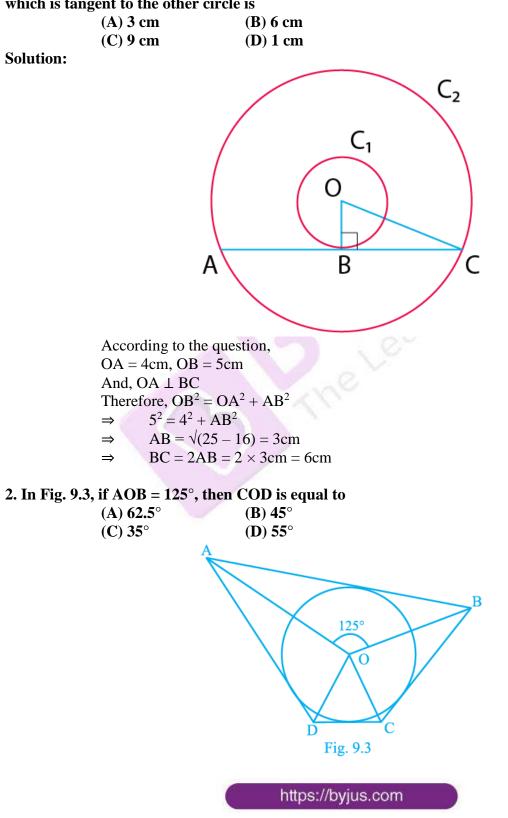


EXERCISE 9.1

PAGE NO: 102

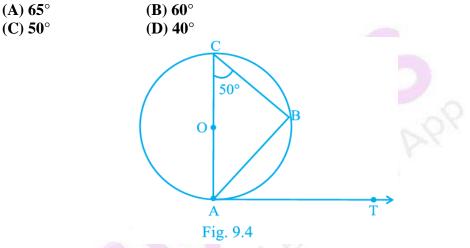
Choose the correct answer from the given four options in the following questions: 1. If radii of two concentric circles are 4 cm and 5 cm, then the length of each chord of one circle which is tangent to the other circle is



Solution:

ABCD is a quadrilateral circumscribing the circle We know that, the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the center of the circle. So, we have $\angle AOB + \angle COD = 180^{\circ}$ $125^{\circ} + \angle COD = 180^{\circ}$ $\angle COD = 55^{\circ}$

3. In Fig. 9.4, AB is a chord of the circle and AOC is its diameter such that ACB = 50°. If AT is the tangent to the circle at the point A, then BAT is equal to



Solution:

According to the question,

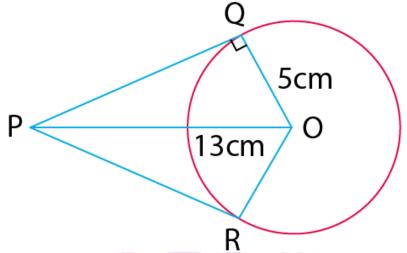
A circle with centre O, diameter AC and $\angle ACB = 50^{\circ}$ AT is a tangent to the circle at point A Since, angle in a semicircle is a right angle $\angle CBA = 90^{\circ}$ By angle sum property of a triangle, $\angle ACB + \angle CAB + \angle CBA = 180^{\circ}$ $50^{\circ} + \angle CAB + 90^{\circ} = 180^{\circ}$ $\angle CAB = 40^\circ \dots (1)$ Since tangent to at any point on the circle is perpendicular to the radius through point of contact, We get, $OA \perp AT$ $\angle OAT = 90^{\circ}$ $\angle OAT + \angle BAT = 90^{\circ}$ $\angle CAT + \angle BAT = 90^{\circ}$ $40^{\circ} + \angle BAT = 90^{\circ}$ [from equation (1)] $\angle BAT = 50^{\circ}$

4. From a point P which is at a distance of 13 cm from the centre O of a circle of radius 5 cm, the pair of tangents PQ and PR to the circle are drawn. Then the area of the quadrilateral PQOR is

(A) 60 cm ²	(B) 65 cm ²
(C) 30 cm^2	(D) 32.5 cm^2

Solution:

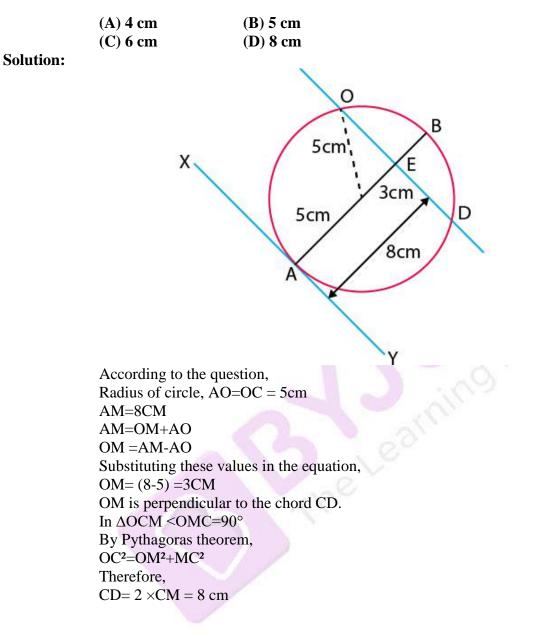
Construction: Draw a circle of radius 5 cm with center O. Let P be a point at a distance of 13 cm from O. Draw a pair of tangents, PQ and PR. $OQ = OR = radius = 5 cm \dots equation (1)$ And OP = 13 cm



We know that, tangent to at any point on the circle is perpendicular to the radius through point of contact,

Hence, we get, $OQ \perp PQ$ and $OR \perp PR$ \triangle POQ and \triangle POR are right-angled triangles. Using Pythagoras Theorem in $\triangle POO$, $(Base)^{2}$ + $(Perpendicular)^{2}$ = $(Hypotenuse)^{2}$ $(PQ)^{2} + (OQ)^{2} = (OP)^{2}$ $(PQ)^2 + (5)^2 = (13)^2$ $(PQ)^2 + 25 = 169$ $(PQ)^2 = 144$ PO = 12 cmTangents through an external point to a circle are equal. So. $PQ = PR = 12 \text{ cm} \dots (2)$ Therefore, Area of quadrilateral PQRS, A = area of \triangle POQ + area of \triangle POR Area of right angled triangle = $\frac{1}{2}$ x base x perpendicular $A = (\frac{1}{2} \times OQ \times PQ) + (\frac{1}{2} \times OR \times PR)$ $A = (\frac{1}{2} \times 5 \times 12) + (\frac{1}{2} \times 5 \times 12)$ $A = 30 + 30 = 60 \text{ cm}^2$

5. At one end A of a diameter AB of a circle of radius 5 cm, tangent XAY is drawn to the circle. The length of the chord CD parallel to XY and at a distance 8 cm from A is

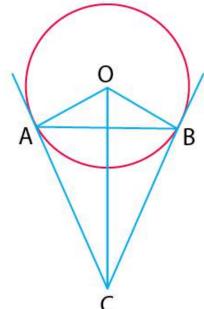


EXERCISE 9.2

PAGE NO: 105

Write 'True' or 'False' and justify your answer in each of the following: 1. If a chord AB subtends an angle of 60° at the centre of a circle, then angle between the tangents at A and B is also 60°. Solution:

False <u>Justification</u>: For example, Consider the given figure. In which we have a circle with centre O and AB a chord with $\angle AOB = 60^{\circ}$



Since, tangent to any point on the circle is perpendicular to the radius through point of contact,

We get, $OA \perp AC \text{ and } OB \perp CB$ $\angle OBC = \angle OAC = 90^{\circ} \dots eq(1)$ Using angle sum property of quadrilateral in Quadrilateral AOBC, We get, $\angle OBC + \angle OAC + \angle AOB + \angle ACB = 360^{\circ}$ $90^{\circ} + 90^{\circ} + 60^{\circ} + \angle ACB = 360^{\circ}$ $\angle ACB = 120^{\circ}$ Hence, the angle between two tangents is 120°. Therefore, we can conclude that, the given statement is false.

2. The length of tangent from an external point on a circle is always greater than the radius of the circle. Solution:

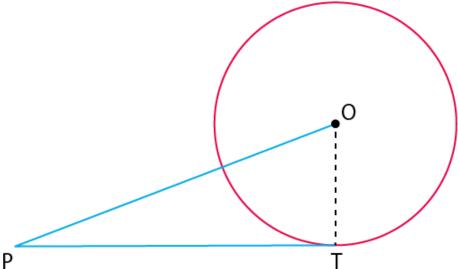
False

Justification:

Length of tangent from an external point P on a circle may or may not be greater than the radius of the circle.

3. The length of tangent from an external point P on a circle with centre O is always less than OP. Solution:

True <u>Justification</u>: Consider the figure of a circle with centre O. Let PT be a tangent drawn from external point P. Now, Joint OT. OT \perp PT



We know that,

Tangent at any point on the circle is perpendicular to the radius through point of contact Hence, OPT is a right-angled triangle formed.

We also know that,

In a right angled triangle, hypotenuse is always greater than any of the two sides of the triangle.

Hence,

OP > PT or PT < OP

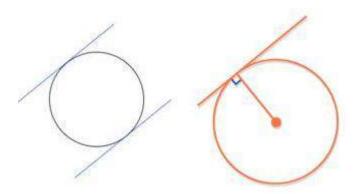
Hence, length of tangent from an external point P on a circle with center O is always less than OP.

4. The angle between two tangents to a circle may be $0^\circ\mbox{.}$ Solution:

True

Justification:

The angle between two tangents to a circle may be 0° only when both tangent lines coincide or are parallel to each other.



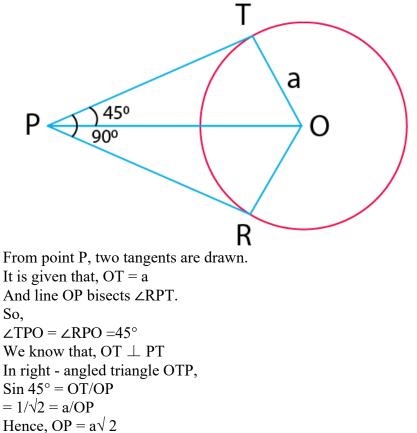
5. If angle between two tangents drawn from a point P to a circle of radius a and centre O is 90°, then $OP = a\sqrt{2}$. Solution:

Tangent is always perpendicular to the radius at the point of contact.

Hence, $\angle RPT = 90$

If 2 tangents are drawn from an external point, then they are equally inclined to the line segment joining the centre to that point.

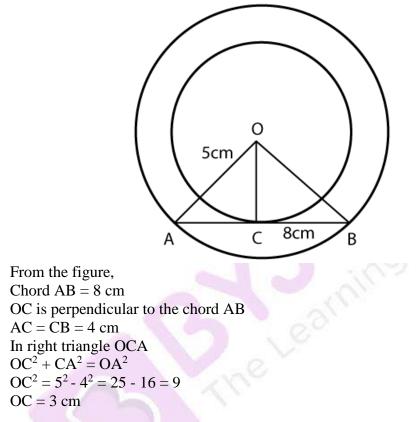
Consider the following figure,



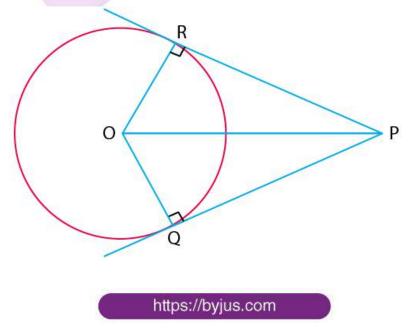
EXERCISE 9.3

PAGE NO: 107

1. Out of the two concentric circles, the radius of the outer circle is 5 cm and the chord AC of length 8 cm is a tangent to the inner circle. Find the radius of the inner circle. Solution:



2. Two tangents PQ and PR are drawn from an external point to a circle with centre O. Prove that QORP is a cyclic quadrilateral. Solution:

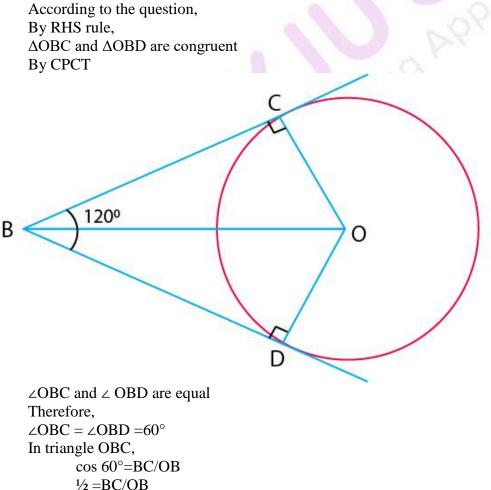


BYJU'S

NCERT Exemplar Solutions For Class 10 Maths Chapter 9-Circles

We know that, Radius \perp Tangent = OR \perp PR i.e., $\angle ORP = 90^{\circ}$ Likewise, Radius \perp Tangent = OQ \perp PQ $\angle OQP = 90^{\circ}$ In quadrilateral ORPQ, Sum of all interior angles = 360° $\angle ORP + \angle RPQ + \angle PQO + \angle QOR = 360^{\circ}$ $90^{\circ} + \angle RPQ + 90^{\circ} + \angle QOR = 360^{\circ}$ Hence, $\angle O + \angle P = 180^{\circ}$ PROQ is a cyclic quadrilateral.

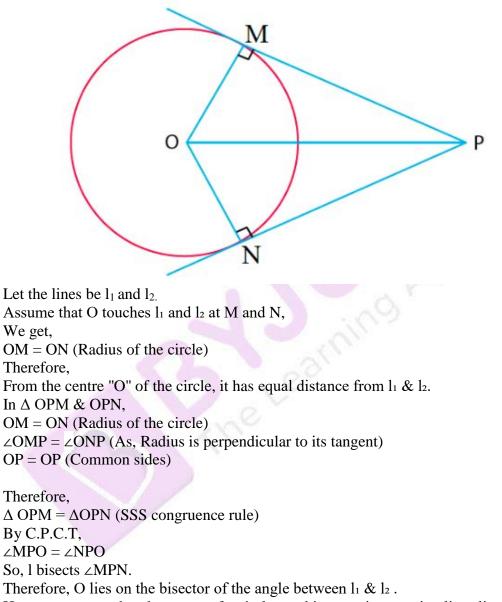
3. If from an external point B of a circle with centre O, two tangents BC and BD are drawn such that angle DBC = 120°, prove that BC + BD = BO, i.e., BO = 2BC. Solution:



Hence proved

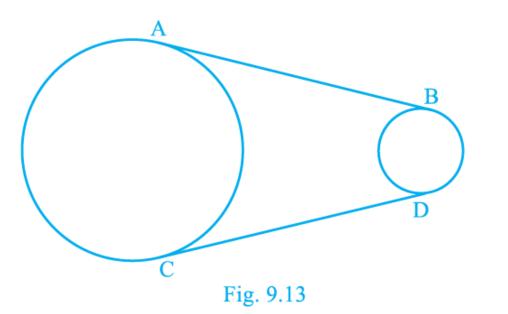
4. Prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines.

Solution:

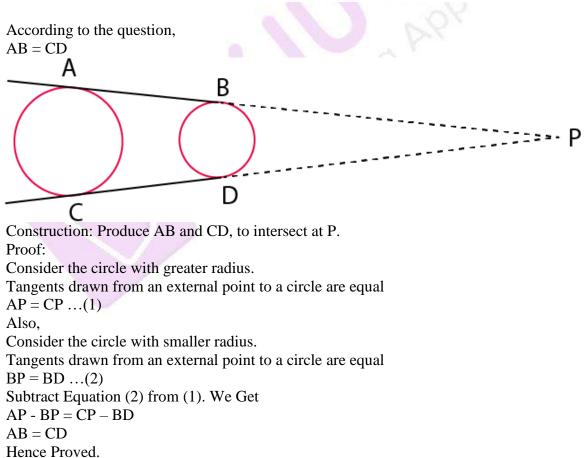


Hence, we prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines.

5. In Fig. 9.13, AB and CD are common tangents to two circles of unequal radii. Prove that AB = CD.



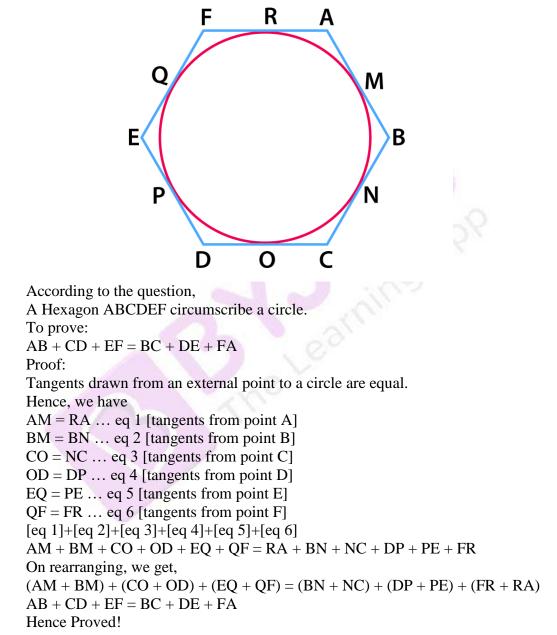
Solution:



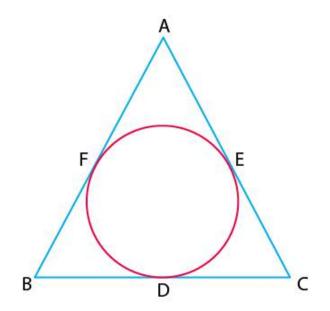
EXERCISE 9.4

PAGE NO: 110

1. If a hexagon ABCDEF circumscribe a circle, prove that AB + CD + EF = BC + DE + FA. Solution:



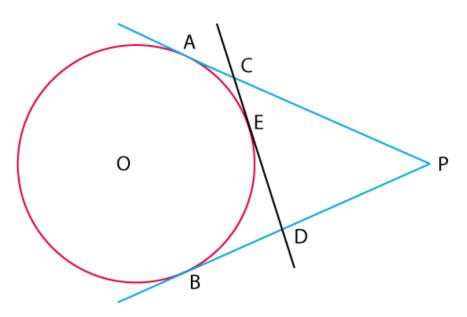
2. Let *s* denote the semi-perimeter of a triangle ABC in which BC = a, CA = b, AB = c. If a circle touches the sides BC, CA, AB at D, E, F, respectively, prove that BD = s - b. Solution:



According to the question,

A triangle ABC with BC = a, CA = b and AB = c. Also, a circle is inscribed which touches the sides BC, CA and AB at D, E and F respectively and s is semi- perimeter of the triangle To Prove: BD = s - bProof: According to the question, We have, Semi Perimeter = s Perimeter = 2s2s = AB + BC + AC[1]As we know, Tangents drawn from an external point to a circle are equal So we have AF = AE [2] [Tangents from point A] BF = BD [3] [Tangents From point B] CD = CE [4] [Tangents From point C] Adding [2] [3] and [4] AF + BF + CD = AE + BD + CEAB + CD = AC + BDAdding BD both side AB + CD + BD = AC + BD + BDAB + BC - AC = 2BDAB + BC + AC - AC - AC = 2BD2s - 2AC = 2BD [From 1] 2BD = 2s - 2b [as AC = b]BD = s - bHence Proved.

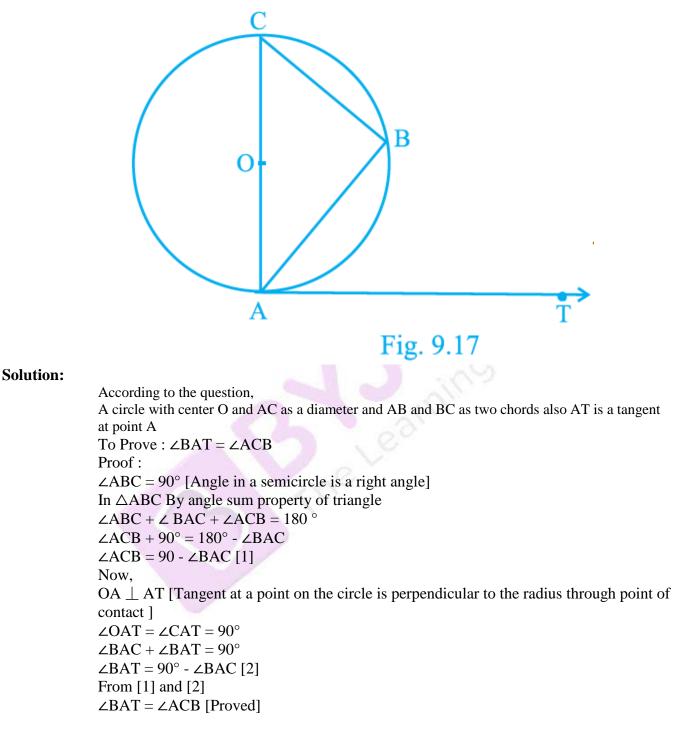
3. From an external point P, two tangents, PA and PB are drawn to a circle with centre O. At one point E on the circle tangent is drawn which intersects PA and PB at C and D, respectively. If PA = 10 cm, find the perimeter of the triangle PCD. Solution:



According to the question,

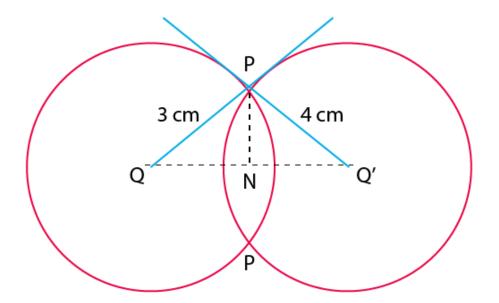
From an external point P, two tangents, PA and PB are drawn to a circle with center O. At a point E on the circle tangent is drawn which intersects PA and PB at C and D, respectively. And PA = 10 cmTo Find : Perimeter of $\triangle PCD$ As we know that, Tangents drawn from an external point to a circle are equal. So we have AC = CE [1] [Tangents from point C] ED = DB [2] [Tangents from point D] Now Perimeter of Triangle PCD = PC + CD + DP= PC + CE + ED + DP= PC + AC + DB + DP [From 1 and 2] = PA + PBNow. PA = PB = 10 cm as tangents drawn from an external point to a circle are equal So we have Perimeter = PA + PB = 10 + 10 = 20 cm

4. If AB is a chord of a circle with centre O, AOC is a diameter and AT is the tangent at A as shown in Fig. 9.17. Prove that $\angle BAT = \angle ACB$



5. Two circles with centres O and O' of radii 3 cm and 4 cm, respectively intersect at two points P and Q such that OP and O'P are tangents to the two circles. Find the length of the common chord PQ.

Solution:



According to the question,

Two circles with centers O and O' of radii 3 cm and 4 cm, respectively intersect at two points P and Q, such that OP and O'P are tangents to the two circles and PQ is a common chord.

To Find: Length of common chord PQ

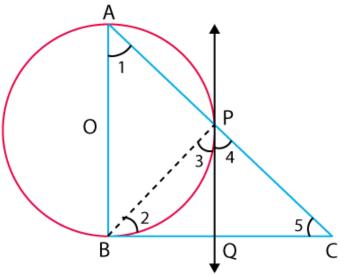
 $\angle OPO' = 90^{\circ}$ [Tangent at a point on the circle is perpendicular to the radius through point of contact]

So OPO is a right-angled triangle at P Using Pythagoras in \triangle OPO', we have $(OO')^2 = (O'P)^2 + (OP)^2$ $(OO')^2 = (4)^2 + (3)^2$ $(OO')^2 = 25$

OO' = 5 cmLet ON = x cm and NO' = 5 - x cmIn right angled triangle ONP $(ON)^{2} + (PN)^{2} = (OP)^{2}$ $x^{2} + (PN)^{2} = (3)^{2}$ $(PN)^2 = 9 - x^2 [1]$ In right angled triangle O'NP $(O'N)^2 + (PN)^2 = (O'P)^2$ $(5 - x)^2 + (PN)^2 = (4)^2$ $25 - 10x + x^2 + (PN)^2 = 16$ $(PN)^2 = -x^2 + 10x - 9[2]$ From [1] and [2] 9 - $x^2 = -x^2 + 10x - 9$ 10x = 18x = 1.8From (1) we have $(PN)^2 = 9 - (1.8)^2$

=9 - 3.24 = 5.76PN = 2.4 cm PQ = 2PN = 2(2.4) = 4.8 cm

6. In a right triangle ABC in which $\angle B = 90^{\circ}$, a circle is drawn with AB as diameter intersecting the hypotenuse AC and P. Prove that the tangent to the circle at P bisects BC. Solution:

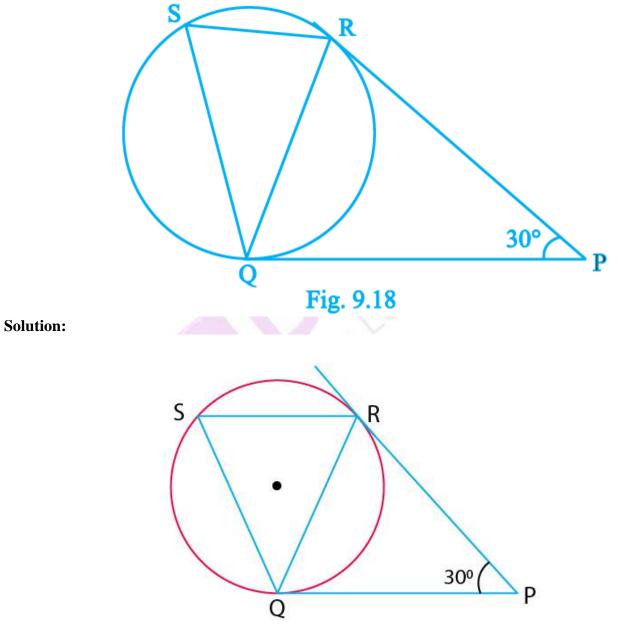


According to the question, In a right angle $\triangle ABC$ is which $\angle B = 90^\circ$, a circle is drawn with AB as diameter intersecting the hypotenuse AC at P. Also PQ is a tangent at P To Prove: PQ bisects BC i.e. BQ = QCProof: $\angle APB = 90^{\circ}$ [Angle in a semicircle is a right-angle] $\angle BPC = 90^{\circ}$ [Linear Pair] $\angle 3 + \angle 4 = 90[1]$ Now, $\angle ABC = 90^{\circ}$ So in $\triangle ABC$ $\angle ABC + \angle BAC + \angle ACB = 180^{\circ}$ $90 + \angle 1 + \angle 5 = 180$ $\angle 1 + \angle 5 = 90[2]$ Now, $\angle 1 = \angle 3$ [angle between tangent and the chord equals angle made by the chord in alternate segment] Using this in [2] we have $\angle 3 + \angle 5 = 90$ [3] From [1] and [3] we have $\angle 3 + \angle 4 = \angle 3 + \angle 5$ $\angle 4 = \angle 5$ QC = PQ [Sides opposite to equal angles are equal] https://byjus.com

But Also PQ = BQ [Tangents drawn from an external point to a circle are equal] So, BQ = QCi.e. PQ bisects BC.

7. In Fig. 9.18, tangents PQ and PR are drawn to a circle such that $\angle RPQ = 30^{\circ}$. A chord RS is drawn parallel to the tangent PQ. Find the $\angle RQS$.

[Hint: Draw a line through Q and perpendicular to QP.]



According to the question, Tangents PQ and PR are drawn to a circle such that $\angle RPQ = 30^{\circ}$. A chord RS is drawn parallel to the tangent PQ. To Find : $\angle RQS$

PQ = PR [Tangents drawn from an external point to a circle are equal] $\angle PRQ = \angle PQR$ [Angles opposite to equal sides are equal] [1] In $\triangle PQR$ $\angle PRQ + \angle PQR + \angle QPR = 180^{\circ}$ $\angle PQR + \angle PQR + \angle QPR = 180^{\circ}$ [Using 1] $2 \angle PQR + \angle RPQ = 180^{\circ}$ $2 \angle PQR + 30 = 180$ $2 \angle PQR = 150$ $\angle PQR = 75^{\circ}$ $\angle QRS = \angle PQR = 75^{\circ}$ [Alternate interior angles] $\angle QSR = \angle PQR = 75^{\circ}$ [angle between tangent and the chord equals angle made by the chord in alternate segment] Now In $\triangle RQS$ $\angle RQS + \angle QRS + \angle QSR = 180$ $\angle ROS + 75 + 75 = 180$ $\angle RQS = 30^{\circ}$