EXERCISE

SHORT ANSWER TYPE:

1. Find the equation of the straight line which passes through the point $(1,-2)$ and cuts off equal intercepts from axes.

Solution:

The equation of line in intercept form is
$\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}=1$
Where a and b are the intercepts on the axis.
Given that $\mathrm{a}=\mathrm{b}$
$\Rightarrow \frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{a}}=1$
The above equation can be written as
$\Rightarrow \frac{x+y}{a}=1$
On cross multiplication we get
$\Rightarrow x+y=a1$
If equation 1 passes through the point $(1,-2)$, we get
$x=1$ and $y=-2$
$1+(-2)=a$
$\Rightarrow 1-2=a$
$\Rightarrow a=-1$
Putting the value of a in equation 1, we get
$x+y=-1$
$\Rightarrow x+y+1=0$
Hence, the equation of straight line is $x+y+1=0$ which passes through the point $(1,-2)$.
2. Find the equation of the line passing through the point $(5,2)$ and perpendicular to the line joining the points $(2,3)$ and $(3,-1)$.

Solution:

Given points are $A(5,2), B(2,3)$ and $C(3,-1)$

Firstly, we find the slope of the line joining the points $(2,3)$ and $(3,-1)$
Slope of the line joining two points $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\therefore \mathrm{m}_{\mathrm{BC}}=\frac{-1-3}{3-2}=-\frac{4}{1}=-4$
It is given that line passing through the point $(5,2)$ is perpendicular to $B C$
$\because m_{1} m_{2}=-1$
$\Rightarrow-4 \times \mathrm{m}_{2}=-1$
$\Rightarrow \mathrm{m}_{2}=1 / 4$
Therefore slope of the required line $=1 / 4$
Now, we have to find the equation of line passing through point $(5,2)$
Equation of line: $y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow \mathrm{y}-2=\frac{1}{4}(\mathrm{x}-5)$
$\Rightarrow 4 y-8=x-5$
$\Rightarrow x-5-4 y+8=0$
$\Rightarrow \mathrm{x}-4 \mathrm{y}+3=0$
Hence, the equation of line passing through the point $(5,2)$ is $x-4 y+3=0$
3. Find the angle between the lines $y=(2-\sqrt{3})(x+5)$ and $y=(2+\sqrt{3})(x-7)$

Solution:

Given equations are $y=(2-\sqrt{ } 3)(x+5)$ and $(2+\sqrt{ } 3)(x-7)$
The given equation can be written as
$\Rightarrow \mathrm{y}=(2-\sqrt{ } 3) \mathrm{x}+(2-\sqrt{ } 3) 5 \ldots \ldots . .1$
$\Rightarrow y=(2+\sqrt{ } 3) x-7(2+\sqrt{ } 3) \ldots2$
Now, we have to find the slope of equation 1
Since, the equation 1 is in $y=m x+b$ form, we can easily see that the slope
$\left(m_{1}\right)$ is $(2-\sqrt{ } 3)$
Now, the slope $\left(m_{2}\right)$ of equation 2 is $(2+\sqrt{ } 3)$
Let θ be the angle between the given two lines.
$\tan \theta=\left|\frac{m_{1}-m_{1}}{1+m_{1} m_{2}}\right|$
Putting the values of m_{1} and m_{2} in above equation, we get
$\Rightarrow \tan \theta=\left|\frac{2-\sqrt{3}-(2+\sqrt{3})}{1+(2-\sqrt{3})(2+\sqrt{3})}\right|$
$\Rightarrow \tan \theta=\left|\frac{2-\sqrt{3}-2-\sqrt{3}}{1+\left[(2)^{2}-(\sqrt{3})^{2}\right]}\right|$
$\left[\because(a-b)(a+b)=\left(a^{2}-b^{2}\right)\right]$
$\Rightarrow \tan \theta=\left|\frac{-2 \sqrt{3}}{1+[4-3]}\right|$
On simplifying we get
$\Rightarrow \tan \theta=\left|\frac{-2 \sqrt{3}}{1+1}\right|$
$\Rightarrow \tan \theta=\left|\frac{-2 \sqrt{3}}{2}\right|$
$\Rightarrow \operatorname{Tan} \theta=\sqrt{ } 3$ or $-\sqrt{ } 3$
$\Rightarrow \theta=\tan ^{-1}(\sqrt{ } 3)$ or $(-\sqrt{ } 3)$
$\Rightarrow \theta=60^{\circ}$ or 120°
Hence, the required angle is 60° or 120°.
4. Find the equation of the lines which passes through the point $(3,4)$ and cuts off intercepts from the coordinate axes such that their sum is 14.

Solution:

The equation of line in intercept form is
$\frac{x}{a}+\frac{y}{b}=1$.1
Where a and b are the intercepts on the axis.
Given that $a+b=14$
The above equation can be written as
$\Rightarrow b=14-a$
Substituting the value of a and b in equation 1 we get
So, equation of line is
$\frac{x}{a}+\frac{y}{14-a}=1$
Taking LCM
$\Rightarrow \frac{x(14-a)+a y}{(a)(14-a)}=1$
$\Rightarrow 14 x-a x+a y=14 a-a^{2}$
If equation 2 passes through the point $(3,4)$ then
$14(3)-a(3)+a 4)=14 a-a^{2}$
$\Rightarrow 42-3 a+4 a-14 a+a^{2}=0$
$\Rightarrow a^{2}-13 a+42=0$
$\Rightarrow a^{2}-7 a-6 a+42=0$
$\Rightarrow a(a-7)-6(a-7)=0$
$\Rightarrow(a-6)(a-7)=0$
$\Rightarrow \mathrm{a}-6=0$ or $\mathrm{a}-7=0$
$\Rightarrow a=6$ or $a=7$
If $a=6$, then
$6+b=14$
$\Rightarrow b=14-6=8$
If $a=7$, then
$7+b=14$
$\Rightarrow b=14-7$
$=7$
If $a=6$ and $b=8$, then equation of line is
$\frac{x}{6}+\frac{y}{8}=1$
$\Rightarrow \frac{4 x+3 y}{24}=1$
$\Rightarrow 4 x+3 y=24$
If $a=7$ and $b=7$, then equation of line is
$\frac{x}{7}+\frac{y}{7}=1$
$\Rightarrow x+y=7$
5. Find the points on the line $x+y=4$ which lie at a unit distance from the line $4 x+3 y$ $=10$.

Solution:

Let $\left(x_{1}, y_{1}\right)$ be any point lying in the equation $x+y=4$
$\therefore \mathrm{x}_{1}+\mathrm{y}_{1}=4$ \qquad
Distance of the point (x_{1}, y_{1}) from the equation $4 x+3 y=10$
$d=\frac{\left|A x_{0}+B y_{0}+C\right|}{\sqrt{A^{2}+B^{2}}}$
$\Rightarrow 1=\left|\frac{4 \mathrm{x}_{1}+3 \mathrm{y}_{1}-10}{\sqrt{(4)^{2}+(3)^{2}}}\right|$
On simplification we get
$\Rightarrow 1=\left|\frac{4 \mathrm{x}_{1}+3 \mathrm{y}_{1}-10}{\sqrt{16+9}}\right|$
$\Rightarrow 1=\left|\frac{4 \mathrm{x}_{1}+3 \mathrm{y}_{1}-10}{5}\right|$
$\Rightarrow 4 \mathrm{x}_{1}+3 \mathrm{y}_{1}-10= \pm 5$
$4 \mathrm{x}_{1}+3 \mathrm{y}_{1}-10=5$ or $4 \mathrm{x}_{1}+3 \mathrm{y}_{1}-10=-5$
$4 x_{1}+3 y_{1}=5+10$ or $4 x_{1}+3 y_{1}=-5+10$
$4 x_{1}+3 y_{1}=15$
Or $4 x_{1}+3 y_{1}=5$ \qquad
From equation 1, we have $y_{1}=4-x_{1}$ \qquad .4
Putting the value of y_{1} in equation 2 , we get
$4 x_{1}+3\left(4-x_{1}\right)=15$
$\Rightarrow 4 x_{1}+12-3 x_{1}=15$
$\Rightarrow x_{1}=15-12$
$\Rightarrow \mathrm{x}_{1}=3$
Putting the value of x_{1} in equation 4 , we get
$y_{1}=4-3$
$\Rightarrow y_{1}=1$
Putting the value of $y_{1}=4-x_{1}$ in equation 3 , we get
$4 x_{1}+3\left(4-x_{1}\right)=5$
$\Rightarrow 4 x_{1}+12-3 x_{1}=5$
$\Rightarrow \mathrm{x}_{1}=5-12$
$\Rightarrow x_{1}=-7$
Putting the value of x_{1} in equation 4 , we get
$\mathrm{y}_{1}=4-(-7)$
$\Rightarrow y_{1}=4+7$
$\Rightarrow y_{1}=11$
Hence, the required points on the given line are $(3,1)$ and $(-7,11)$
6. Show that the tangent of an angle between the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{a}-\frac{y}{b}=1$ is $\frac{2 a b}{a^{2}-b^{2}}$

Solution:

Given
$\frac{x}{a}+\frac{y}{b}=1$ 1
$\frac{x}{a}-\frac{y}{b}=1$ \square
Firstly, we find the slope of the given lines
$\frac{x}{a}+\frac{y}{b}=1$
Above equation can be written as
$\Rightarrow \frac{\mathrm{y}}{\mathrm{b}}=1-\frac{\mathrm{x}}{\mathrm{a}}$
On rearranging we get
$\Rightarrow y=b-\frac{b}{a} x$
$\Rightarrow \mathrm{y}=\left(-\frac{\mathrm{b}}{\mathrm{a}}\right) \mathrm{x}+\mathrm{b}$
Since, the above equation is in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form.
So, Slope of the equation 1 is
$\mathrm{m}_{1}=-\frac{\mathrm{b}}{\mathrm{a}}$
Now, finding the slope of the equation 2
$\frac{x}{a}-\frac{y}{b}=1$
The above equation can be written as
$\Rightarrow-\frac{\mathrm{y}}{\mathrm{b}}=1-\frac{\mathrm{x}}{\mathrm{a}}$
$\Rightarrow-\mathrm{y}=\mathrm{b}-\frac{\mathrm{b}}{\mathrm{a}} \mathrm{x}$
On rearranging we get
$\Rightarrow y=\left(\frac{b}{a}\right) x-b$
$\Rightarrow y=\left(\frac{b}{a}\right) x+(-1) b$
Since, the above equation is in $y=m x+b$ form.
So, Slope of the eq. (ii) is
$\mathrm{m}_{2}=\frac{\mathrm{b}}{\mathrm{a}}$
Let θ be the angle between the given two lines.
$\tan \theta=\left|\frac{m_{1}-m_{1}}{1+m_{1} m_{2}}\right|$
Putting the values of m_{1} and m_{2} in above eq., we get
$\Rightarrow \tan \theta=\left|\frac{-\frac{b}{a}-\frac{b}{a}}{1+\left(-\frac{b}{a}\right)\left(\frac{b}{a}\right)}\right|$
On simplifying we get
$\Rightarrow \tan \theta=\left|\frac{-2\left(\frac{b}{a}\right)}{1-\left(\frac{b^{2}}{a^{2}}\right)}\right|$
$\Rightarrow \tan \theta=\left|\frac{-2\left(\frac{b}{a}\right)}{\frac{a^{2}-b^{2}}{a^{2}}}\right|$
$\Rightarrow \tan \theta=\left|\frac{-2 a b}{a^{2}-b^{2}}\right|$
$\Rightarrow \tan \theta=\frac{2 a b}{a^{2}-b^{2}}$
Hence the proof.
7. Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.

Solution:

Given that line passing through $(1,2)$ making an angle 30° with y - axis.
Angle made by the line with x - axis is $\left(90^{\circ}-30^{\circ}\right)=60^{\circ}$
\therefore Slope of the line, $\mathrm{m}=\tan 60^{\circ}$
= V3
So, the equation of the line passing through the point (x_{1}, y_{1}) and having slope ' m ' is
$y-y_{1}=m\left(x-x_{1}\right)$
Here, $\left(x_{1}, y_{1}\right)=(1,2)$ and $m=\sqrt{ } 3$
$\Rightarrow y-2=\sqrt{ } 3(x-1)$
$\Rightarrow \mathrm{y}-2=\sqrt{ } 3 \mathrm{x}-\sqrt{ } 3$
$\Rightarrow y-\sqrt{ } 3 x+\sqrt{ } 3-2=0$
8. Find the equation of the line passing through the point of intersection of $2 x+y=5$ and $x+3 y+8=0$ and parallel to the line $3 x+4 y=7$.

Solution:

Given lines are
$2 x+y=5 \ldots . . .1$
$x+3 y=-8 \ldots . . .2$
Firstly, we find the point of intersection of equation 1 and equation 2
Multiply the equation 2 by 2 , we get
$2 x+6 y=-16$ \qquad 3
On subtracting equation 3 from 1 , we get
$2 x+y-2 x-6 y=5-(-16)$
On simplifying we get
$\Rightarrow-5 y=5+16$
$\Rightarrow-5 y=21$
$\Rightarrow \mathrm{y}=-\frac{21}{5}$
Putting the value of y in equation 1, we get
$2 x+\left(-\frac{21}{5}\right)=5$
On rearranging we get
$\Rightarrow 2 \mathrm{x}=5+\frac{21}{5}$
$\Rightarrow 2 \mathrm{x}=\frac{25+21}{5}$
$\Rightarrow 10 \mathrm{x}=46$
$\Rightarrow \mathrm{x}=\frac{46}{10}=\frac{23}{5}$
Hence, the point of intersection is $\left(\frac{23}{5},-\frac{21}{5}\right)$
Now, we find the slope of the given equation $3 x+4 y=7$
We know that the slope of an equation is
$m=-a / b$
$\Rightarrow \mathrm{m}=-\frac{3}{4}$
So, the slope of a line which is parallel to this line is also $-\frac{3}{4}$
Then the equation of the line passing through the point $\left(\frac{23}{5},-\frac{21}{5}\right)$ having
slope $-\frac{3}{4}$ is:
$y-y_{1}=m\left(x-x_{1}\right)$
Substituting the values we get
$\Rightarrow \mathrm{y}-\left(-\frac{21}{5}\right)=-\frac{3}{4}\left(\mathrm{x}-\frac{23}{5}\right)$
Computing and simplifying
$\Rightarrow y+\frac{21}{5}=-\frac{3}{4} x+\frac{69}{20}$
$\Rightarrow \frac{3}{4} x+y=\frac{69}{20}-\frac{21}{5}$
$\Rightarrow \frac{3 x+4 y}{4}=\frac{69-84}{20}$
$\Rightarrow 3 x+4 y=-\frac{15}{5}$
$\Rightarrow 3 x+4 y+3=0$
9. For what values of a and b the intercepts cut off on the coordinate axes by the line $a x+b y+8=0$ are equal in length but opposite in signs to those cut off by the line $2 x-$ $3 y+6=0$ on the axes.

Solution:

Given equation is $a x+b y+8=0$
It can also be re-written as $a x+b y=-8$
Now, dividing by -8 to both the sides, we get
$\frac{a}{-8} x+\frac{b}{-8} y=1$
$\Rightarrow \frac{x}{-\frac{8}{a}}+\frac{y}{-\frac{8}{b}}=1$
So, the intercepts on the axes are $-\frac{8}{a}$ and $-\frac{8}{b}$
Now, the second equation which is given is $2 x-3 y+6=0$
It can also be re-written as $2 x-3 y=-6$
Now, dividing by -6 to both the sides, we get
$\frac{2}{-6} x-\frac{3}{-6} y=1$
$\Rightarrow \frac{x}{-3}+\frac{y}{2}=1$
So, the intercepts are -3 and 2
Now, according to the question intercepts cut off on the coordinate axes by the line $a x+b y+8=0$ are equal in length but opposite in signs to those cut off by the line $2 x-3 y+6=0$ on the axes
Therefore, $-\frac{8}{a}=3$ and $-\frac{8}{b}=-2$
$\Rightarrow \mathrm{a}=-\frac{8}{3}$ And $\Rightarrow \mathrm{b}=4$
10. If the intercept of a line between the coordinate axes is divided by the point ($-5,4$) in the ratio $1: 2$, then find the equation of the line.

Solution:

Let a and b be the intercepts on the given line
\therefore Coordinates of A and B are $(a, 0)$ and $(0, b)$ respectively.
Given that coordinate axes is divided by the point $(-5,4)$ in the ratio 1:2.
Now, using the section formula, we find the value of a and b
$(x, y)=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$
$\therefore(-5,4)=\left(\frac{1 \times 0+2 \times \mathrm{a}}{1+2}, \frac{1 \times \mathrm{b}+2 \times 0}{1+2}\right)$
On simplifying we get
$\Rightarrow(-5,4)=\left(\frac{2 \mathrm{a}}{3}, \frac{\mathrm{~b}}{3}\right)$
$\Rightarrow-5=\frac{2 \mathrm{a}}{3}$ and $4=\frac{\mathrm{b}}{3}$
$\Rightarrow-15=2 \mathrm{a}$ and $\mathrm{b}=12$
$\Rightarrow \mathrm{a}=-\frac{15}{2}$ and $\mathrm{b}=12$
\therefore Coordinates of A and B are $\left(-\frac{15}{2}, 0\right)$ and $(0,12)$
Now, we have to find the equation of line AB.

Now, we have to find the equation of line AB.
Equation of line when two points are given:
$y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$
Substituting the values, we get
$y-0=\frac{12-0}{0-\left(-\frac{15}{2}\right)}\left(x-\left(-\frac{15}{2}\right)\right)$
On simplifying we get
$\Rightarrow \mathrm{y}=\frac{12}{\frac{15}{2}}\left(\mathrm{x}+\frac{15}{2}\right)$
$\Rightarrow \mathrm{y}=\frac{24}{15}\left(\mathrm{x}+\frac{15}{2}\right)$
$\Rightarrow y=\frac{8}{5} x+12$
$\Rightarrow 5 \mathrm{y}=8 \mathrm{x}+60$
$\Rightarrow 8 \mathrm{x}-5 \mathrm{y}+60=0$
Hence, the required equation is $8 x-5 y+60=0$
11. Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x axis.

Solution:

Given length of the perpendicular from the origin (OM) $=4$ units
And line makes an angle with positive direction of x - axis
$\angle B A X=120^{\circ}$
$\therefore \angle B A O=180^{\circ}-120^{\circ}=60^{\circ}$
$\therefore \angle \mathrm{MAO}=60^{\circ}$
Now, In \triangle AMO,
We know that sum of angles of a triangle is 180°
$\angle M A O+\angle A O M+\angle O M A=180^{\circ}$
$\Rightarrow 60^{\circ}+\theta+90^{\circ}=180^{\circ}$
$\Rightarrow 150^{\circ}+\theta=180^{\circ}$
$\Rightarrow \theta=180^{\circ}-150^{\circ}$
$\Rightarrow \theta=30^{\circ}$
$\therefore \angle A O M=30^{\circ}$
Now, we find the equation in normal form
$x \cos \theta+y \sin \theta=p$
Given $p=4$, substituting this we get
$\Rightarrow \mathrm{x} \cos \left(30^{\circ}\right)+\mathrm{y} \sin \left(30^{\circ}\right)=4$
$\Rightarrow x\left(\frac{\sqrt{3}}{2}\right)+y\left(\frac{1}{2}\right)=4$
$\Rightarrow \sqrt{3} x+y=8$
Hence, the required equation is $\sqrt{ } 3 x+y=8$
12. Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by $3 x+4 y=4$ and the opposite vertex of the hypotenuse is $(2,2)$.

Solution:

Given that equation of the hypotenuse is $3 x+4 y=4$
And also given that opposite vertex of the hypotenuse is $(2,2)$
Firstly, we find the slope of the given equation
$3 x+4 y=4$
It can be re-written as $4 y=4-3 x$
$\Rightarrow y=\frac{-3}{4} x+1$
Since, the above equation is in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form
So, slope $=-3 / 4$
Now, let the slope of AC be m
Now, we find the value of m, by using the formula
$\tan \theta=\left|\frac{m_{1}-m_{1}}{1+m_{1} m_{2}}\right|$
Substituting the values of m_{1} and m_{2} in above equation, we get
$\tan 45^{\circ}=\left|\frac{m-\left(-\frac{3}{4}\right)}{1+m \times\left(-\frac{3}{4}\right)}\right|$
We know that $\tan 45^{\circ}=1$
$\Rightarrow 1=\left|\frac{\mathrm{m}+\frac{3}{4}}{1-\frac{3}{4} \mathrm{~m}}\right|$
$\Rightarrow 1=\left|\frac{4 \mathrm{~m}+3}{4-3 \mathrm{~m}}\right|$
$\Rightarrow 1= \pm \frac{4 \mathrm{~m}+3}{4-3 \mathrm{~m}}$
Taking (+) sign, we get
$\frac{4 m+3}{4-3 m}=1$
On cross multiplication we get
$\Rightarrow 4 \mathrm{~m}+3=4-3 \mathrm{~m}$
$\Rightarrow 4 \mathrm{~m}+3 \mathrm{~m}=4-3$
$\Rightarrow 7 \mathrm{~m}=1$
$\Rightarrow \mathrm{m}=\frac{1}{7}$
Taking (-) sign, we get

$$
\begin{aligned}
& -\frac{4 m+3}{4-3 m}=1 \\
& \Rightarrow 4 m+3=-(4-3 m) \\
& \Rightarrow 4 m+3=-4+3 m \\
& \Rightarrow 4 m-3 m=-4-3 \\
& \Rightarrow m=-7
\end{aligned}
$$

If $m=1 / 7$, then equation of $A C$ is
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-2=\frac{1}{7}(x-2)$
$\Rightarrow 7 y-14=x-2$
$\Rightarrow \mathrm{x}-7 \mathrm{y}-2+14=0$
$\Rightarrow x-7 y+12=0$
If $m=-7$, then equation of $A C$ is
$y-2=(-7)(x-2)$
$\Rightarrow y-2=-7 x+14$
$\Rightarrow 7 x+y=16$
Hence, the required equations are $x-7 y+12=0$ and $7 x+y=16$

LONG ANSWER TYPE

13. If the equation of the base of an equilateral triangle is $\mathbf{x + y}=\mathbf{2}$ and the vertex is $\mathbf{(2 ,}$ $-1)$, then find the length of the side of the triangle.

Solution:

Let $\triangle \mathrm{ABC}$ be an equilateral triangle.
Given equation of the base $B C$ is $x+y=2$
We know that, in an equilateral triangle all angles are of 60°
So, in $\triangle \mathrm{ABD}$
$\sin 60^{\circ}=\frac{A D}{A B}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{\mathrm{AD}}{\mathrm{AB}}\left[\because \sin 60^{\circ}=\frac{\sqrt{3}}{2}\right]$
$\Rightarrow \mathrm{AD}=\frac{\sqrt{3}}{2} \mathrm{AB}$
We know that, the distance d of a point $P\left(x_{0}, y_{0}\right)$ from the line $A x+B y+C=0$ is given by
$d=\left|\frac{A x_{0}+B y_{0}+C}{\sqrt{A^{2}+B^{2}}}\right|$
Now, length of perpendicular from vertex $A(2,-1)$ to the line $x+y=2$ is
$\mathrm{AD}=\left|\frac{1 \times 2+1 \times(-1)-2}{\sqrt{(1)^{2}+(1)^{2}}}\right|$
$\Rightarrow \frac{\sqrt{3}}{2} \mathrm{AB}=\left|\frac{2-1-2}{\sqrt{2}}\right|$
On simplification we get
$\Rightarrow \frac{\sqrt{3}}{2} \mathrm{AB}=\frac{1}{\sqrt{2}}$
Squaring both the sides, we get
$\Rightarrow \frac{3}{4} \mathrm{AB}^{2}=\frac{1}{2}$
On cross multiplication we get
$\Rightarrow \mathrm{AB}^{2}=\frac{4}{3} \times \frac{1}{2}$
$\Rightarrow \mathrm{AB}^{2}=\frac{2}{3}$
$\Rightarrow \mathrm{AB}=\sqrt{\frac{2}{3}}$
Hence, the required length of side is $\sqrt{\frac{2}{3}}$
14. A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points $(2,0),(0,2)$ and $(1,1)$ on the line is zero. Find the coordinates of the point P.

Solution:

Let the variable line be $a x+b y=1$
We know that, length of the perpendicular from (p, q) to the line $a x+b y+c=0$
is
$\mathrm{d}=\left|\frac{\mathrm{ap}+\mathrm{bq}+\mathrm{c}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}\right|$
Now, perpendicular distance from $A(2,0)$
$\mathrm{d}_{1}=\left|\frac{2 \times \mathrm{a}+0 \times \mathrm{b}-1}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}\right|$
$=\frac{2 a-1}{\sqrt{a^{2}+b^{2}}}$
Now, perpendicular distance from B $(0,2)$
$\mathrm{d}_{2}=\left|\frac{0 \times \mathrm{a}+2 \times \mathrm{b}-1}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}\right|$
$=\frac{2 b-1}{\sqrt{a^{2}+b^{2}}}$
Now, perpendicular distance from C $(1,1)$
$\mathrm{d}_{3}=\left|\frac{1 \times \mathrm{a}+1 \times \mathrm{b}-1}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}\right|$
$=\frac{a+b-1}{\sqrt{a^{2}+b^{2}}}$
It is given that the algebraic sum of the perpendicular from the given points (2 ,
$0),(0,2)$ and $(1,1)$ to this line is zero.
$d_{1}+d_{2}+d_{3}=0$
Substituting the values we get
$\therefore \frac{2 \mathrm{a}-1}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}+\frac{2 \mathrm{~b}-1}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}+\frac{\mathrm{a}+\mathrm{b}-1}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}=0$
$\Rightarrow 2 a-1+2 b-1+a+b-1=0$
$\Rightarrow 3 a+3 b-3=0$
$\Rightarrow a+b-1=0$
$\Rightarrow a+b=1$

So, the equation $a x+b y=1$ represents a family of straight lines passing through a fixed point.
Comparing the equation $\mathrm{ax}+\mathrm{by}=1$ and $\mathrm{a}+\mathrm{b}=1$, we get
$\mathrm{x}=1$ and $\mathrm{y}=1$
So, the coordinates of fixed point is $(1,1)$
15. In what direction should a line be drawn through the point $(1,2)$ so that its point of intersection with the line $x+y=4$ is at a distance $\sqrt{ } 6 / 3$ from the given point.

Solution:

Let the given line $\mathrm{x}+\mathrm{y}=4$ and the required line ' I ' intersect at $\mathrm{B}(\mathrm{a}, \mathrm{b})$
Slope of line ' I ' is
$\mathrm{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{\mathrm{b}-2}{\mathrm{a}-1}$
And we also know that, $\mathrm{m}=\tan \theta$
$\therefore \tan \theta=\frac{\mathrm{b}-2}{\mathrm{a}-1}$
Given that $A B=\sqrt{ } 6 / 3$
So, by distance formula for point $\mathrm{A}(1,2)$ and $\mathrm{B}(\mathrm{a}, \mathrm{b})$, we get
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\Rightarrow \frac{\sqrt{6}}{3}=\sqrt{(a-1)^{2}+(b-2)^{2}}$
On squaring both the sides, we get
$\Rightarrow \frac{6}{9}=(a-1)^{2}+(b-2)^{2}$
Using $(a-b)^{2}$ formula we get
$\Rightarrow \frac{2}{3}=a^{2}+1-2 a+b^{2}+4-4 b$
On cross multiplication we get
$\Rightarrow 2=3 a^{2}+3-6 a+3 b^{2}+12-12 b$
$\Rightarrow 2=3 a^{2}+3 b^{2}-6 a-12 b+15$
$\Rightarrow 3 a^{2}+3 b^{2}-6 a-12 b+13=0 \ldots$ (ii)
Point $B(a, b)$ also satisfies the equation $x+y=4$
$\therefore \mathrm{a}+\mathrm{b}=4$
$\Rightarrow b=4-a$...
Putting the value of b in equation (ii), we get

$$
3 a^{2}+3(4-a)^{2}-6 a-12(4-a)+13=0
$$

Computing and simplifying we get
$\Rightarrow 3 a^{2}+3\left(16+a^{2}-8 a\right)-6 a-48+12 a+13=0$
$\Rightarrow 3 a^{2}+48+3 a^{2}-24 a-6 a-48+12 a+13=0$
$\Rightarrow 6 a^{2}-18 a+13=0$
Now, we solve the above equation by using this formula
$\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$a=\frac{-(-18) \pm \sqrt{(-18)^{2}-4 \times 6 \times 13}}{2 \times 6}$
$a=\frac{18 \pm \sqrt{324-312}}{12}$
$\mathrm{a}=\frac{18 \pm \sqrt{12}}{12}$
$a=\frac{9 \pm \sqrt{3}}{6}$
$a=\frac{\sqrt{3}(3 \sqrt{3} \pm 1)}{\sqrt{3}(2 \sqrt{3})}$
$\Rightarrow \mathrm{a}=\frac{3 \sqrt{3} \pm 1}{2 \sqrt{3}}$
$\Rightarrow \mathrm{a}=\frac{3 \sqrt{3}+1}{2 \sqrt{3}}$ or $\mathrm{a}=\frac{3 \sqrt{3}-1}{2 \sqrt{3}}$
Putting the value of a in equation (iii), we get
$\mathrm{b}=4-\frac{3 \sqrt{3} \pm 1}{2 \sqrt{3}}$
Taking LCM and simplifying we get
$\Rightarrow \mathrm{b}=\frac{8 \sqrt{3}-3 \sqrt{3} \pm 1}{2 \sqrt{3}}$
$\Rightarrow \mathrm{b}=\frac{5 \sqrt{3} \pm 1}{2 \sqrt{3}}$
$\Rightarrow \mathrm{b}=\frac{5 \sqrt{3}+1}{2 \sqrt{3}}$ or $\mathrm{b}=\frac{5 \sqrt{3}-1}{2 \sqrt{3}}$

Now, putting the value of a and b in equation (j), we get
$\tan \theta=\frac{\mathrm{b}-2}{\mathrm{a}-1}$
$\Rightarrow \tan \theta=\frac{\frac{5 \sqrt{3} \pm 1}{2 \sqrt{3}}-2}{\frac{3 \sqrt{3} \pm 1}{2 \sqrt{3}}-1}$
Taking LCM and simplifying we get
$\Rightarrow \tan \theta=\frac{\frac{5 \sqrt{3} \pm 1-4 \sqrt{3}}{2 \sqrt{3}}}{\frac{3 \sqrt{3} \pm 1-2 \sqrt{3}}{2 \sqrt{3}}}$
$\Rightarrow \tan \theta=\frac{\sqrt{3} \pm 1}{\sqrt{3} \pm 1}$
$\Rightarrow \tan \theta=\frac{\sqrt{3}+1}{\sqrt{3}-1}$.1
$\tan \theta=\frac{\sqrt{3}-1}{\sqrt{3}+1}$.2

We solve the equation 1 to get the value of θ, we get
We know that,

$$
\begin{aligned}
& \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right) \\
& \tan ^{-1}\left(\frac{x-y}{1+x y}\right) \\
& \text { if } x=\sqrt{ } 3 \text { and } y=1
\end{aligned}
$$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{\sqrt{3}-1}{1+(\sqrt{3})(1)}\right) \\
& =\tan ^{-1}\left(\frac{\sqrt{3}-1}{1+\sqrt{3}}\right)
\end{aligned}
$$

We have,
$\theta=\tan ^{-1}\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)$
$\theta=\tan ^{-1}(\mathrm{~V} 3)-\tan ^{-1}(1)$
$\theta=\tan ^{-1}\left(\tan 60^{\circ}\right)-\tan ^{-1}\left(\tan 45^{\circ}\right)$
$\theta=60^{\circ}-45^{\circ}$
$\theta=15^{\circ}$
Now, we solve the equation 2
We know that,

$$
\begin{aligned}
& \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) \\
& \tan ^{-1}\left(\frac{x+y}{1-x y}\right)
\end{aligned}
$$

if $x=\sqrt{ } 3$ and $y=1$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{\sqrt{3}+1}{1-(\sqrt{3})(1)}\right) \\
& =\tan ^{-1}\left(\frac{\sqrt{3}+1}{1-\sqrt{3}}\right)
\end{aligned}
$$

We have,

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right) \\
& \theta=\tan ^{-1}(\sqrt{ } 3)+\tan ^{-1}(1) \\
& \theta=\tan ^{-1}\left(\tan 60^{\circ}\right)+\tan ^{-1}\left(\tan 45^{\circ}\right) \\
& \theta=60^{\circ}+45^{\circ} \\
& \theta=105^{\circ}
\end{aligned}
$$

16. A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.

Solution:

We know that intercepts form of a straight line is
$\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}=1$
Where a and b are the intercepts on the axes
Given that $\frac{1}{a}+\frac{1}{b}=\frac{1}{k}$ (let)
On cross multiplication we get
$\Rightarrow \frac{\mathrm{k}}{\mathrm{a}}+\frac{\mathrm{k}}{\mathrm{b}}=1$
This shows that the line is passing through the fixed point (k, k)
17. Find the equation of the line which passes through the point $(-4,3)$ and the
portion of the line intercepted between the axes is divided internally in the ratio 5:3 by this point.

Solution:

Let $A B$ be a line passing through a point $(-4,3)$ and meets x - axis at $A(a, 0)$ and y-axis at $B(0, b)$
Using the section formula for internal division, we have
$(\mathrm{x}, \mathrm{y})=\left(\frac{\mathrm{m}_{1} \mathrm{x}_{2}+\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{~m}_{1} \mathrm{y}_{2}+\mathrm{m}_{2} \mathrm{y}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right)$
Here, $m_{1}=5, m_{2}=3$
$\left(x_{1}, y_{1}\right)=(a, 0)$ and $\left(x_{2}, y_{2}\right)=(0, b)$
Substituting the above values in the above formula, we get
$\Rightarrow \mathrm{x}=\frac{5(0)+3(\mathrm{a})}{5+3}, \mathrm{y}=\frac{5(\mathrm{~b})+3(0)}{5+3}$
$\Rightarrow-4=\frac{3 \mathrm{a}}{8}, 3=\frac{5 \mathrm{~b}}{8}$
$\Rightarrow-32=3$ a or $24=5 b$
$\Rightarrow \mathrm{a}=-\frac{32}{3} \mathrm{Or} \quad \mathrm{b}=\frac{24}{5}$
We know that intercept form of the line is
$\frac{x}{a}+\frac{y}{b}=1$
Substituting the value of a and b in above equation, we get
$\frac{x}{-\frac{32}{3}}+\frac{y}{\frac{24}{5}}=1$
On simplification we get
$\Rightarrow-\frac{3 x}{32}+\frac{5 y}{24}=1$
Taking LCM
$\Rightarrow \frac{-72 \mathrm{x}+160 \mathrm{y}}{(32)(24)}=1$
On cross multiplication we get
$\Rightarrow-72 x+160 y=768$
$\Rightarrow-36 x+80 y=384$
$\Rightarrow 18 \mathrm{x}-40 \mathrm{y}+192=0$
$\Rightarrow 9 x-20 y+96=0$

Hence, the required equation is $9 x-20 y+96=0$
18. Find the equations of the lines through the point of intersection of the lines $x-y+$ $1=0$ and $2 x-3 y+5=0$ and whose distance from the point $(3,2)$ is $7 / 5$.

Solution:

Given two lines are $x-y+1=0$
And $2 x-3 y+5=0$
Now, point of intersection of these lines can be find out as:
Multiplying equation (i) by 2 , we get
$2 x-2 y+2=0$ \qquad
On subtracting equation (iii) from (ii), we get
$2 x-2 y+2-2 x+3 y-5=0$
$\Rightarrow y-3=0$
$\Rightarrow y=3$
On putting value of y in equation (ii), we get
$2 x-3(3)+5=0$
$\Rightarrow 2 x-9+5=0$
$\Rightarrow 2 \mathrm{x}-4=0$
$\Rightarrow 2 \mathrm{x}=4$
$\Rightarrow x=2$
So, the point of intersection of given two lines is $(x, y)=(2,3)$
Let m be the slope of the required line
\therefore Equation of the line is
$y-3=m(x-2)$
$\Rightarrow y-3=m x-2 m$
$\Rightarrow m x-y-2 m+3=0$
Since, the perpendicular distance from the point $(3,2)$ to the line is $7 / 5$ then
$d=\left|\frac{m(3)-2+3-2 m}{\sqrt{(m)^{2}+(1)^{2}}}\right|$
$\Rightarrow \frac{7}{5}=\left|\frac{3 \mathrm{~m}+1-2 \mathrm{~m}}{\sqrt{\mathrm{~m}^{2}+1}}\right|$
$\Rightarrow \frac{7}{5}=\frac{m+1}{\sqrt{m^{2}+1}}$
Squaring both the sides, we get
$\Rightarrow \frac{49}{25}=\frac{(m+1)^{2}}{m^{2}+1}$
On cross multiplication we get
$\Rightarrow 49\left(m^{2}+1\right)=25(m+1)^{2}$
Computing and simplifying we get
$\Rightarrow 49 \mathrm{~m}^{2}+49=25\left(\mathrm{~m}^{2}+1+2 \mathrm{~m}\right)$
$\Rightarrow 49 \mathrm{~m}^{2}+49=25 \mathrm{~m}^{2}+25+50 \mathrm{~m}$
$\Rightarrow 25 \mathrm{~m}^{2}+25+50 \mathrm{~m}-49 \mathrm{~m}^{2}-49=0$
$\Rightarrow-24 \mathrm{~m}^{2}+50 \mathrm{~m}-24=0$
$\Rightarrow-12 m^{2}+25 \mathrm{~m}-12=0$
$\Rightarrow 12 m^{2}-25 m+12=0$
$\Rightarrow 12 m^{2}-16 m-9 m+12=0$
Taking m common we get
$\Rightarrow 4 m(3 m-4)-3(3 m-4)=0$
$\Rightarrow(3 m-4)(4 m-3)=0$
$\Rightarrow 3 m-4=0$ or $4 m-3=0$
$\Rightarrow 3 \mathrm{~m}=4$ or $4 \mathrm{~m}=3$
$\Rightarrow \mathrm{m}=\frac{4}{3}$ Or $\mathrm{m}=\frac{3}{4}$
$\therefore \mathrm{m}=\frac{4}{3}, \frac{3}{4}$
Putting the value of $m=4 / 3$ in equation (iv), we get
$\frac{4}{3} x-y-2\left(\frac{4}{3}\right)+3=0$
Simplifying and computing we get
$\Rightarrow \frac{4}{3} x-y-\frac{8}{3}+3=0$
$\Rightarrow \frac{4}{3} x-y=\frac{8-9}{3}$
$\Rightarrow \frac{4}{3} x-y=-\frac{1}{3}$
$\Rightarrow \frac{4}{3} \mathrm{x}-\mathrm{y}+\frac{1}{3}=0$
$\Rightarrow 4 x-3 y+1=0$
Putting the value of $m=3 / 4$ in equation (iv), we get

$$
\frac{3}{4} x-y-2\left(\frac{3}{4}\right)+3=0
$$

Simplifying and computing we get

$$
\begin{aligned}
& \Rightarrow \frac{3}{4} x-y-\frac{3}{2}+3=0 \\
& \Rightarrow \frac{3}{4} x-y=\frac{3}{2}-3 \\
& \Rightarrow \frac{3}{4} x-y=\frac{3-6}{2} \\
& \Rightarrow \frac{3}{4} x-y+\frac{3}{2}=0 \\
& \Rightarrow 3 x-4 y+6=0
\end{aligned}
$$

Hence, the required equation are $4 x-3 y+1=0$ and $3 x-4 y+6=0$
19. If the sum of the distances of a moving point in a plane from the axes is 1 , then find the locus of the point.

Solution:

Let the coordinates of a moving point P be (a, b)
Given that the sum of the distance from the axes to the point is always 1
$\therefore|\mathrm{x}|+|\mathrm{y}|=1$
$\Rightarrow \pm x \pm y=1$
$\Rightarrow-x-y=1, x+y=1,-x+y=1$ and $x-y=1$
Hence, these equations gives us the locus of the point P which is a square.
20. $\mathbf{P}_{1}, \mathbf{P}_{2}$ are points on either of the two lines $y-\sqrt{3}|x|=2$ at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P_{1}, P_{2} on the bisector of the angle between the given lines.

Solution:

Given lines are $\mathrm{y}-\mathrm{V} 3|\mathrm{x}|=2$
If $x \geq 0$, then
$y-\sqrt{ } 3 x=2$..... (i)
If $x<0$, then
$y+\sqrt{ } 3 x=2$
On adding equation (i) and (ii), we get
$y-\sqrt{ } 3 x+y+\sqrt{ } 3 x=2+2$
$\Rightarrow 2 y=4$
$\Rightarrow y=2$
Substituting the value of $y=2$ in equation (ii), we get
$2+\sqrt{ } 3 x=2$
$\Rightarrow \sqrt{ } 3 \mathrm{x}=2-2$
$\Rightarrow \mathrm{x}=0$
\therefore Point of intersection of given lines is $(0,2)$
Now, we find the slopes of given lines.
Slope of equation (i) is
$y=\sqrt{ } 3 x+2$
Comparing the above equation with $\mathrm{y}=\mathrm{mx}+\mathrm{b}$, we get
$\mathrm{m}=\mathrm{V} 3$
And we know that, $\mathrm{m}=\tan \theta$
$\therefore \operatorname{Tan} \theta=\sqrt{ } 3$
$\Rightarrow \theta=60^{\circ}\left[\because \tan 60^{\circ}=\sqrt{ } 3\right]$
Slope of equation (ii) is
$y=-\sqrt{ } 3 x+2$
Comparing the above equation with $\mathrm{y}=\mathrm{mx}+\mathrm{b}$, we get
$\mathrm{m}=-\mathrm{V} 3$
And we know that, $\mathrm{m}=\tan \theta$
$\therefore \operatorname{Tan} \theta=-\sqrt{ } 3$
$\Rightarrow \theta=\left(180^{\circ}-60^{\circ}\right)$
$\Rightarrow \theta=120^{\circ}$

In $\triangle \mathrm{ACB}$,
$\cos 30^{\circ}=\frac{\mathrm{BA}}{\mathrm{AC}}$
Given $A C=5$ units
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{B A}{5}$
$\Rightarrow \mathrm{BA}=\frac{5 \sqrt{3}}{2}$
$\therefore \mathrm{OB}=\mathrm{OA}+\mathrm{AB}$
$=2+\frac{5 \sqrt{3}}{2}$
Hence, the coordinates of the foot of perpendicular $=\left(0,2+\frac{5 \sqrt{3}}{2}\right)$
21. If p is the length of perpendicular from the origin on the line $\frac{x}{a}+\frac{y}{b}=1$
and a_{2}, p_{2}, b_{2} are in A.P, then show that $a_{4}+b_{4}=0$.

Solution:

Given equation is
$\frac{x}{a}+\frac{y}{b}=1$
Since, p is the length of perpendicular drawn from the origin to the given line
$\therefore \mathrm{p}=\left|\frac{\frac{0}{\mathrm{a}}+\frac{0}{\mathrm{~b}}-1}{\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}}\right|$
Squaring both the sides, we have
$\mathrm{p}^{2}=\left|\frac{1}{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}\right|$
$\Rightarrow \frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$
Since, a^{2}, b^{2} and p^{2} are in AP
$\therefore 2 \mathrm{p}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$
$\Rightarrow \mathrm{p}^{2}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{2}$
$\Rightarrow \frac{1}{\mathrm{p}^{2}}=\frac{2}{\mathrm{a}^{2}+\mathrm{b}^{2}}$
Form equation (i) and (ii), we get
$\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{2}{a^{2}+b^{2}}$
$\Rightarrow \frac{\mathrm{b}^{2}+\mathrm{a}^{2}}{\mathrm{a}^{2} \mathrm{~b}^{2}}=\frac{2}{\mathrm{a}^{2}+\mathrm{b}^{2}}$
$\Rightarrow\left(a^{2}+b^{2}\right)\left(a^{2}+b^{2}\right)=2\left(a^{2} b^{2}\right)$
$\Rightarrow a^{4}+b^{4}+a^{2} b^{2}+a^{2} b^{2}=2 a^{2} b^{2}$
$\Rightarrow a^{4}+b^{4}=0$
Hence Proved

OBJECTIVE TYPE QUESTIONS

22. A line cutting off intercept - 3 from the y-axis and the tangent at angle to the x axis is $3 / 5$, its equation is
A. $5 y-3 x+15=0$
B. $3 y-5 x+15=0$
C. $5 y-3 x-15=0$
D. None of these

Solution:

A. $5 y-3 x+15=0$

Explanation:

Given that $\tan \theta=\frac{3}{5}$
We know that,
Slope of a line, $\mathrm{m}=\tan \theta$
\Rightarrow Slope of line, $\mathrm{m}=\frac{3}{5}$
Since, the lines cut off intercepts -3 on y - axis then the line is passing through the point $(0,-3)$.
So, the equation of line is
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow \mathrm{y}-(-3)=\frac{3}{5}(\mathrm{x}-0)$
$\Rightarrow \mathrm{y}+3=\frac{3}{5} \mathrm{x}$
$\Rightarrow 5 y+15=3 x$
$\Rightarrow 5 \mathrm{y}-3 \mathrm{x}+15=0$
Hence, the correct option is (a)
23. Slope of a line which cuts off intercepts of equal lengths on the axes is
A. -1
B. -0
C. 2
D. V3

Solution:

A. -1

Explanation:

We know that the equation of line in intercept form is
$\frac{x}{a}+\frac{y}{b}=1$
Where a and b are the intercepts on the axis.
Given that $\mathrm{a}=\mathrm{b}$
$\Rightarrow \frac{x}{a}+\frac{y}{a}=1$
$\Rightarrow \frac{x+y}{a}=1$
$\Rightarrow \mathrm{x}+\mathrm{y}=\mathrm{a}$
$\Rightarrow y=-x+a$
$\Rightarrow y=(-1) x+a$
Since, the above equation is in $y=m x+b$ form
So, the slope of the line is -1 .
24. The equation of the straight line passing through the point $(3,2)$ and perpendicular to the line $\mathrm{y}=\mathrm{x}$ is
A. $x-y=5$
B. $x+y=5$
C. $x+y=1$
D. $x-y=1$

Solution:

B. $x+y=5$

Explanation:

Given that straight line passing through the point $(3,2)$
And perpendicular to the line $y=x$
Let the equation of line ' L ' is
$y-y_{1}=m\left(x-x_{1}\right)$
Since, L is passing through the point $(3,2)$
$\therefore \mathrm{y}-2=\mathrm{m}(\mathrm{x}-3$) ... (i)
Now, given eq. is $y=x$
Since, the above equation is in $y=m x+b$ form
So, the slope of this equation is 1
It is also given that line L and $y=x$ are perpendicular to each other.
We know that, when two lines are perpendicular, then
$m_{1} \times m_{2}=-1$
$\therefore \mathrm{m} \times 1=-1$
$\Rightarrow m=-1$
Putting the value of m in equation (i), we get
$y-2=(-1)(x-3)$
$\Rightarrow y-2=-x+3$
$\Rightarrow x+y=3+2$
$\Rightarrow x+y=5$
Hence, the correct option is (b)
25. The equation of the line passing through the point $(1,2)$ and perpendicular to the line $x+y+1=0$ is
A. $y-x+1=0$
B. $y-x-1=0$
C. $y-x+2=0$
D. $y-x-2=0$

Solution:

B. $y-x-1=0$

Explanation:

Given that line passing through the point $(1,2)$
And perpendicular to the line $x+y+1=0$
Let the equation of line ' L ' is
$x-y+k=0$
Since, L is passing through the point $(1,2)$
$\therefore 1-2+\mathrm{k}=0$
$\Rightarrow k=1$
Putting the value of k in equation (i), we get
$x-y+1=0$
Or $y-x-1=0$
Hence, the correct option is (b)
26. The tangent of angle between the lines whose intercepts on the axes are $a,-b$ and $b,-a$, respectively, is
A. $\frac{a^{2}-b^{2}}{a b}$
B. $\frac{\mathrm{b}^{2}-\mathrm{a}^{2}}{2}$
C. $\frac{\mathrm{b}^{2}-\mathrm{a}^{2}}{2 \mathrm{ab}}$
D. None of these

Solution:

c. $\frac{b^{2}-a^{2}}{2 a b}$

Explanation:

Let the first equation of line having intercepts on the axes $a,-b$ is
$\frac{x}{a}+\frac{y}{-b}=1$
$\Rightarrow \frac{x}{a}-\frac{y}{b}=1$
$\Rightarrow b x-a y=a b$... (i)
Let the second equation of line having intercepts on the axes $b,-a$ is
$\frac{x}{b}+\frac{y}{-a}=1$
$\Rightarrow \frac{\mathrm{x}}{\mathrm{b}}-\frac{\mathrm{y}}{\mathrm{a}}=1$
$\Rightarrow a x-b y=a b$
Now, we find the slope of equation (i)
$b x-a y=a b$
$\Rightarrow a y=b x-a b$
$\Rightarrow y=\frac{b}{a} \mathrm{x}-\mathrm{b}$
Since, the above equation is in $y=m x+b$ form

So, the slope of equation (i) is
$\mathrm{m}_{1}=\frac{\mathrm{b}}{\mathrm{a}}$
Now, we find the slope of equation (ii)
$a x-b y=a b$
$\Rightarrow b y=a x-a b$
$\Rightarrow \mathrm{y}=\frac{\mathrm{a}}{\mathrm{b}} \mathrm{x}-\mathrm{a}$
Since, the above equation is in $y=m x+b$ form
So, the slope of eq. (i) is
$\mathrm{m}_{2}=\frac{\mathrm{a}}{\mathrm{b}}$
Let θ be the angle between the given two lines.
$\tan \theta=\left|\frac{m_{1}-m_{1}}{1+m_{1} m_{2}}\right|$
Putting the values of m_{1} and m_{2} in above equation, we get
$\Rightarrow \tan \theta=\left|\frac{\frac{\mathrm{b}}{\mathrm{a}}-\frac{\mathrm{a}}{\mathrm{b}}}{1+\left(\frac{\mathrm{b}}{\mathrm{a}}\right)\left(\frac{\mathrm{a}}{\mathrm{b}}\right)}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{\mathrm{b}^{2}-\mathrm{a}^{2}}{\mathrm{ab}}}{1+1}\right|$
$\Rightarrow \tan \theta=\left|\frac{\mathrm{b}^{2}-\mathrm{a}^{2}}{2 \mathrm{ab}}\right|$
$\Rightarrow \tan \theta=\frac{\mathrm{b}^{2}-\mathrm{a}^{2}}{2 \mathrm{ab}}$
Hence, the correct option is (c)
27. If the line $\frac{x}{a}+\frac{y}{b}=1$ passes through the points $(2,-3)$ and $(4,-5)$, then
(a,b) is
A. $(1,1)$
B. $(-1,1)$
C. $(1,-1)$
D. $(-1,-1)$

Solution:

D. $(-1,-1)$

Explanation:

Given points are $(2,-3)$ and $(4,-5)$
Firstly, we find the equation of line.
We know that,
Equation of line when two points are given:
$y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$
Putting the values, we get
$y-(-3)=\frac{-5-(-3)}{4-2}(x-2)$
$\Rightarrow \mathrm{y}+3=\frac{-5+3}{2}(\mathrm{x}-2)$
$\Rightarrow y+3=\frac{-2}{2}(x-2)$
$\Rightarrow y+3=-1(x-2)$
$\Rightarrow y+3=-x+2$
$\Rightarrow x+y=2-3$
$\Rightarrow x+y=-1$
$\Rightarrow \frac{x}{-1}+\frac{y}{-1}=1$ (Intercept form)
Comparing the above equation with the given equation ${ }^{\frac{x}{a}}+\frac{y}{b}=1$, we get the value of a and b
$a=-1$ and $b=-1$
Hence, the correct option is (d)
28. The distance of the point of intersection of the lines $2 x-3 y+5=0$ and $3 x+4 y=0$ from the line $5 x-2 y=0$ is
A. $\frac{130}{17 \sqrt{29}}$
B. $\frac{13}{7 \sqrt{29}}$
c. $\frac{130}{7}$
D. None of these

Solution:

A. $\frac{130}{17 \sqrt{29}}$

Explanation:

Given two lines are $2 x-3 y+5=0$
And $3 x+4 y=0 \ldots$ (ii)
Now, point of intersection of these lines can be find out as
Multiplying equation (i) by 3 , we get
$6 x-9 y+15=0$
Multiplying equation (ii) by 2 , we get
$6 x+8 y=0$... (iv)
On subtracting equation (iv) from (iii), we get
$6 x-9 y+15-6 x-8 y=0$
$\Rightarrow-17 y+15=0$
$\Rightarrow-17 y=-15$
$\Rightarrow \mathrm{y}=\frac{15}{17}$
On putting value of y in equation (ii), we get
$3 x+4\left(\frac{15}{17}\right)=0$
$\Rightarrow 3 \mathrm{x}=-\frac{60}{17}$
$\Rightarrow \mathrm{x}=-\frac{20}{17}$
So, the point of intersection of given two lines is
$(\mathrm{x}, \mathrm{y})=\left(-\frac{20}{17}, \frac{15}{17}\right)$
Now, perpendicular distance from the point $\left(-\frac{20}{17}, \frac{15}{17}\right)$ to the given line $5 x-2 y$ $=0$

$$
\begin{aligned}
& \mathrm{d}=\left|\frac{5\left(-\frac{20}{17}\right)-2\left(\frac{15}{17}\right)}{\sqrt{(5)^{2}+(-2)^{2}}}\right| \\
& \Rightarrow \mathrm{d}=\left|\frac{-\frac{100}{17}-\frac{30}{17}}{\sqrt{25+4}}\right| \\
& \Rightarrow \mathrm{d}=\frac{130}{17 \sqrt{29}}
\end{aligned}
$$

Hence, the correct option is (a)

