10$
$3 \mathrm{r}=30$
$\mathrm{r}=10$
\therefore Coefficient of $x^{10}=(-1)^{10}{ }^{20} C_{10}\left(2^{20-10}\right)={ }^{20} C_{10}\left(2^{10}\right)$
(ii) x^{7} in the expansion of $\left(x-1 / x^{2}\right)^{40}$

Given:
$\left(x-1 / x^{2}\right)^{40}$
If x^{7} occurs at the $(r+1)$ th term in the given expression.
Then, we have:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}} \\
T_{r+1} & ={ }^{40} C_{r} x^{40-r}\left(\frac{-1}{x^{2}}\right)^{r} \\
& =(-1)^{r}{ }^{40} C_{r} x^{40-r-2 r}
\end{aligned}
$$

For this term to contain \mathbf{x}^{7}, we must have:
$40-3 \mathrm{r}=7$
$3 \mathrm{r}=40-7$
$3 \mathrm{r}=33$
$r=33 / 3$
$=11$
\therefore Coefficient of $x^{7}=(-1)^{11}{ }^{40} C_{11}=-{ }^{40} C_{11}$
(iii) x^{-15} in the expansion of $\left(3 x^{2}-a / 3 x^{3}\right)^{10}$

Given:
$\left(3 x^{2}-a / 3 x^{3}\right)^{10}$
If x^{-15} occurs at the $(r+1)$ th term in the given expression.
Then, we have:
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{nr}} \mathrm{a}^{\mathrm{r}}$

$$
\begin{aligned}
T_{r+1} & ={ }^{10} C_{r}\left(3 x^{2}\right)^{10-r}\left(\frac{-a}{3 x^{3}}\right)^{r} \\
& =(-1)^{r}{ }^{10} C_{r}\left(3^{10-r-r}\right)\left(x^{20-2 r-3 r}\right)\left(a^{r}\right)
\end{aligned}
$$

For this term to contain x^{-15}, we must have:
$20-5 \mathrm{r}=-15$
$5 \mathrm{r}=20+15$
$5 \mathrm{r}=35$
$\mathrm{r}=35 / 5$
$=7$
\therefore Coef ficient of $x^{-15}=(-1)^{7}{ }^{10} C_{7} 3^{10-14}\left(a^{7}\right)=-\frac{10 \times 9 \times 8}{3 \times 2 \times 9 \times 9} a^{7}=-\frac{40}{27} a^{7}$
(iv) x^{9} in the expansion of $\left(x^{2}-1 / 3 x\right)^{9}$

Given:
$\left(x^{2}-1 / 3 x\right)^{9}$
If x^{9} occurs at the $(r+1)$ th term in the above expression.
Then, we have:
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}}$

$$
\begin{aligned}
T_{r+1} & ={ }^{9} C_{r}\left(x^{2}\right)^{9-r}\left(\frac{-1}{3 x}\right)^{r} \\
& =(-1)^{r}{ }^{9} C_{r}\left(x^{18-2 r-r}\right)\left(\frac{1}{3^{r}}\right)
\end{aligned}
$$

For this term to contain x^{9}, we must have:
$18-3 r=9$
$3 \mathrm{r}=18-9$
$3 \mathrm{r}=9$
$r=9 / 3$
$=3$
\therefore Coefficient of $x^{9}=(-1)^{3}{ }^{9} C_{3} \frac{1}{3^{3}}=-\frac{9 \times 8 \times 7}{2 \times 9 \times 9}=\frac{-28}{9}$
(v) x^{m} in the expansion of $(\mathrm{x}+1 / \mathrm{x})^{\mathrm{n}}$

Given:
$(x+1 / x)^{n}$
If x^{m} occurs at the $(r+1)$ th term in the given expression.
Then, we have:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{n} \mathrm{C}_{\mathrm{x}} \mathrm{n}^{\mathrm{n-r}} \mathrm{a}^{\mathrm{r}} \\
& T_{r+1}={ }^{n} C_{r} x^{n-r} \frac{1}{x^{r}} \\
& \quad={ }^{n} C_{r} x^{n-2 r}
\end{aligned}
$$

For this term to contain X^{m}, we must have:

$$
\begin{aligned}
& \mathrm{n}-2 \mathrm{r}=\mathrm{m} \\
& 2 \mathrm{r}=\mathrm{n}-\mathrm{m} \\
& \mathrm{r}=(\mathrm{n}-\mathrm{m}) / 2 \\
& \therefore \text { Coefficient of } x^{m}={ }^{n} C_{(n-m) / 2}=\frac{n!}{\left(\frac{n-m}{2}\right)!\left(\frac{n+m}{2}\right)!}
\end{aligned}
$$

(vi) x in the expansion of $\left(1-2 \mathrm{x}^{3}+3 \mathrm{x}^{5}\right)(1+1 / \mathrm{x})^{8}$

Given:
$\left(1-2 x^{3}+3 x^{5}\right)(1+1 / x)^{8}$
If x occurs at the $(r+1)$ th term in the given expression.
Then, we have:
$\left(1-2 \mathrm{x}^{3}+3 \mathrm{x}^{5}\right)(1+1 / \mathrm{x})^{8}=\left(1-2 \mathrm{x}^{3}+3 \mathrm{x}^{5}\right)\left({ }^{8} \mathrm{C}_{0}+{ }^{8} \mathrm{C}_{1}(1 / \mathrm{x})+{ }^{8} \mathrm{C}_{2}(1 / \mathrm{x})^{2}+{ }^{8} \mathrm{C}_{3}(1 / \mathrm{x})^{3}+{ }^{8} \mathrm{C}_{4}\right.$
$\left.(1 / x)^{4}+{ }^{8} \mathrm{C}_{5}(1 / \mathrm{x})^{5}+{ }^{8} \mathrm{C}_{6}(1 / \mathrm{x})^{6}+{ }^{8} \mathrm{C}_{7}(1 / \mathrm{x})^{7}+{ }^{8} \mathrm{C}_{8}(1 / \mathrm{x})^{8}\right)$
So, ' x ' occurs in the above expression at $-2 x^{3} .{ }^{8} \mathrm{C}_{2}\left(1 / \mathrm{x}^{2}\right)+3 \mathrm{x}^{5} .{ }^{8} \mathrm{C}_{4}\left(1 / \mathrm{x}^{4}\right)$
\therefore Coefficient of $x=-2(8!/(2!6!))+3(8!/(4!4!))$

$$
\begin{aligned}
& =-56+210 \\
& =154
\end{aligned}
$$

(vii) $a^{5} b^{7}$ in the expansion of $(a-2 b)^{12}$

Given:
$(a-2 b)^{12}$
If $a^{5} b^{7}$ occurs at the $(r+1)$ th term in the given expression.

Then, we have:
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{\mathrm{nr}} \mathrm{a}^{\mathrm{r}}$

$$
\begin{aligned}
T_{r+1} & ={ }^{12} C_{r} a^{12-r}(-2 b)^{r} \\
& =(-1)^{r}{ }^{12} C_{r}\left(a^{12-r}\right)\left(b^{r}\right)\left(2^{r}\right)
\end{aligned}
$$

For this term to contain $\mathrm{a}^{5} \mathrm{~b}^{7}$, we must have:

$$
\begin{aligned}
& 12-\mathrm{r}=5 \\
& \mathrm{r}=12-5 \\
& =7
\end{aligned}
$$

\therefore Required coefficient $=(-1)^{7}{ }^{12} C_{7}\left(2^{7}\right)$

$$
\begin{aligned}
& =-\frac{12 \times 11 \times 10 \times 9 \times 8 \times 128}{5 \times 4 \times 3 \times 2} \\
& =-101376
\end{aligned}
$$

(viii) x in the expansion of $\left(1-3 x+7 x^{2}\right)(1-x)^{16}$

Given:
$\left(1-3 x+7 x^{2}\right)(1-x)^{16}$
If x occurs at the $(r+1)$ th term in the given expression.
Then, we have:
$\left(1-3 \mathrm{x}+7 \mathrm{x}^{2}\right)(1-\mathrm{x})^{16}=\left(1-3 \mathrm{x}+7 \mathrm{x}^{2}\right)\left({ }^{16} \mathrm{C}_{0}+{ }^{16} \mathrm{C}_{1}(-\mathrm{x})+{ }^{16} \mathrm{C}_{2}(-\mathrm{x})^{2}+{ }^{16} \mathrm{C}_{3}(-\mathrm{x})^{3}+{ }^{16} \mathrm{C}_{4}(-\right.$
$\mathrm{x})^{4}+{ }^{16} \mathrm{C}_{5}(-\mathrm{x})^{5}+{ }^{16} \mathrm{C}_{6}(-\mathrm{x})^{6}+{ }^{16} \mathrm{C}_{7}(-\mathrm{x})^{7}+{ }^{16} \mathrm{C}_{8}(-\mathrm{x})^{8}+{ }^{16} \mathrm{C}_{9}(-\mathrm{x})^{9}+{ }^{16} \mathrm{C}_{10}(-\mathrm{x})^{10}+{ }^{16} \mathrm{C}_{11}(-\mathrm{x})^{11}$
$\left.+{ }^{16} \mathrm{C}_{12}(-\mathrm{x})^{12}+{ }^{16} \mathrm{C}_{13}(-\mathrm{x})^{13}+{ }^{16} \mathrm{C}_{14}(-\mathrm{x})^{14}+{ }^{16} \mathrm{C}_{15}(-\mathrm{x})^{15}+{ }^{16} \mathrm{C}_{16}(-\mathrm{x})^{16}\right)$
So, ' x ' occurs in the above expression at ${ }^{16} \mathrm{C}_{1}(-\mathrm{x})-3 \mathrm{x}^{16} \mathrm{C}_{0}$
\therefore Coefficient of $\mathrm{x}=-(16!/(1!15!))-3(16!/(0!16!))$

$$
\begin{aligned}
& =-16-3 \\
& =-19
\end{aligned}
$$

10. Which term in the expansion of $\left\{\left(\frac{x}{\sqrt{y}}\right)^{1 / 3}+\left(\frac{y}{x^{1 / 3}}\right)^{1 / 2}\right\}$ contains x and y to one and the same power.

Solution:

Let us consider $\mathrm{T}_{\mathrm{r}+1}$ th term in the given expansion contains x and y to one and the same power.
Then we have,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1}= & { }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}} \\
T_{r+1} & ={ }^{21} C_{r}\left[\left(\frac{x}{\sqrt{y}}\right)^{1 / 3}\right]^{21-r}\left[\left(\frac{y}{x^{1 / 3}}\right)^{1 / 2}\right]^{r} \\
& ={ }^{21} C_{r}\left(\frac{x^{(21-r) / 3}}{x^{5 / 6}}\right)\left(\frac{y^{r / 2}}{y^{(21-r) / 6}}\right)
\end{aligned}
$$

$$
={ }^{21} C_{r}(x)^{7-r / 2}(y)^{2 r / 3-7 / 2}
$$

If x and y have the same power, then

$$
\begin{aligned}
& 7-\mathrm{r} / 2=2 \mathrm{r} / 3-7 / 2 \\
& 2 \mathrm{r} / 3+\mathrm{r} / 2=7+7 / 2 \\
& (4 \mathrm{r}+3 \mathrm{r}) / 6=(14+7) / 2 \\
& 7 \mathrm{r} / 6=21 / 2 \\
& \mathrm{r}=(21 \times 6) /(2 \times 7) \\
& =3 \times 3 \\
& =9
\end{aligned}
$$

Hence, the required term is the $10^{\text {th }}$ term.

11. Does the expansion of $\left(2 x^{2}-1 / x\right)$ contain any term involving x^{9} ?

Solution:

Given:
($2 \mathrm{x}^{2}-1 / \mathrm{x}$)
If x^{9} occurs at the $(r+1)$ th term in the given expression.
Then, we have:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}} \\
T_{r+1} & ={ }^{20} C_{r}\left(2 x^{2}\right)^{20-r}\left(\frac{-1}{x}\right)^{r} \\
& =(-1)^{r}{ }^{20} C_{r}(2)^{20-r}(x)^{40-2 r-r}
\end{aligned}
$$

For this term to contain x^{9}, we must have
$40-3 r=9$
$3 r=40-9$
$3 \mathrm{r}=31$
$r=31 / 3$
It is not possible, since r is not an integer.
Hence, there is no term with x^{9} in the given expansion.
12. Show that the expansion of $\left(x^{2}+1 / x\right)^{12}$ does not contain any term involving x^{-1}. Solution:
Given:
$\left(x^{2}+1 / x\right)^{12}$
If x^{-1} occurs at the $(\mathrm{r}+1)$ th term in the given expression.
Then, we have:
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}}$

$$
\begin{aligned}
T_{r+1} & ={ }^{12} C_{r}\left(x^{2}\right)^{12-r}\left(\frac{1}{x}\right)^{r} \\
& ={ }^{12} C_{r} x^{24-2 r-r}
\end{aligned}
$$

For this term to contain x^{-1}, we must have
$24-3 \mathrm{r}=-1$
$3 \mathrm{r}=24+1$
$3 \mathrm{r}=25$
$r=25 / 3$
It is not possible, since r is not an integer.
Hence, there is no term with x^{-1} in the given expansion.

13. Find the middle term in the expansion of:

(i) $(2 / 3 x-3 / 2 x)^{20}$
(ii) $(a / x+b x)^{12}$
(iii) $\left(x^{2}-2 / x\right)^{10}$
(iv) $(\mathbf{x} / \mathbf{a}-\mathbf{a} / \mathbf{x})^{10}$

Solution:

(i) $(2 / 3 x-3 / 2 x)^{20}$

We have,
$(2 / 3 \mathrm{x}-3 / 2 \mathrm{x})^{20}$ where, $\mathrm{n}=20$ (even number)
So the middle term is $(\mathrm{n} / 2+1)=(20 / 2+1)=(10+1)=11$. ie., $11^{\text {th }}$ term
Now,

$$
\begin{aligned}
\mathrm{T}_{11} & =\mathrm{T}_{10+1} \\
& ={ }^{20} \mathrm{C}_{10}(2 / 3 \mathrm{x})^{20-10}(3 / 2 \mathrm{x})^{10} \\
& ={ }^{20} \mathrm{C}_{10} 2^{10} / 3^{10} \times 3^{10} / 2^{10} \mathrm{x}^{10-10} \\
& ={ }^{20} \mathrm{C}_{10}
\end{aligned}
$$

Hence, the middle term is ${ }^{20} \mathrm{C}_{10}$.
(ii) $(a / x+b x)^{12}$

We have,
$(\mathrm{a} / \mathrm{x}+\mathrm{bx})^{12}$ where, $\mathrm{n}=12$ (even number)
So the middle term is $(\mathrm{n} / 2+1)=(12 / 2+1)=(6+1)=7$. ie., $7^{\text {th }}$ term
Now,
$\mathrm{T}_{7}=\mathrm{T}_{6+1}$

$$
\begin{aligned}
& ={ }^{12} C_{6}\left(\frac{a}{x}\right)^{12-6}(b x)^{6} \\
& ={ }^{12} C_{6} a^{6} b^{6} \\
& =\frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{6 \times 5 \times 4 \times 3 \times 2} a^{6} b^{6}
\end{aligned}
$$

$$
=924 a^{6} b^{6}
$$

Hence, the middle term is $924 \mathrm{a}^{6} \mathrm{~b}^{6}$.
(iii) $\left(x^{2}-2 / x\right)^{10}$

We have,
$\left(x^{2}-2 / x\right)^{10}$ where, $n=10$ (even number)
So the middle term is $(\mathrm{n} / 2+1)=(10 / 2+1)=(5+1)=6$. ie., $6^{\text {th }}$ term
Now,
$\mathrm{T}_{6}=\mathrm{T}_{5+1}$

$$
\begin{aligned}
& ={ }^{10} C_{5}\left(x^{2}\right)^{10-5}\left(\frac{-2}{x}\right)^{5} \\
& =-\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2} \times 32 x^{5} \\
& =-8064 x^{5}
\end{aligned}
$$

Hence, the middle term is $-8064 x^{5}$.
(iv) $(\mathrm{x} / \mathrm{a}-\mathrm{a} / \mathrm{x})^{10}$

We have,
$(\mathrm{x} / \mathrm{a}-\mathrm{a} / \mathrm{x}){ }^{10}$ where, $\mathrm{n}=10$ (even number)
So the middle term is $(\mathrm{n} / 2+1)=(10 / 2+1)=(5+1)=6$. ie., $6^{\text {th }}$ term
Now,
$\mathrm{T}_{6}=\mathrm{T}_{5+1}$
$={ }^{10} C_{5}\left(\frac{x}{a}\right)^{10-5}\left(\frac{-a}{x}\right)^{5}$
$=-\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2}$
$=-252$
Hence, the middle term is -252 .

14. Find the middle terms in the expansion of:

(i) $\left(3 x-x^{3} / 6\right)^{9}$
(ii) $\left(2 x^{2}-1 / x\right)^{7}$
(iii) $\left(3 x-2 / x^{2}\right)^{15}$
(iv) $\left(x^{4}-1 / x^{3}\right)^{11}$

Solution:

(i) $\left(3 x-x^{3} / 6\right)^{9}$

We have,
$\left(3 x-x^{3} / 6\right)^{9}$ where, $n=9($ odd number)
So the middle terms are $((\mathrm{n}+1) / 2)=((9+1) / 2)=10 / 2=5$ and
$((\mathrm{n}+1) / 2+1)=((9+1) / 2+1)=(10 / 2+1)=(5+1)=6$
The terms are $5^{\text {th }}$ and $6^{\text {th }}$.

Now,
$\mathrm{T}_{5}=\mathrm{T}_{4+1}$

$$
\begin{aligned}
& ={ }^{9} C_{4}(3 x)^{9-4}\left(\frac{-x^{3}}{6}\right)^{4} \\
& =\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2} \times 27 \times 9 \times \frac{1}{36 \times 36} x^{17} \\
& =\frac{189}{8} x^{17}
\end{aligned}
$$

And,

$$
\begin{aligned}
\mathrm{T}_{6} & =\mathrm{T}_{5+1} \\
& ={ }^{9} C_{5}(3 x)^{9-5}\left(\frac{-x^{3}}{6}\right)^{5} \\
& =-\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2} \times 81 \times \frac{1}{216 \times 36} x^{19} \\
& =-\frac{21}{16} x^{19}
\end{aligned}
$$

Hence, the middle term are $189 / 8 \mathrm{x}^{17}$ and $-21 / 16 \mathrm{x}^{19}$.
(ii) $\left(2 x^{2}-1 / x\right)^{7}$

We have,
$\left(2 x^{2}-1 / x\right)^{7}$ where, $n=7$ (odd number)
So the middle terms are $((\mathrm{n}+1) / 2)=((7+1) / 2)=8 / 2=4$ and
$((\mathrm{n}+1) / 2+1)=((7+1) / 2+1)=(8 / 2+1)=(4+1)=5$
The terms are $4^{\text {th }}$ and $5^{\text {th }}$.
Now,
$\mathrm{T}_{4}=\mathrm{T}_{3+1}$

$$
\begin{aligned}
& ={ }^{7} C_{3}\left(2 x^{2}\right)^{7-3}\left(\frac{-1}{x}\right)^{3} \\
& =-\frac{7 \times 6 \times 5}{3 \times 2} \times 16 x^{8} \times \frac{1}{x^{3}} \\
& =-560 x^{5}
\end{aligned}
$$

And,

$$
\mathrm{T}_{5}=\mathrm{T}_{4+1}
$$

$$
\begin{aligned}
& ={ }^{7} C_{4}\left(2 x^{2}\right)^{7-4}\left(\frac{-1}{x}\right)^{4} \\
& =35 \times 8 \times x^{6} \times \frac{1}{x^{4}} \\
& =280 x^{2}
\end{aligned}
$$

Hence, the middle term are $-560 x^{5}$ and $280 x^{2}$.
(iii) $\left(3 x-2 / x^{2}\right)^{15}$

We have,
$\left(3 \mathrm{x}-2 / \mathrm{x}^{2}\right)^{15}$ where, $\mathrm{n}=15$ (odd number)
So the middle terms are $((\mathrm{n}+1) / 2)=((15+1) / 2)=16 / 2=8$ and
$((\mathrm{n}+1) / 2+1)=((15+1) / 2+1)=(16 / 2+1)=(8+1)=9$
The terms are $8^{\text {th }}$ and $9^{\text {th }}$.
Now,
$\mathrm{T}_{8}=\mathrm{T}_{7+1}$

$$
\begin{aligned}
& ={ }^{15} C_{7}(3 x)^{15-7}\left(\frac{-2}{x^{2}}\right)^{7} \\
& =-\frac{15 \times 14 \times 13 \times 12 \times 11 \times 10 \times 9}{7 \times 6 \times 5 \times 4 \times 3 \times 2} \times 3^{8} \times 2^{7} x^{8-14} \\
& =\frac{-6435 \times 3^{8} \times 2^{7}}{x^{5}}
\end{aligned}
$$

And,

$$
\begin{aligned}
\mathrm{T}_{9} & =\mathrm{T}_{8+1} \\
& ={ }^{15} C_{8}(3 x)^{15-8}\left(\frac{-2}{x^{2}}\right)^{8} \\
& =\frac{15 \times 14 \times 13 \times 12 \times 11 \times 10 \times 9}{7 \times 6 \times 5 \times 4 \times 3 \times 2} \times 3^{7} \times 2^{8} \times x^{7-16} \\
& =\frac{6435 \times 3^{7} \times 2^{8}}{x^{9}}
\end{aligned}
$$

Hence, the middle term are $\left(-6435 \times 3^{8} \times 2^{7}\right) / x^{6}$ and $\left(6435 \times 3^{7} \times 2^{8}\right) / \mathrm{x}^{9}$.
(iv) $\left(\mathrm{x}^{4}-1 / \mathrm{x}^{3}\right)^{11}$

We have,
$\left(\mathrm{x}^{4}-1 / \mathrm{x}^{3}\right)^{11}$
where, $\mathrm{n}=11$ (odd number)
So the middle terms are $((\mathrm{n}+1) / 2)=((11+1) / 2)=12 / 2=6$ and
$((\mathrm{n}+1) / 2+1)=((11+1) / 2+1)=(12 / 2+1)=(6+1)=7$
The terms are $6^{\text {th }}$ and $7^{\text {th }}$.
Now,

$$
\mathrm{T}_{6}=\mathrm{T}_{5+1}
$$

$$
\begin{aligned}
& ={ }^{11} C_{5}\left(x^{4}\right)^{11-5}\left(\frac{-1}{x^{3}}\right)^{5} \\
& =-\frac{11 \times 1 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2} \times(x)^{24-15} \\
& =-462 x^{9}
\end{aligned}
$$

And,
$\mathrm{T}_{7}=\mathrm{T}_{6+1}$

$$
\begin{aligned}
& ={ }^{11} C_{6}\left(x^{4}\right)^{11-6}\left(\frac{-1}{x^{3}}\right)^{6} \\
& =\frac{11 \times 10 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2}(x)^{20-18} \\
& =462 x^{2}
\end{aligned}
$$

Hence, the middle term are $-462 x^{9}$ and $462 x^{2}$.
15. Find the middle terms in the expansion of:
(i) $(x-1 / x)^{10}$
(ii) $\left(1-2 x+x^{2}\right)^{n}$
(iii) $\left(1+3 x+3 x^{2}+x^{3}\right)^{2 n}$
(iv) $\left(2 x-x^{2} / 4\right)^{9}$
(v) $(x-1 / x)^{2 n+1}$
(vi) $(x / 3+9 y)^{10}$
(vii) $\left(3-x^{3} / 6\right)^{7}$
(viii) $\left(\mathbf{2 a x}-\mathrm{b} / \mathbf{x}^{2}\right)^{12}$
(ix) $(\mathbf{p} / \mathbf{x}+\mathbf{x} / \mathbf{p})^{9}$
(x) $(\mathbf{x} / \mathbf{a}-\mathbf{a} / \mathbf{x})^{10}$

Solution:

(i) $(\mathrm{x}-1 / \mathrm{x})^{10}$

We have,
$(\mathrm{x}-1 / \mathrm{x})^{10}$ where, $\mathrm{n}=10$ (even number)
So the middle term is $(\mathrm{n} / 2+1)=(10 / 2+1)=(5+1)=6$. ie., $6^{\text {th }}$ term
Now,
$\mathrm{T}_{6}=\mathrm{T}_{5+1}$

$$
\begin{aligned}
& ={ }^{10} C_{5} x^{10-5}\left(\frac{-1}{x}\right)^{5} \\
& =-\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2} \\
& =-252
\end{aligned}
$$

Hence, the middle term is -252 .
(ii) $\left(1-2 x+x^{2}\right)^{n}$

We have,
$\left(1-2 \mathrm{x}+\mathrm{x}^{2}\right)^{\mathrm{n}}=(1-\mathrm{x})^{2 \mathrm{n}}$ where, n is an even number.
So the middle term is $(2 n / 2+1)=(n+1)$ th term.
Now,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{n}} & =\mathrm{T}_{\mathrm{n}+1} \\
& ={ }^{2 n} C_{\mathrm{n}}(-1)^{\mathrm{n}}(x)^{\mathrm{n}} \\
& =(2 \mathrm{n})!/(\mathrm{n}!)^{2}(-1)^{\mathrm{n}} \mathrm{x}^{\mathrm{n}}
\end{aligned}
$$

Hence, the middle term is $(2 n)!/(n!)^{2}(-1)^{n} x^{n}$.
(iii) $\left(1+3 x+3 x^{2}+x^{3}\right)^{2 n}$

We have,
$\left(1+3 \mathrm{x}+3 \mathrm{x}^{2}+\mathrm{x}^{3}\right)^{2 \mathrm{n}}=(1+\mathrm{x})^{6 \mathrm{n}}$ where, n is an even number.
So the middle term is $(n / 2+1)=(6 n / 2+1)=(3 n+1)$ th term.
Now,

$$
\begin{aligned}
T_{2 n} & =T_{3 n+1} \\
& ={ }^{6 n} C_{3 n} x^{3 n} \\
& =(6 n)!/(3 n!)^{2} x^{3 n}
\end{aligned}
$$

Hence, the middle term is $(6 n)!/(3 n!)^{2} x^{3 n}$.
(iv) $\left(2 x-x^{2} / 4\right)^{9}$

We have,
$\left(2 x-x^{2} / 4\right)^{9}$ where, $n=9$ (odd number)
So the middle terms are $((\mathrm{n}+1) / 2)=((9+1) / 2)=10 / 2=5$ and
$((\mathrm{n}+1) / 2+1)=((9+1) / 2+1)=(10 / 2+1)=(5+1)=6$
The terms are $5^{\text {th }}$ and $6^{\text {th }}$.
Now,
$\mathrm{T}_{5}=\mathrm{T}_{4+1}$

$$
\begin{aligned}
& ={ }^{9} C_{4}(2 x)^{9-4}\left(\frac{-x^{2}}{4}\right)^{4} \\
& =\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2} \times 2^{5} \frac{1}{4^{4}} x^{5+8} \\
& =\frac{63}{4} x^{13}
\end{aligned}
$$

And,
$\mathrm{T}_{6}=\mathrm{T}_{5+1}$

$$
\begin{aligned}
& ={ }^{9} C_{5}(2 x)^{9-5}\left(\frac{-x^{2}}{4}\right)^{5} \\
& =-\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2} \times 2^{4} \frac{1}{4^{5}} x^{4+10} \\
& =-\frac{63}{32} x^{14}
\end{aligned}
$$

Hence, the middle term is $63 / 4 x^{13}$ and $-63 / 32 x^{14}$.
(v) $(x-1 / x)^{2 n+1}$

We have,
$(\mathrm{x}-1 / \mathrm{x})^{2 \mathrm{n}+1}$ where, $\mathrm{n}=(2 \mathrm{n}+1)$ is an (odd number)
So the middle terms are $((\mathrm{n}+1) / 2)=((2 \mathrm{n}+1+1) / 2)=(2 \mathrm{n}+2) / 2=(\mathrm{n}+1)$ and
$((\mathrm{n}+1) / 2+1)=((2 \mathrm{n}+1+1) / 2+1)=((2 \mathrm{n}+2) / 2+1)=(\mathrm{n}+1+1)=(\mathrm{n}+2)$
The terms are $(\mathrm{n}+1)^{\text {th }}$ and $(\mathrm{n}+2)^{\text {th }}$.
Now,
$\mathrm{T}_{\mathrm{n}}=\mathrm{T}_{\mathrm{n}+1}$

$$
\begin{aligned}
& ={ }^{2 n+1} C_{n} x^{2 n+1-n} \times \frac{(-1)^{n}}{x^{n}} \\
& =(-1)^{n}{ }^{2 n+1} C_{n} x
\end{aligned}
$$

And,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{n}+2} & =\mathrm{T}_{\mathrm{n}+1+1} \\
& ={ }^{2 n+1} C_{n} x^{2 n+1-n-1} \frac{(-1)^{n+1}}{x^{n+1}} \\
& =(-1)^{n+1}{ }^{2 n+1} C_{n} \times \frac{1}{x}
\end{aligned}
$$

Hence, the middle term is $(-1)^{n} \cdot{ }^{2 n+1} C_{n} x$ and $(-1)^{n+1} \cdot{ }^{2 n+1} C_{n}(1 / x)$.
(vi) $(x / 3+9 y)^{10}$

We have,
$(\mathrm{x} / 3+9 \mathrm{y})^{10}$ where, $\mathrm{n}=10$ is an even number.
So the middle term is $(\mathrm{n} / 2+1)=(10 / 2+1)=(5+1)=6$. i.e., 6th term.
Now,
$\mathrm{T}_{6}=\mathrm{T}_{5+1}$

$$
\begin{aligned}
& ={ }^{10} C_{5}\left(\frac{x}{3}\right)^{10-5}(9 y)^{5} \\
& =\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2} \times \frac{1}{3^{5}} \times 9^{5} \times x^{5} y^{5} \\
& =61236 x^{5} y^{5}
\end{aligned}
$$

Hence, the middle term is $61236 x^{5} y^{5}$.
(vii) $\left(3-x^{3} / 6\right)^{7}$

We have,
($\left.3-x^{3} / 6\right)^{7}$ where, $n=7$ (odd number).
So the middle terms are $((\mathrm{n}+1) / 2)=((7+1) / 2)=8 / 2=4$ and
$((\mathrm{n}+1) / 2+1)=((7+1) / 2+1)=(8 / 2+1)=(4+1)=5$
The terms are $4^{\text {th }}$ and $5^{\text {th }}$.
Now,
$\mathrm{T}_{4}=\mathrm{T}_{3+1}$

$$
\begin{aligned}
& ={ }^{7} C_{3}(3)^{7-3}\left(-x^{3} / 6\right)^{3} \\
& =-105 / 8 x^{9}
\end{aligned}
$$

And,
$\mathrm{T}_{5}=\mathrm{T}_{4+1}$

$$
\begin{aligned}
& ={ }^{9} \mathrm{C}_{4}(3)^{9-4}\left(-\mathrm{x}^{3} / 6\right)^{4} \\
& =\frac{7 \times 6 \times 5}{3 \times 2} \times 3^{5} \times \frac{1}{6^{4}} x^{12} \\
& =\frac{35}{48} x^{12}
\end{aligned}
$$

Hence, the middle terms are $-105 / 8 \mathrm{x}^{9}$ and $35 / 48 \mathrm{x}^{12}$.
(viii) $\left(2 a x-b / x^{2}\right)^{12}$

We have,
$\left(2 a x-b / x^{2}\right)^{12}$ where, $n=12$ is an even number.
So the middle term is $(\mathrm{n} / 2+1)=(12 / 2+1)=(6+1)=7$. i.e., 7 th term.
Now,
$\mathrm{T}_{7}=\mathrm{T}_{6+1}$

$$
\begin{aligned}
& ={ }^{12} C_{6}(2 a x)^{12-6}\left(\frac{-b}{x^{2}}\right)^{6} \\
& =\frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{6 \times 5 \times 4 \times 3 \times 2 \times 1} \times\left(\frac{2 a b}{x}\right)^{6} \\
& =\frac{59136 a^{6} b^{6}}{x^{6}}
\end{aligned}
$$

Hence, the middle term is $\left(59136 \mathrm{a}^{6} \mathrm{~b}^{6}\right) / \mathrm{x}^{6}$.
(ix) $(\mathrm{p} / \mathrm{x}+\mathrm{x} / \mathrm{p})^{9}$

We have,
$(\mathrm{p} / \mathrm{x}+\mathrm{x} / \mathrm{p})^{9}$ where, $\mathrm{n}=9$ (odd number).
So the middle terms are $((\mathrm{n}+1) / 2)=((9+1) / 2)=10 / 2=5$ and
$((\mathrm{n}+1) / 2+1)=((9+1) / 2+1)=(10 / 2+1)=(5+1)=6$
The terms are $5^{\text {th }}$ and $6^{\text {th }}$.
Now,
$\mathrm{T}_{5}=\mathrm{T}_{4+1}$

$$
\begin{aligned}
& ={ }^{9} C_{4}\left(\frac{p}{x}\right)^{9-4}\left(\frac{x}{p}\right)^{4} \\
& =\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \times\left(\frac{p}{x}\right) \\
& =\frac{126 p}{x}
\end{aligned}
$$

And,

$$
\begin{aligned}
\mathrm{T}_{6} & =\mathrm{T}_{5+1} \\
& ={ }^{9} \mathrm{C}_{5}(\mathrm{p} / \mathrm{x})^{9-5}(\mathrm{x} / \mathrm{p})^{5} \\
& =\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \times\left(\frac{x}{p}\right) \\
& =\frac{126 x}{p}
\end{aligned}
$$

Hence, the middle terms are $126 \mathrm{p} / \mathrm{x}$ and $126 \mathrm{x} / \mathrm{p}$.
(x) $(x / a-a / x)^{10}$

We have,
$(\mathrm{x} / \mathrm{a}-\mathrm{a} / \mathrm{x}){ }^{10}$ where, $\mathrm{n}=10$ (even number)
So the middle term is $(\mathrm{n} / 2+1)=(10 / 2+1)=(5+1)=6$. ie., $6^{\text {th }}$ term
Now,
$\mathrm{T}_{6}=\mathrm{T}_{5+1}$
$={ }^{10} C_{5}\left(\frac{x}{a}\right)^{10-5}\left(\frac{-a}{x}\right)^{5}$
$=-\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2}$
$=-252$
Hence, the middle term is -252 .
16. Find the term independent of x in the expansion of the following expressions:
(i) $\left(3 / 2 \mathrm{x}^{2}-1 / 3 \mathrm{x}\right)^{9}$
(ii) $\left(2 x+1 / 3 x^{2}\right)^{9}$
(iii) $\left(2 x^{2}-3 / x^{3}\right)^{25}$
(iv) $\left(3 x-2 / x^{2}\right)^{15}$
(v) $\left((\sqrt{ } / 3)+\sqrt{3} / 2 x^{2}\right)^{10}$
(vi) $\left(x-1 / x^{2}\right)^{3 n}$
(vii) $\left(1 / 2 x^{1 / 3}+x^{-1 / 5}\right)^{8}$
(viii) $\left(1+x+2 x^{3}\right)\left(3 / 2 x^{2}-3 / 3 x\right)^{9}$
(ix) $(\sqrt[3]{x}+1 / 2 \sqrt[3]{x})^{18}, x>0$
(x) $\left(3 / 2 x^{2}-1 / 3 x\right)^{6}$

Solution:

(i) $\left(3 / 2 x^{2}-1 / 3 x\right)^{9}$

Given:
$\left(3 / 2 x^{2}-1 / 3 x\right)^{9}$
If $(r+1)$ th term in the given expression is independent of x.
Then, we have:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}} \\
& ={ }^{9} C_{r}\left(\frac{3}{2} x^{2}\right)^{9-r}\left(\frac{-1}{3 x}\right)^{r} \\
& =(-1)^{r}{ }^{9} C_{r} \cdot \frac{3^{9-2 r}}{2^{9-r}} \times x^{18-2 r-r}
\end{aligned}
$$

For this term to be independent of x , we must have

$$
\begin{gathered}
18-3 r=0 \\
3 \mathrm{r}=18 \\
\mathrm{r}=18 / 3 \\
=6
\end{gathered}
$$

So, the required term is $7^{\text {th }}$ term.
We have,
$\mathrm{T}_{7}=\mathrm{T}_{6+1}$
$={ }^{9} \mathrm{C}_{6} \times\left(3^{9-12}\right) /\left(2^{9-6}\right)$
$=(9 \times 8 \times 7) /(3 \times 2) \times 3^{-3} \times 2^{-3}$
$=7 / 18$
Hence, the term independent of x is $7 / 18$.
(ii) $\left(2 x+1 / 3 x^{2}\right)^{9}$

Given:
$\left(2 x+1 / 3 x^{2}\right)^{9}$
If $(r+1)$ th term in the given expression is independent of x.
Then, we have:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}} \\
& \left.={ }^{9} C_{r}(2 x)\right)^{9-r}\left(\frac{1}{3 x^{2}}\right)^{r} \\
& ={ }^{9} C_{r} \cdot \frac{2^{9} r}{3^{r}} x^{9-r-2 r}
\end{aligned}
$$

For this term to be independent of x , we must have
$9-3 r=0$
$3 \mathrm{r}=9$
$r=9 / 3$

$$
=3
$$

So, the required term is $4^{\text {th }}$ term.
We have,
$\mathrm{T}_{4}=\mathrm{T}_{3+1}$

$$
\begin{aligned}
& ={ }^{9} \mathrm{C}_{3} \times\left(2^{6}\right) /\left(3^{3}\right) \\
& ={ }^{9} \mathrm{C}_{3} \times 64 / 27
\end{aligned}
$$

Hence, the term independent of x is ${ }^{9} \mathrm{C}_{3} \times 64 / 27$.
(iii) $\left(2 \mathrm{x}^{2}-3 / \mathrm{x}^{3}\right)^{25}$

Given:
$\left(2 x^{2}-3 / x^{3}\right)^{25}$
If $(r+1)$ th term in the given expression is independent of x.
Then, we have:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}} \\
& ={ }^{25} \mathrm{C}_{\mathrm{r}}\left(2 \mathrm{x}^{2}\right)^{25-\mathrm{r}}\left(-3 / \mathrm{x}^{3}\right)^{\mathrm{r}} \\
& =(-1)^{\mathrm{r} 25} \mathrm{C}_{\mathrm{r}} \times 2^{25-\mathrm{r}} \times 3^{\mathrm{r}} \mathrm{x}^{50-2 \mathrm{r}-3 \mathrm{r}}
\end{aligned}
$$

For this term to be independent of x, we must have
$50-5 r=0$
$5 \mathrm{r}=50$
$r=50 / 5$
$=10$
So, the required term is $11^{\text {th }}$ term.
We have,

$$
\begin{aligned}
\mathrm{T}_{11} & =\mathrm{T}_{10+1} \\
& =(-1)^{10}{ }^{25} \mathrm{C}_{10} \times 2^{25-10} \times 3^{10} \\
& ={ }^{25} \mathrm{C}_{10}\left(2^{15} \times 3^{10}\right)
\end{aligned}
$$

Hence, the term independent of x is ${ }^{25} \mathrm{C}_{10}\left(2^{15} \times 3^{10}\right)$.
(iv) $\left(3 x-2 / x^{2}\right)^{15}$

Given:
$\left(3 x-2 / x^{2}\right)^{15}$
If $(r+1)$ th term in the given expression is independent of x.
Then, we have:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n-r}} \mathrm{a}^{\mathrm{r}} \\
& ={ }^{15} \mathrm{C}_{\mathrm{r}}(3 \mathrm{x})^{15-\mathrm{r}}\left(-2 / \mathrm{x}^{2}\right)^{\mathrm{r}} \\
& =(-1)^{\mathrm{r}}{ }^{15} \mathrm{C}_{\mathrm{r}} \times 3^{15-\mathrm{r}} \times 2^{\mathrm{r}} \mathrm{x}^{15-\mathrm{r}-2 \mathrm{r}}
\end{aligned}
$$

For this term to be independent of x, we must have

$$
\begin{aligned}
& 15-3 r=0 \\
& 3 \mathrm{r}=15 \\
& \mathrm{r}=15 / 3 \\
& =5
\end{aligned}
$$

So, the required term is $6^{\text {th }}$ term.
We have,
$\mathrm{T}_{6}=\mathrm{T}_{5+1}$

$$
\begin{aligned}
& =(-1)^{5}{ }^{15} \mathrm{C}_{5} \times 3^{15-5} \times 2^{5} \\
& =-3003 \times 3^{10} \times 2^{5}
\end{aligned}
$$

Hence, the term independent of x is $-3003 \times 3^{10} \times 2^{5}$.
(v) $\left((\sqrt{ } x / 3)+\sqrt{3} / 2 x^{2}\right)^{10}$

Given:
$\left((\sqrt{ } \mathrm{x} / 3)+\sqrt{3} / 2 \mathrm{x}^{2}\right)^{10}$
If $(r+1)$ th term in the given expression is independent of x.
Then, we have:
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{\mathrm{nr}} \mathrm{a}^{\mathrm{r}}$

$$
\begin{aligned}
& ={ }^{10} C_{r}\left(\sqrt{\frac{x}{3}}\right)^{10-r}\left(\frac{3}{2 x^{2}}\right)^{r} \\
& ={ }^{10} C_{r} \cdot \frac{3^{r-\frac{10-r}{2}}}{2^{r}} x^{\frac{10 r}{2}-2 r}
\end{aligned}
$$

For this term to be independent of x, we must have
(10-r) $/ 2-2 \mathrm{r}=0$
$10-5 \mathrm{r}=0$
$5 \mathrm{r}=10$
$r=10 / 5$
$=2$
So, the required term is $3^{\text {rd }}$ term.
We have,
$\mathrm{T}_{3}=\mathrm{T}_{2+1}$

$$
\begin{aligned}
& ={ }^{10} C_{2} \times \frac{3^{2-\frac{10-2}{2}}}{2^{2}} \\
& =\frac{10 \times 9}{2 \times 4 \times 9} \\
& =90 / 72 \\
& =15 / 12 \\
& =5 / 4
\end{aligned}
$$

Hence, the term independent of x is $5 / 4$.
(vi) $\left(x-1 / x^{2}\right)^{3 n}$

Given:
$\left(x-1 / x^{2}\right)^{3 n}$
If $(r+1)$ th term in the given expression is independent of x.
Then, we have:
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{nr} \mathrm{r}} \mathrm{a}^{\mathrm{r}}$

$$
\begin{aligned}
& ={ }^{3 n} C_{r} x^{3 n-r}\left(-1 / x^{2}\right)^{r} \\
& =(-1)^{r}{ }^{3 n} C_{r} x^{3 n-r-2 r}
\end{aligned}
$$

For this term to be independent of x, we must have
$3 n-3 r=0$
$\mathrm{r}=\mathrm{n}$
So, the required term is $(\mathrm{n}+1)$ th term.
We have,
$(-1)^{\mathrm{n}}{ }^{3 \mathrm{n}} \mathrm{C}_{\mathrm{n}}$
Hence, the term independent of x is $(-1)^{n}{ }^{3 n} C_{n}$
(vii) $\left(1 / 2 \mathrm{x}^{1 / 3}+\mathrm{x}^{-1 / 5}\right)^{8}$

Given:
$\left(1 / 2 \mathrm{x}^{1 / 3}+\mathrm{x}^{-1 / 5}\right)^{8}$
If $(r+1)$ th term in the given expression is independent of x.
Then, we have:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{nr}} \mathrm{a}^{\mathrm{r}} \\
& ={ }^{8} C_{r}\left(\frac{1}{2} x^{1 / 3}\right)^{8-r}\left(x^{-1 / 5}\right)^{r} \\
& ={ }^{8} C_{r} \cdot \frac{1}{2^{8 . r}} x^{\frac{8-r}{3}-\frac{r}{5}}
\end{aligned}
$$

For this term to be independent of x , we must have
$(8-\mathrm{r}) / 3-\mathrm{r} / 5=0$
$(40-5 r-3 r) / 15=0$
$40-5 r-3 r=0$
$40-8 \mathrm{r}=0$
$8 \mathrm{r}=40$
$r=40 / 8$

$$
=5
$$

So, the required term is 6th term.
We have,
$\mathrm{T}_{6}=\mathrm{T}_{5+1}$

$$
\begin{aligned}
& ={ }^{8} \mathrm{C}_{5} \times 1 /\left(2^{8-5}\right) \\
& =(8 \times 7 \times 6) /(3 \times 2 \times 8) \\
& =7
\end{aligned}
$$

Hence, the term independent of x is 7 .
(viii) $\left(1+x+2 x^{3}\right)\left(3 / 2 x^{2}-3 / 3 x\right)^{9}$

Given:
$\left(1+x+2 x^{3}\right)\left(3 / 2 x^{2}-3 / 3 x\right)^{9}$
If $(r+1)$ th term in the given expression is independent of x.
Then, we have:
$\left(1+\mathrm{x}+2 \mathrm{x}^{3}\right)\left(3 / 2 \mathrm{x}^{2}-3 / 3 \mathrm{x}\right)^{9}=$
$=\left(1+x+2 x^{3}\right)\left[\left(\frac{3}{2} x^{2}\right)^{9}-{ }^{9} C_{1}\left(\frac{3}{2} x^{2}\right)^{8} \frac{1}{3 x} \ldots+{ }^{9} C_{6}\left(\frac{3}{2} x^{2}\right)^{3}\left(\frac{1}{3 x}\right)^{6}-{ }^{9} C_{7}\left(\frac{3}{2} x^{2}\right)^{2}\left(\frac{1}{3 x}\right)^{7}\right.$.
By computing we get,
The term independent of x

$$
\begin{aligned}
& =1\left[{ }^{9} C_{6} \frac{3^{3}}{2^{3}} \times \frac{1}{3^{6}}\right]-2 x^{3}\left[{ }^{9} C_{7} \frac{3^{3}}{2^{3}} \times \frac{1}{3^{7}} \times \frac{1}{x^{3}}\right] \\
& =\left[\frac{9 \times 8 \times 7}{1 \times 2 \times 3} \times \frac{1}{8 \times 27}\right]-2\left[\frac{9 \times 8}{1 \times 2}-\frac{1}{4 \times 243}\right]
\end{aligned}
$$

$=7 / 18-2 / 27$
$=(189-36) / 486$
$=153 / 486$ (divide by 9)
$=17 / 54$
Hence, the term independent of x is 17/54.
(ix) $(\sqrt[3]{x}+1 / 2 \sqrt[3]{x})^{18}, x>0$

Given:
$(\sqrt[3]{x}+1 / 2 \sqrt[3]{x})^{18}, x>0$
If $(r+1)$ th term in the given expression is independent of x.
Then, we have:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}} \\
& ={ }^{18} C_{r}\left(x^{1 / 3}\right)^{18-r}\left(\frac{1}{2 x^{1 / 3}}\right)^{r} \\
& ={ }^{18} C_{r} \times \frac{1}{2^{r}} x^{\frac{18-r}{3}-\frac{5}{3}}
\end{aligned}
$$

For this term to be independent of r, we must have

$$
\begin{aligned}
& (18-\mathrm{r}) / 3-\mathrm{r} / 3=0 \\
& (18-\mathrm{r}-\mathrm{r}) / 3=0 \\
& 18-2 \mathrm{r}=0 \\
& 2 \mathrm{r}=18 \\
& \mathrm{r}=18 / 2 \\
& \quad=9
\end{aligned}
$$

So, the required term is 10 th term.
We have,

$$
\begin{aligned}
\mathrm{T}_{10} & =\mathrm{T}_{9+1} \\
& ={ }^{18} \mathrm{C}_{9} \times 1 / 2^{9}
\end{aligned}
$$

Hence, the term independent of x is ${ }^{18} \mathrm{C}_{9} \times 1 / 2^{9}$.
(x) $\left(3 / 2 x^{2}-1 / 3 x\right)^{6}$

Given:
$\left(3 / 2 x^{2}-1 / 3 x\right)^{6}$
If $(r+1)$ th term in the given expression is independent of x.
Then, we have:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}} \\
& ={ }^{6} C_{r}\left(\frac{3}{2} x^{2}\right)^{6-r}\left(\frac{-1}{3 x}\right)^{r} \\
& =(-1)^{r}{ }^{6} C_{r} \times \frac{3^{6-r}}{2^{6-r}} x^{12-2 r-r}
\end{aligned}
$$

For this term to be independent of r, we must have
$12-3 \mathrm{r}=0$
$3 \mathrm{r}=12$
$r=12 / 3$
$=4$
So, the required term is 5 th term.
We have,
$\mathrm{T}_{5}=\mathrm{T}_{4+1}$

$$
\begin{aligned}
& ={ }^{6} C_{4} \times \frac{3^{6-4-4}}{2^{6-4}} \\
& =\frac{6 \times 5}{2 \times 1 \times 4 \times 9} \\
& =\frac{5}{12}
\end{aligned}
$$

Hence, the term independent of x is $5 / 12$.
17. If the coefficients of $(2 r+4)$ th and $(r-2)$ th terms in the expansion of $(1+x)^{18}$ are equal, find r.

Solution:

Given:
$(1+\mathrm{x})^{18}$
We know, the coefficient of the r term in the expansion of $(1+x)^{n}$ is ${ }^{n} C_{r-1}$
So, the coefficients of the $(2 r+4)$ and $(r-2)$ terms in the given expansion are ${ }^{18} \mathrm{C}_{2 r+4-1}$ and ${ }^{18} \mathrm{C}_{\mathrm{r}-2-1}$
For these coefficients to be equal, we must have
${ }^{18} \mathrm{C}_{2 \mathrm{r}+4-1}={ }^{18} \mathrm{C}_{\mathrm{r}-2-1}$
${ }^{18} \mathrm{C}_{2 \mathrm{r}+3}={ }^{18} \mathrm{C}_{\mathrm{r}-3}$
$2 \mathrm{r}+3=\mathrm{r}-3$ (or) $2 \mathrm{r}+3+\mathrm{r}-3=18$ [Since, ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{s}} \Rightarrow \mathrm{r}=\mathrm{s}$ (or) $\left.\mathrm{r}+\mathrm{s}=\mathrm{n}\right]$
$2 r-r=-3-3$ (or) $3 r=18-3+3$
$r=-6$ (or) $3 r=18$
$r=-6$ (or) $r=18 / 3$
$r=-6$ (or) $r=6$
$\therefore \mathrm{r}=6$ [since, r should be a positive integer.]

18. If the coefficients of $(2 r+1)$ th term and $(r+2)$ th term in the expansion of $(1$ $+x)^{43}$ are equal, find r.

Solution:

Given:
$(1+x)^{43}$
We know, the coefficient of the r term in the expansion of $(1+x)^{n}$ is ${ }^{n} C_{r-1}$ So, the coefficients of the $(2 r+1)$ and $(r+2)$ terms in the given expansion are ${ }^{43} \mathrm{C}_{2 r+1-1}$ and ${ }^{43} \mathrm{C}_{\mathrm{r}+2-1}$

For these coefficients to be equal, we must have
${ }^{43} \mathrm{C}_{2 \mathrm{r}+1-1}={ }^{43} \mathrm{C}_{\mathrm{r}+2-1}$
${ }^{43} \mathrm{C}_{2 \mathrm{r}}={ }^{43} \mathrm{C}_{\mathrm{r}+1}$
$2 \mathrm{r}=\mathrm{r}+1$ (or) $2 \mathrm{r}+\mathrm{r}+1=43$ [Since, ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{s}}=>\mathrm{r}=\mathrm{s}$ (or) $\mathrm{r}+\mathrm{s}=\mathrm{n}$]
$2 \mathrm{r}-\mathrm{r}=1$ (or) $3 \mathrm{r}+1=43$
$r=1$ (or) $3 \mathrm{r}=43-1$
$\mathrm{r}=1$ (or) $3 \mathrm{r}=42$
$r=1$ (or) $r=42 / 3$
$\mathrm{r}=1$ (or) $\mathrm{r}=14$
$\therefore \mathrm{r}=14$ [since, value ' 1 ' gives the same term]
19. Prove that the coefficient of $(r+1)$ th term in the expansion of $(1+x)^{n+1}$ is equal to the sum of the coefficients of r th and $(r+1)$ th terms in the expansion of $(1+x)^{n}$. Solution:
We know, the coefficients of $(r+1)$ th term in $(1+x)^{n+1}$ is ${ }^{n+1} C_{r}$
So, sum of the coefficients of the rth and $(r+1)$ th terms in $(1+x)^{n}$ is $(1+x)^{n}={ }^{n} C_{r-1}+{ }^{n} C_{r}$

$$
={ }^{n+1} C_{r}\left[\text { since, }{ }^{n} C_{r+1}+{ }^{n} C_{r}={ }^{n+1} C_{r+1}\right]
$$

Hence proved.

