

1. The simple interest on a sum of money is the product of the sum of money, the number of years and the rate percentage. Write the formula to find the simple interest on Rs A for T years at R% per annum.

Solution:

Let the simple interest = I

Now,

Simple interest on sum of money = product of sum of money, number of years and rate percentage = $(A \times I \times R) / 100$

As per the data: $I = (A \times I \times R) / 100$

Therefore,

The required formula is,

 $I = (A \times I \times R) / 100$

2. The volume V, of a cone is equal to one third of π times the cube of the radius. Find a formula for it.

Solution:

Let radius = r

Hence,

Cube of radius = r^3

One third of π times the cube of the radius = $(1/3) \pi r^3$

As per the data: $V = (1/3) \pi r^3$

Therefore,

The required formula is,

 $V = (1/3) \pi r^3$

3. The Fahrenheit temperature, F is 32 more than nine-fifths of the centigrade temperature C. Express this relation by a formula.

Solution:

Centigrade temperature = C

Nine – fifths of the centigrade temperature = (9 / 5) C

32 more than nine – fifths of the centigrade temperature C = (9 / 5) C + 32

As per the data: F = (9 / 5) C + 32

Therefore,

The required formula is,

F = (9/5) C + 32

4. The arithmetic mean M of the five numbers a, b, c, d, e is equal to their sum divided by the number of quantities. Express it as a formula. Solution:

Sum of a, b, c, d, e = (a + b + c + d + e)

Number of quantities = 5

Sum divided by the number of quantities = (a + b + c + d + e) / 5

As per the data: M = (a + b + c + d + e) / 5

Therefore,

The required formula is,

$$M = (a + b + c + d + e) / 5$$

5. Make a formula for the statement: "The reciprocal of focal length f is equal to the sum of reciprocals of the object distance u and the image distance v". Solution:

Object distance = u

Image distance = v

Reciprocal of Object distance = (1 / u)

Reciprocal of Image distance = (1 / v)

Sum of reciprocals = (1/u) + (1/v)

Reciprocal of focal length = (1 / f)

As per the data: (1 / f) = (1 / u) + (1 / v)

Therefore,

The required formula for the given statement is,

$$(1/f) = (1/u) + (1/v)$$

6. Make R the subject of formula $A = P \{1 + (R / 100)\}^N$ Solution:

$$A = P \{1 + (R / 100)\}^{N}$$

$$(A/P) = \{1 + (R/100)\}^{N}$$

Taking Nth root both sides,

We get,

$$(A/P)^{1/N} = \{1 + (R/100)\}$$

$$(A/P)^{1/N} - 1 = (R/100)$$

On calculating further, we get,

$$100 \{ (A/P)^{1/N} - 1 \} = R$$

Hence,

$$R = 100 \left(\sqrt[N]{(AP)} - 1 \right)$$

7. Make L the subject of formula $T = 2\pi \sqrt{(L/G)}$ Solution:

Given

$$T = 2\pi \sqrt{(L/G)}$$

$$(T/2\pi) = \sqrt{(L/G)}$$

Squaring on both sides,

We get,

$$(T / 2\pi)^2 = (L / G)$$

$$G (T / 2\pi)^2 = L$$

We get,

$$L = (GT^2 / 4\pi^2)$$

8. Make a the subject of formula $S = ut + (1/2) at^2$ Solution:

Given

$$S = ut + (1/2) at^2$$

On further calculation, we get,

$$S - ut = (1 / 2) at^2$$

$$2 (S - ut) = at^2$$

$$\{2 (S - ut)\} / t^2 = a$$

Therefore,

$$a = \{2 (S - ut)\} / t^2$$

9. Make x the subject of formula $(x^2 / a^2) + (y^2 / b^2) = 1$ Solution:

Given

$$(x^2/a^2) + (y^2/b^2) = 1$$

On calculating further, we get,

$$(x^2 / a^2) = 1 - (y^2 / b^2)$$

$$x^2 = a^2 \{1 - (y^2 / b^2)\}$$

On taking L.C.M. we get,

$$x^2 = a^2 \{(b^2 - y^2) / b^2\}$$

Now,

Taking square root both sides, we get,

$$x = \{ \sqrt{a^2 (b^2 - y^2) / b^2} \}$$

Hence,

$$x = (a/b) \{ \sqrt{(b^2 - y^2)} \}$$

10. Make a the subject of formula $S = \{a (r^n - 1)\} / (r - 1)$ Solution:

Given

$$S = \{a(r^n - 1)\} / (r - 1)$$

On further calculation, we get,

$$\begin{split} S & (r-1) = a \ (r^n-1) \\ & \{ S \ (r-1) \} \ / \ (r^n-1) = a \\ & \text{Therefore,} \\ & a = \{ S \ (r-1) \} \ / \ (r^n-1) \end{split}$$

11. Make h the subject of the formula R = (h / 2) (a - b). Find h when R = 108, a = 16 and b = 12.

Solution:

Given

$$R = (h / 2) (a - b)$$

On calculating further, we get,

$$2R = h (a - b)$$

$$h = 2R / (a - b)$$

Now,

Substituting R = 108, a = 16 and b = 12,

We get,

$$h = (2 \times 108) / (16 - 12)$$

$$h = (2 \times 108) / 4$$

We get,

h = 54

12. Make s the subject of the formula $v^2 = u^2 + 2as$. Find s when u = 3, a = 2 and v = 5.

Solution:

Given

$$v^2=u^2+2as$$

$$v^2-u^2=2as$$

$$s = (v^2 - u^2) / 2a$$

Now,

Substituting u = 3, a = 2 and v = 5,

We get,

$$s = (5^2 - 3^2) / (2 \times 2)$$

$$s = (25 - 9) / 4$$

$$s = 16 / 4$$

We get,

s = 4

13. Make y the subject of the formula $x = (1 - y^2) / (1 + y^2)$. Find y if x = (3 / 5) Solution:

Given

$$x = (1 - y^2) / (1 + y^2)$$

On further calculation, we get,

$$x(1 + y^2) = 1 - y^2$$

$$x + xy^2 = 1 - y^2$$

$$xy^2 + y^2 = 1 - x$$

Taking y^2 as common, we get,

$$y^2(x+1) = 1-x$$

$$y^2 = (1 - x) / (1 + x)$$

$$\mathbf{y} = \sqrt{(1-\mathbf{x})/(1+\mathbf{x})}$$

Now.

Substituting x = (3 / 5), we get,

$$y = [\sqrt{1 - (3/5)} / 1 + (3/5)]$$

$$y = \sqrt{(2/8)}$$

$$y = \sqrt{(1/4)}$$

We get,

$$y = (1/2)$$

14. Make a the subject of the formula $S = (n/2) \{2a + (n-1) d\}$. Find a when S = 50, n = 10 and d = 2.

Solution:

Given

$$S = (n/2) \{2a + (n-1) d\}$$

On further calculation, we get,

$$2S = n \{2a + (n-1) d\}$$

$$(2S / n) = 2a + (n - 1) d$$

$$(2S / n) - (n - 1) d = 2a$$

We get,

$$a = (S / n) - \{(n - 1) d / 2\}$$

Now,

Substituting S = 50, n = 10 and d = 2,

We get,

$$a = (S / n) - \{(n - 1) d / 2\}$$

$$a = (50 / 10) - \{(9 \times 2) / 2\}$$

a = 5 - 9

We get,

$$a = -4$$

15. Make x the subject of the formula $a = 1 - \{(2b) / (cx - b)\}$. Find x, when a = 5, b

=12 and c = 2 Solution:

Given

$$a = 1 - \{(2b) / (cx - b)\}$$

On further calculation, we get,

$$a-1 = -\{(2b) / (cx - b)\}$$

$$(a-1)(cx-b) + 2b = 0$$

$$acx - ab - cx + b + 2b = 0$$

$$acx - ab - cx + 3b = 0$$

$$acx - cx + 3b - ab = 0$$

$$x (ac - c) + b (3 - a) = 0$$

$$xc(a-1) = -b(3-a)$$

$$x = \{b(a-3)\} / \{c(a-1)\}$$

Now,

Substituting a = 5, b = 12 and c = 2,

We get,

$$x = \{12(5-3)\} / \{2(5-1)\}$$

$$x = (12 \times 2) / (2 \times 4)$$

We get,

$$x = 24 / 8$$

$$x = 3$$