1. The simple interest on a sum of money is the product of the sum of money, the number of years and the rate percentage. Write the formula to find the simple interest on Rs A for T years at R\% per annum.

Solution:

Let the simple interest $=\mathrm{I}$
Now,
Simple interest on sum of money $=$ product of sum of money, number of years and rate percentage $=(\mathrm{A} \times \mathrm{I} \times \mathrm{R}) / 100$
As per the data: $\mathrm{I}=(\mathrm{A} \times \mathrm{I} \times \mathrm{R}) / 100$
Therefore,
The required formula is,
$\mathrm{I}=(\mathrm{A} \times \mathrm{I} \times \mathrm{R}) / 100$
2. The volume V, of a cone is equal to one third of π times the cube of the radius. Find a formula for it.

Solution:

Let radius $=\mathrm{r}$
Hence,
Cube of radius $=r^{3}$
One third of π times the cube of the radius $=(1 / 3) \pi r^{3}$
As per the data: $\mathrm{V}=(1 / 3) \pi \mathrm{r}^{3}$
Therefore,
The required formula is,
$\mathrm{V}=(1 / 3) \pi \mathrm{r}^{3}$
3. The Fahrenheit temperature, F is $\mathbf{3 2}$ more than nine-fifths of the centigrade temperature C. Express this relation by a formula.
Solution:
Centigrade temperature $=\mathrm{C}$
Nine - fifths of the centigrade temperature $=(9 / 5) \mathrm{C}$
32 more than nine - fifths of the centigrade temperature $\mathrm{C}=(9 / 5) \mathrm{C}+32$
As per the data: $\mathrm{F}=(9 / 5) \mathrm{C}+32$
Therefore,
The required formula is,
$\mathrm{F}=(9 / 5) \mathrm{C}+32$
4. The arithmetic mean M of the five numbers a, b, c, d, e is equal to their sum divided by the number of quantities. Express it as a formula.
Solution:

Sum of $a, b, c, d, e=(a+b+c+d+e)$
Number of quantities $=5$
Sum divided by the number of quantities $=(a+b+c+d+e) / 5$
As per the data: $\mathrm{M}=(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}) / 5$
Therefore,
The required formula is,
$M=(a+b+c+d+e) / 5$
5. Make a formula for the statement: "The reciprocal of focal length f is equal to the sum of reciprocals of the object distance u and the image distance v ".
Solution:
Object distance $=u$
Image distance $=\mathrm{v}$
Reciprocal of Object distance $=(1 / \mathrm{u})$
Reciprocal of Image distance $=(1 / \mathrm{v})$
Sum of reciprocals $=(1 / u)+(1 / v)$
Reciprocal of focal length $=(1 / \mathrm{f})$
As per the data: $(1 / f)=(1 / u)+(1 / v)$
Therefore,
The required formula for the given statement is,
$(1 / f)=(1 / u)+(1 / v)$
6. Make R the subject of formula $A=P\{1+(R / 100)\}^{N}$

Solution:
$\mathrm{A}=\mathrm{P}\{1+(\mathrm{R} / 100)\}^{\mathrm{N}}$
$(\mathrm{A} / \mathrm{P})=\{1+(\mathrm{R} / 100)\}^{\mathrm{N}}$
Taking $\mathrm{N}^{\text {th }}$ root both sides,
We get,
$(\mathrm{A} / \mathrm{P})^{1 / \mathrm{N}}=\{1+(\mathrm{R} / 100)\}$
$(\mathrm{A} / \mathrm{P})^{1 / \mathrm{N}}-1=(\mathrm{R} / 100)$
On calculating further, we get,
$100\left\{(\mathrm{~A} / \mathrm{P})^{1 / \mathrm{N}}-1\right\}=\mathrm{R}$
Hence,

$$
R=100(\sqrt[N]{(A P)}-1)
$$

7. Make L the subject of formula $T=2 \pi \sqrt{ }(\mathbf{L} / \mathbf{G})$

Solution:

Given
$\mathrm{T}=2 \pi \sqrt{ }(\mathrm{~L} / \mathrm{G})$
$(\mathrm{T} / 2 \pi)=\sqrt{ }(\mathrm{L} / \mathrm{G})$
Squaring on both sides, We get,
$(\mathrm{T} / 2 \pi)^{2}=(\mathrm{L} / \mathrm{G})$
$\mathrm{G}(\mathrm{T} / 2 \pi)^{2}=\mathrm{L}$
We get,
$\mathrm{L}=\left(\mathrm{GT}^{2} / 4 \pi^{2}\right)$
8. Make a the subject of formula $S=u t+(1 / 2) a t^{2}$

Solution:
Given
S $=u t+(1 / 2) \mathrm{at}^{2}$
On further calculation, we get,
$\mathrm{S}-\mathrm{ut}=(1 / 2) \mathrm{at}^{2}$
$2(\mathrm{~S}-\mathrm{ut})=\mathrm{at}^{2}$
$\{2(S-u t)\} / t^{2}=\mathrm{a}$
Therefore,

$$
\mathrm{a}=\{2(\mathrm{~S}-\mathrm{ut})\} / \mathrm{t}^{2}
$$

9. Make x the subject of formula $\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1$

Solution:

Given
$\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1$
On calculating further, we get,
$\left(x^{2} / a^{2}\right)=1-\left(y^{2} / b^{2}\right)$
$\mathrm{x}^{2}=\mathrm{a}^{2}\left\{1-\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)\right\}$
On taking L.C.M. we get,
$x^{2}=a^{2}\left\{\left(b^{2}-y^{2}\right) / b^{2}\right\}$
Now,
Taking square root both sides, we get,
$x=\left\{\sqrt{a^{2}}\left(b^{2}-y^{2}\right) / b^{2}\right\}$
Hence,
$\mathrm{x}=(\mathrm{a} / \mathrm{b})\left\{\sqrt{ }\left(\mathrm{b}^{2}-\mathrm{y}^{2}\right)\right\}$
10. Make a the subject of formula $S=\left\{a\left(r^{n}-1\right)\right\} /(r-1)$

Solution:

Given
$\mathrm{S}=\left\{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)\right\} /(\mathrm{r}-1)$
On further calculation, we get,
$\mathrm{S}(\mathrm{r}-1)=\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)$
$\{\mathrm{S}(\mathrm{r}-1)\} /\left(\mathrm{r}^{\mathrm{n}}-1\right)=\mathrm{a}$
Therefore,
$\mathrm{a}=\{\mathrm{S}(\mathrm{r}-1)\} /\left(\mathrm{r}^{\mathrm{n}}-1\right)$
11. Make h the subject of the formula $R=(h / 2)(a-b)$. Find h when $R=108, a=16$ and $b=12$.

Solution:

Given
$\mathrm{R}=(\mathrm{h} / 2)(\mathrm{a}-\mathrm{b})$
On calculating further, we get,
$2 \mathrm{R}=\mathrm{h}(\mathrm{a}-\mathrm{b})$
$h=2 R /(a-b)$
Now,
Substituting $\mathrm{R}=108, \mathrm{a}=16$ and $\mathrm{b}=12$,
We get,
$\mathrm{h}=(2 \times 108) /(16-12)$
$\mathrm{h}=(2 \times 108) / 4$
We get,
$h=54$
12. Make s the subject of the formula $v^{2}=u^{2}+2$ as. Find s when $u=3, a=2$ and $v=$ 5.

Solution:
Given
$\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$
$\mathrm{v}^{2}-\mathrm{u}^{2}=2$ as
$\mathrm{s}=\left(\mathrm{v}^{2}-\mathrm{u}^{2}\right) / 2 \mathrm{a}$
Now,
Substituting $u=3, a=2$ and $v=5$,
We get,
$\mathrm{s}=\left(5^{2}-3^{2}\right) /(2 \times 2)$
$\mathrm{s}=(25-9) / 4$
$\mathrm{s}=16 / 4$
We get,
$\mathrm{s}=4$
13. Make y the subject of the formula $x=\left(1-y^{2}\right) /\left(1+y^{2}\right)$. Find y if $x=(3 / 5)$

Solution:

Given
$x=\left(1-y^{2}\right) /\left(1+y^{2}\right)$
On further calculation, we get,
$x\left(1+y^{2}\right)=1-y^{2}$
$x+x y^{2}=1-y^{2}$
$x y^{2}+y^{2}=1-x$
Taking y^{2} as common, we get,
$y^{2}(x+1)=1-x$
$y^{2}=(1-x) /(1+x)$
$\mathbf{y}=\sqrt{ }(1-x) /(1+x)$
Now,
Substituting $x=(3 / 5)$, we get,
$\mathrm{y}=[\sqrt{ }\{1-(3 / 5)\} /\{1+(3 / 5)\}]$
$y=\sqrt{ }(2 / 8)$
$y=\sqrt{ }(1 / 4)$
We get,
$y=(1 / 2)$
14. Make a the subject of the formula $S=(n / 2)\{2 a+(n-1) d\}$. Find a when $S=50$, $\mathrm{n}=10$ and $\mathrm{d}=2$.
Solution:
Given
$\mathrm{S}=(\mathrm{n} / 2)\{2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}\}$
On further calculation, we get,
$2 \mathrm{~S}=\mathrm{n}\{2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}\}$
$(2 \mathrm{~S} / \mathrm{n})=2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$(2 S / n)-(n-1) d=2 a$
We get,
$a=(S / n)-\{(n-1) d / 2\}$
Now,
Substituting $\mathrm{S}=50, \mathrm{n}=10$ and $\mathrm{d}=2$,
We get,
$a=(S / n)-\{(n-1) d / 2\}$
$a=(50 / 10)-\{(9 \times 2) / 2\}$
$\mathrm{a}=5-9$
We get,
$a=-4$
15. Make x the subject of the formula $a=1-\{(2 b) /(c x-b)\}$. Find x, when $a=5, b$
$=12$ and $\mathrm{c}=2$
Solution:
Given
$\mathrm{a}=1-\{(2 \mathrm{~b}) /(\mathrm{cx}-\mathrm{b})\}$
On further calculation, we get,
$\mathrm{a}-1=-\{(2 \mathrm{~b}) /(\mathrm{cx}-\mathrm{b})\}$
$(a-1)(c x-b)+2 b=0$
$a c x-a b-c x+b+2 b=0$
$a c x-a b-c x+3 b=0$
$a c x-c x+3 b-a b=0$
$x(a c-c)+b(3-a)=0$
$\mathrm{xc}(\mathrm{a}-1)=-\mathrm{b}(3-\mathrm{a})$
$x=\{b(a-3)\} /\{c(a-1)\}$
Now,
Substituting $\mathrm{a}=5, \mathrm{~b}=12$ and $\mathrm{c}=2$,
We get,
$x=\{12(5-3)\} /\{2(5-1)\}$
$\mathrm{x}=(12 \times 2) /(2 \times 4)$
We get,
$x=24 / 8$
$\mathrm{x}=3$

