Exercise 1.3

Page No: 11

Short Answer (S.A.)

1. Let $A = \{a, b, c\}$ and the relation R be defined on A as follows:

 $R = \{(a, a), (b, c), (a, b)\}.$

Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive.

Solution:

Given relation, $R = \{(a, a), (b, c), (a, b)\}$

To make R as reflexive we should add (b, b) and (c, c) to R. Also, to make R as transitive we should add (a, c) to R.

Hence, the minimum number of ordered pairs to be added are (b, b), (c, c) and (a, c) i.e. 3.

2. Let D be the domain of the real valued function f defined by $f(x) = \sqrt{(25 - x^2)}$. Then, write D. Solution:

Given,
$$f(x) = \sqrt{(25 - x^2)}$$

The function is defined if $25 - x^2 \ge 0$

So,
$$x^2 \le 25$$

$$-5 < x < 5$$

Therefore, the domain of the given function is [-5, 5]

3. Let f, g: $R \to R$ be defined by f(x) = 2x + 1 and $g(x) = x^2 - 2$, $\forall x \in R$, respectively. Then, find g o f.

Solution:

Given,

f(x) =
$$2x + 1$$
 and g (x) = $x^2 - 2$, $\forall x \in R$
Thus, g o f = g (f (x))
= g $(2x + 1)$
= $(2x + 1)^2 - 2$
= $4x^2 + 4x + 1 - 2$
= $4x^2 + 4x - 1$

4. Let $f: R \to R$ be the function defined by f(x) = 2x - 3, $\forall x \in R$. write f^{-1} . Solution:

Given function,

$$f(x) = 2x - 3, \forall x \in R$$

Let
$$y = 2x - 3$$

$$x = (y + 3)/2$$

Thus,

$$f^{-1}(x) = (x+3)/2$$

5. If
$$A = \{a, b, c, d\}$$
 and the function $f = \{(a, b), (b, d), (c, a), (d, c)\}$, write f^{-1} .

Solution:

Given,

A = {a, b, c, d} and f = {(a, b), (b, d), (c, a), (d, c)} So,

$$f^{-1} = {(b, a), (d, b), (a, c), (c, d)}$$

6. If f: $R \rightarrow R$ is defined by $f(x) = x^2 - 3x + 2$, write f(f(x)). Solution:

Given,
$$f(x) = x^2 - 3x + 2$$

Then,
 $f(f(x)) = f(x^2 - 3x + 2)$
 $= (x^2 - 3x + 2)^2 - 3(x^2 - 3x + 2) + 2$,
 $= x^4 + 9x^2 + 4 - 6x^3 + 4x^2 - 12x - 3x^2 + 9x - 6 + 2$
 $= x^4 - 6x^3 + 10x^2 - 3x$

Thus, $f(f(x)) = x^4 - 6x^3 + 10x^2 - 3x$

7. Is $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ a function? If g is described by $g(x) = \alpha x + \beta$, then what value should be assigned to α and β . Solution:

Given, $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$

It's seen that every element of domain has a unique image. So, g is function.

Now, also given that $g(x) = \alpha x + \beta$

So, we have

$$g(1) = \alpha(1) + \beta = 1$$

$$\alpha + \beta = 1 \dots (i)$$

And,
$$g(2) = \alpha(2) + \beta = 3$$

$$2\alpha + \beta = 3$$
 (ii)

Solving (i) and (ii), we have

$$\alpha = 2$$
 and $\beta = -1$

Therefore, g(x) = 2x - 1

8. Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.

(i) $\{(x, y): x \text{ is a person, } y \text{ is the mother of } x\}$.

(ii){(a, b): a is a person, b is an ancestor of a}.

Solution:

(i) Given, $\{(x, y): x \text{ is a person, } y \text{ is the mother of } x\}$

It's clearly seen that each person 'x' has only one biological mother.

Hence, the above set of ordered pairs make a function.

Now more than one person may have same mother. Thus, the function is many-many one and surjective.

(ii) Given, {(a, b): a is a person, b is an ancestor of a}

It's clearly seen that any person 'a' has more than one ancestors.

Thus, it does not represent a function.

9. If the mappings f and g are given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(2, 3), (5, 1), (1, 3)\}$, write f o g.

Solution:

Given,

$$f = \{(1, 2), (3, 5), (4, 1)\}$$
 and $g = \{(2, 3), (5, 1), (1, 3)\}$

Now,

$$fog(2) = f(g(2)) = f(3) = 5$$

$$fog(5) = f(g(5)) = f(1) = 2$$

fog
$$(1) = f(g(1)) = f(3) = 5$$

Thus,

$$fog = \{(2, 5), (5, 2), (1, 5)\}$$

10. Let C be the set of complex numbers. Prove that the mapping $f: C \to R$ given by $f(z) = |z|, \forall z \in C$, is neither one-one nor onto.

Solution:

Given, f: C \rightarrow R such that f(z) = |z|, \forall z \in C

Now, let take z = 6 + 8i

Then,

$$f(6+8i) = |6+8i| = \sqrt{(6^2+8^2)} = \sqrt{100} = 10$$

And, for z = 6 - 8i

$$f(6-8i) = |6-8i| = \sqrt{(6^2+8^2)} = \sqrt{100} = 10$$

Hence, f (z) is many-one.

Also, $|z| \ge 0$, $\forall z \in C$

But the co-domain given is 'R'

Therefore, f(z) is not onto.

11. Let the function $f: R \to R$ be defined by $f(x) = \cos x$, $\forall x \in R$. Show that f is neither one-one nor onto.

Solution:

We have,

f:
$$R \rightarrow R$$
, $f(x) = \cos x$

Now,

$$f(x_1) = f(x_2)$$

$$\cos x_1 = \cos x_2$$

$$x_1 = 2n\pi \pm x_2, n \in \mathbb{Z}$$

It's seen that the above equation has infinite solutions for x_1 and x_2

Hence, f(x) is many one function.

Also the range of $\cos x$ is [-1, 1], which is subset of given co-domain R.

Therefore, the given function is not onto.

12. Let $X = \{1, 2, 3\}$ and $Y = \{4, 5\}$. Find whether the following subsets of $X \times Y$ are functions from X to Y or not.

(i)
$$f = \{(1, 4), (1, 5), (2, 4), (3, 5)\}$$

(ii)
$$g = \{(1, 4), (2, 4), (3, 4)\}$$

(iii)
$$h = \{(1,4), (2,5), (3,5)\}$$

(iv)
$$k = \{(1,4), (2,5)\}.$$

Solution:

Given,
$$X = \{1, 2, 3\}$$
 and $Y = \{4, 5\}$

So,
$$X \times Y = \{(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)\}$$

(i)
$$f = \{(1, 4), (1, 5), (2, 4), (3, 5)\}$$

f is not a function as f(1) = 4 and f(1) = 5

Hence, pre-image '1' has not unique image.

(ii)
$$g = \{(1, 4), (2, 4), (3, 4)\}$$

It's seen clearly that g is a function in which each element of the domain has unique image.

(iii)
$$h = \{(1,4), (2,5), (3,5)\}$$

It's seen clearly that h is a function as each pre-image with a unique image.

And, function h is many-one as h(2) = h(3) = 5

(iv)
$$k = \{(1, 4), (2, 5)\}$$

Function k is not a function as '3' has not any image under the mapping.

13. If functions $f: A \to B$ and $g: B \to A$ satisfy g o $f = I_A$, then show that f is one-one and g is onto. Solution:

Given,

f: A
$$\rightarrow$$
 B and g: B \rightarrow A satisfy g o f = I_A

It's clearly seen that function 'g' is inverse of 'f'.

So, 'f' has to be one-one and onto.

Hence, 'g' is also one-one and onto.

14. Let $f: R \to R$ be the function defined by $f(x) = 1/(2 - \cos x) \ \forall \ x \in R$. Then, find the range of f. Solution:

Given,

$$f(x) = 1/(2 - \cos x) \forall x \in R$$

Let
$$y = 1/(2 - \cos x)$$

$$2y - y\cos x = 1$$

$$\cos x = (2y - 1)/y$$

$$\cos x = 2 - 1/y$$

Now, we know that $-1 \le \cos x \le 1$

So,

$$-1 \le 2 - 1/y \le 1$$

$$-3 \le -1/y \le -1$$

 $1 \le -1/y \le 3$ $1/3 \le y \le 1$

Thus, the range of the given function is [1/3, 1].

15. Let n be a fixed positive integer. Define a relation R in Z as follows: \forall a, b \in Z, aRb if and only if a – b is divisible by n. Show that R is an equivalence relation. Solution:

Given \forall a, b \in Z, aRb if and only if a – b is divisible by n.

Now, for

 $aRa \Rightarrow (a - a)$ is divisible by n, which is true for any integer a as '0' is divisible by n.

Thus, R is reflective.

Now, aRb

So, (a - b) is divisible by n.

 \Rightarrow - (b - a) is divisible by n.

 \Rightarrow (b – a) is divisible by n

⇒ bRa

Thus, R is symmetric.

Let aRb and bRc

Then, (a - b) is divisible by n and (b - c) is divisible by n.

So, (a - b) + (b - c) is divisible by n.

 \Rightarrow (a - c) is divisible by n.

 \Rightarrow aRc

Thus, R is transitive.

So, R is an equivalence relation.

Long Answer (L.A.)

16. If $A = \{1, 2, 3, 4\}$, define relations on A which have properties of being:

- (a) reflexive, transitive but not symmetric
- (b) symmetric but neither reflexive nor transitive
- (c) reflexive, symmetric and transitive.

Solution:

Given that, $A = \{1, 2, 3\}$.

(i) Let $R_1 = \{(1, 1), (1, 2), (1, 3), (2, 3), (2, 2), (1, 3), (3, 3)\}$

 R_1 is reflexive as (1, 1), (2, 2) and (3, 3) lie is R_1 .

 R_1 is transitive as $(1, 2) \in R_1$, $(2, 3) \in R_1 \Rightarrow (1, 3) \in R_1$

Now, $(1, 2) \in R_1 \Rightarrow (2, 1) \notin R_1$.

(ii) Let
$$R_2 = \{(1, 2), (2, 1)\}$$

Now,
$$(1, 2) \in R_2$$
, $(2, 1) \in R_2$

So, it is symmetric,

And, clearly R_2 is not reflexive as $(1, 1) \notin R_2$

Also, R_2 is not transitive as $(1, 2) \in R_2$, $(2, 1) \in R_2$ but $(1, 1) \notin R_2$

(iii) Let
$$R_3 = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$$

 R_3 is reflexive as (1, 1) (2, 2) and $(3, 3) \in R_1$

 R_3 is symmetric as $(1, 2), (1, 3), (2, 3) \in R_1 \Rightarrow (2, 1), (3, 1), (3, 2) \in R_1$

Therefore, R₃ is reflexive, symmetric and transitive.

17. Let R be relation defined on the set of natural number N as follows:

 $R = \{(x, y): x \in N, y \in N, 2x + y = 41\}$. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive. Solution:

Given function: $R = \{(x, y): x \in N, y \in N, 2x + y = 41\}.$

So, the domain = $\{1, 2, 3,, 20\}$ [Since, $y \in N$]

Finding the range, we have

 $R = \{(1, 39), (2, 37), (3, 35), ..., (19, 3), (20, 1)\}$

Thus, Range of the function = $\{1, 3, 5, \ldots, 39\}$

R is not reflexive as $(2, 2) \notin R$ as $2 \times 2 + 2 \neq 41$

Also, R is not symmetric as $(1, 39) \in R$ but $(39, 1) \notin R$

Further R is not transitive as $(11, 19) \notin R$, $(19, 3) \notin R$; but $(11, 3) \notin R$.

Thus, R is neither reflexive nor symmetric and nor transitive.

18. Given $A = \{2, 3, 4\}$, $B = \{2, 5, 6, 7\}$. Construct an example of each of the following:

- (a) an injective mapping from A to B
- (b) a mapping from A to B which is not injective
- (c) a mapping from B to A.

Solution:

Given, $A = \{2, 3, 4\}, B = \{2, 5, 6, 7\}$

(i) Let $f: A \rightarrow B$ denote a mapping

$$f = \{(x, y): y = x + 3\}$$
 or

 $f = \{(2, 5), (3, 6), (4, 7)\},$ which is an injective mapping.

- (ii) Let g: A \rightarrow B denote a mapping such that g = {(2, 2), (3, 2), (4, 5)}, which is not an injective mapping.
- (iii) Let h: B \rightarrow A denote a mapping such that h = {(2, 2), (5, 3), (6, 4), (7, 4)}, which is one of the mapping from B to A.

19. Give an example of a map

- (i) which is one-one but not onto
- (ii) which is not one-one but onto
- (iii) which is neither one-one nor onto.

Solution:

(i) Let f: N \rightarrow N, be a mapping defined by f (x) = x^2

For
$$f(x_1) = f(x_2)$$

Then,
$$x_1^2 = x_2^2$$

 $x_1 = x_2$ (Since $x_1 + x_2 = 0$ is not possible)

Further 'f' is not onto, as for $1 \in \mathbb{N}$, there does not exist any x in N such that f(x) = 2x + 1.

(ii) Let f: $R \to [0, \infty)$, be a mapping defined by f(x) = |x|

Then, it's clearly seen that f(x) is not one-one as f(2) = f(-2).

But $|x| \ge 0$, so range is $[0, \infty]$.

Therefore, f(x) is onto.

(iii) Let f: $R \rightarrow R$, be a mapping defined by $f(x) = x^2$

Then clearly f(x) is not one-one as f(1) = f(-1). Also range of f(x) is $[0, \infty)$.

Therefore, f(x) is neither one-one nor onto.

20. Let $A=R-\{3\}, B=R-\{1\}.$ Let $f:A\to B$ be defined by $f(x)=x-2/x-3 \ \forall \ x\in A$. Then show that f is bijective.

Solution:

Given,

$$A = R - \{3\}, B = R - \{1\}$$

And,

 $f: A \rightarrow B$ be defined by $f(x) = x - 2/x - 3 \ \forall \ x \in A$

Hence, f(x) = (x-3+1)/(x-3) = 1 + 1/(x-3)

Let $f(x_1) = f(x_2)$

$$1 + \frac{1}{x_1 - 3} = 1 + \frac{1}{x_2 - 3}$$

$$\frac{1}{x_1-3}=\frac{1}{x_2-3}$$

$$x_1 = x_2$$

So, f(x) is an injective function.

Now let y = (x - 2)/(x - 3)

$$x - 2 = xy - 3y$$

$$x(1 - y) = 2 - 3y$$

$$x = (3y - 2)/(y - 1)$$

$$y \in R - \{1\} = B$$

Thus, f(x) is onto or subjective.

Therefore, f(x) is a bijective function.

21. Let A = [-1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

(i)
$$f(x) = x/2$$

(ii)
$$g(x) = |x|$$

(iii)
$$h(x) = x|x|$$

(iv)
$$k(x) = x^2$$

Solution:

Given,
$$A = [-1, 1]$$

(i) f:
$$[-1, 1] \rightarrow [-1, 1]$$
, f (x) = x/2

Let
$$f(x_1) = f(x_2)$$

 $x_1/2 = x_2$

So, f(x) is one-one.

Also $x \in [-1, 1]$

$$x/2 = f(x) = [-1/2, 1/2]$$

Hence, the range is a subset of co-domain 'A'

So, f(x) is not onto.

Therefore, f(x) is not bijective.

(ii)
$$g(x) = |x|$$

Let
$$g(x_1) = g(x_2)$$

$$|x_1| = |x_2|$$

$$x_1 = \pm x_2$$

So, g(x) is not one-one

Also g $(x) = |x| \ge 0$, for all real x

Hence, the range is [0, 1], which is subset of co-domain 'A'

So, f(x) is not onto.

Therefore, f (x) is not bijective.

(iii)
$$h(x) = x|x|$$

Let
$$h(x_1) = h(x_2)$$

$$|x_1|x_1| = |x_2|x_2|$$

If
$$x_1, x_2 > 0$$

$$x_1^2 = x_2^2$$

$$x_1^2 - x_2^2 = 0$$

$$(x_1 - x_2)(x_1 + x_2) = 0$$

$$x_1 = x_2 \text{ (as } x_1 + x_2 \neq 0)$$

Similarly for x_1 , $x_2 < 0$, we have $x_1 = x_2$

It's clearly seen that for x_1 and x_2 of opposite sign, $x_1 \neq x_2$.

Hence, f(x) is one-one.

For
$$x \in [0, 1]$$
, $f(x) = x^2 \in [0, 1]$

For
$$x < 0$$
, $f(x) = -x^2 \in [-1, 0)$

Hence, the range is [-1, 1].

So, h (x) is onto.

Therefore, h (x) is bijective.

(iv)
$$k(x) = x^2$$

Let
$$k(x_1) = k(x_2)$$

$$x_1^2 = x_2^2$$

$$\mathbf{x}_1 = \pm \ \mathbf{x}_2$$

Therefore, k(x) is not one-one.

22. Each of the following defines a relation on N:

- (i) x is greater than y, x, $y \in N$
- (ii) $x + y = 10, x, y \in N$
- (iii) x y is square of an integer x, $y \in N$
- (iv) $x + 4y = 10 x, y \in N$.

Determine which of the above relations are reflexive, symmetric and transitive. Solution:

- (i) Given, x is greater than y; $x, y \in N$
- If $(x, x) \in R$, then x > x, which is not true for any $x \in N$.
- Thus, R is not reflexive.
- Let $(x, y) \in R$
- $\Rightarrow xRy$
- $\Rightarrow x > y$
- So, y > x is not true for any $x, y \in N$
- Hence, R is not symmetric.
- Let xRy and yRz
- \Rightarrow x > y and y > z
- \Rightarrow x > z
- $\Rightarrow xRz$
- Hence, R is transitive.
- (ii) x + y = 10; $x, y \in N$
- Thus,
- $R = \{(x, y); x + y = 10, x, y \in N\}$
- $R = \{(1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1)\}$
- It's clear $(1, 1) \notin R$
- So, R is not reflexive.
- $(x, y) \in R \Rightarrow (y, x) \in R$
- Therefore, R is symmetric.
- Now $(1, 9) \in \mathbb{R}$, $(9, 1) \in \mathbb{R}$, but $(1, 1) \notin \mathbb{R}$
- Therefore, R is not transitive.
- (iii) Given, xy is square of an integer $x, y \in N$
- $R = \{(x, y) : xy \text{ is a square of an integer } x, y \in N\}$
- It's clearly $(x, x) \in R, \forall x \in N$
- As x^2 is square of an integer for any $x \in N$
- Thus, R is reflexive.
- If $(x, y) \in R \Rightarrow (y, x) \in R$
- So, R is symmetric.
- Now, if xy is square of an integer and yz is square of an integer.
- Then, let $xy = m^2$ and $yz = n^2$ for some m, $n \in Z$
- $x = m^2/y$ and $z = x^2/y$
- $xz = m^2n^2/y^2$, which is square of an integer.
- Thus, R is transitive.
- (iv) x + 4y = 10; $x, y \in N$
- $R = \{(x, y): x + 4y = 10; x, y \in N\}$
- $R = \{(2, 2), (6, 1)\}$
- It's clearly seen $(1, 1) \notin R$

Hence, R is not symmetric.

 $(x, y) \in R \Rightarrow x + 4y = 10$

And $(y, z) \in R \Rightarrow y + 4z = 10$

 \Rightarrow x - 16z = -30

 \Rightarrow (x, z) \notin R

Therefore, R is not transitive.

23. Let $A = \{1, 2, 3, ... 9\}$ and R be the relation in A \times A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A \times A. Prove that R is an equivalence relation and also obtain the equivalent class [(2, 5)].

Solution:

Given, $A = \{1, 2, 3, ... 9\}$ and (a, b) R (c, d) if <math>a + d = b + c for $(a, b), (c, d) \in A \times A$.

Let (a, b) R(a, b)

So, a + b = b + a, \forall a, $b \in A$ which is true for any a, $b \in A$.

Thus, R is reflexive.

Let (a, b) R(c, d)

Then,

a + d = b + c

c + b = d + a

(c, d) R(a, b)

Thus, R is symmetric.

Let (a, b) R(c, d) and (c, d) R(e, f)

a + d = b + c and c + f = d + e

a + d = b + c and d + e = c + f

(a + d) - (d + e = (b + c) - (c + f)

a - e = b - f

a + f = b + e

(a, b) R(e, f)

So, R is transitive.

The equivalence class $[(2, 5)] = \{(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)\}$

Therefore, R is an equivalence relation.

24. Using the definition, prove that the function $f: A \rightarrow B$ is invertible if and only if f is both one-one and onto.

Solution:

Let $f: A \rightarrow B$ be many-one function.

Let f(a) = p and f(b) = p

So, for inverse function we will have $f^{-1}(p) = a$ and $f^{-1}(p) = b$

Thus, in this case inverse function is not defined as we have two images 'a and b' for one pre-image 'p'. But for f to be invertible it must be one-one.

Now, let $f: A \rightarrow B$ is not onto function.

Let $B = \{p, q, r\}$ and range of f be $\{p, q\}$.

Here image 'r' has not any pre-image, which will have no image in set A.

And for f to be invertible it must be onto.

Thus, 'f' is invertible if and only if 'f' is both one-one and onto.

A function $f = X \rightarrow Y$ is invertible iff f is a bijective function.

25. Functions f, g: R \rightarrow R are defined, respectively, by $f(x) = x^2 + 3x + 1$, g(x) = 2x - 3, find

(i)
$$f \circ g$$
 (ii) $g \circ f$ (iii) $f \circ f$ (iv) $g \circ g$
Solution:

Given,
$$f(x) = x^2 + 3x + 1$$
, $g(x) = 2x - 3$
(i) fog = f(g(x))
= f(2x - 3)
= $(2x - 3)^2 + 3(2x - 3) + 1$
= $4x^2 + 9 - 12x + 6x - 9 + 1$
= $4x^2 - 6x + 1$

(ii) gof = g(f(x))
=
$$g(x^2 + 3x + 1)$$

= $2(x^2 + 3x + 1) - 3$
= $2x^2 + 6x - 1$

(iv)
$$gog = g(g(x))$$

= $g(2x - 3)$
= $2(2x - 3) - 3$
= $4x - 6 - 3$
= $4x - 9$

26. Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

(i)
$$a * b = a - b \forall a, b \in Q$$

(ii)
$$a * b = a^2 + b^2 \forall a, b \in Q$$

(iii)
$$a * b = a + ab \forall a, b \in Q$$

(iv)
$$\mathbf{a} * \mathbf{b} = (\mathbf{a} - \mathbf{b})^2 \forall \mathbf{a}, \mathbf{b} \in \mathbf{Q}$$

Solution:

Given that * is a binary operation defined on Q.

(i)
$$a * b = a - b$$
, $\forall a, b \in Q$ and $b * a = b - a$

So,
$$a * b \neq b * a$$

Thus, * is not commutative.

(ii)
$$a * b = a^2 + b^2$$

$$b * a = b^2 + a^2$$

Thus, * is commutative.

(iii)
$$a * b = a + ab$$

$$b * a = b + ab$$

So clearly,
$$a + ab \neq b + ab$$

(iv)
$$a * b = (a - b)^2$$
, $\forall a, b \in Q$

$$b * a = (b - a)^2$$

Since,
$$(a - b)^2 = (b - a)^2$$

Thus, * is commutative.

27. Let * be binary operation defined on R by a * b = 1 + ab, \forall a, b \in R. Then the operation * is

- (i) commutative but not associative
- (ii) associative but not commutative
- (iii) neither commutative nor associative
- (iv) both commutative and associative

Solution:

(i) Given that * is a binary operation defined on R by a * b = 1 + ab, \forall a, $b \in R$

So, we have a * b = ab + 1 = b * a

So, * is a commutative binary operation.

Now,
$$a * (b * c) = a * (1 + bc) = 1 + a (1 + bc) = 1 + a + abc$$

Also.

$$(a * b) * c = (1 + ab) * c = 1 + (1 + ab) c = 1 + c + abc$$

Thus,
$$a * (b * c) \neq (a * b) * c$$

Hence, * is not associative.

Therefore, * is commutative but not associative.

Objective Type Questions

Choose the correct answer out of the given four options in each of the Exercises from 28 to 47 (M.C.Q.)

28. Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to $b \forall a, b \in T$. Then R is

(A) reflexive but not transitive

(B) transitive but not symmetric

(C) equivalence

(D) none of these

Solution:

(C) equivalence

Given aRb, if a is congruent to b, \forall a, b \in T.

Then, we have aRa \Rightarrow a is congruent to a; which is always true.

So, R is reflexive.

Let $aRb \Rightarrow a \sim b$

b ~ a

bRa

So, R is symmetric.

Let aRb and bRc

$$a \sim b$$
 and $b \sim c$

a ~ c

aRc

So, R is transitive.

Therefore, R is equivalence relation.

29. Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is

- (A) symmetric but not transitive
- (B) transitive but not symmetric
- (C) neither symmetric nor transitive
- (D) both symmetric and transitive

Solution:

(B) transitive but not symmetric

 $aRb \Rightarrow a$ is brother of b.

This does not mean b is also a brother of a as b can be a sister of a.

Thus, R is not symmetric.

 $aRb \Rightarrow a$ is brother of b.

and bRc \Rightarrow b is brother of c.

So, a is brother of c.

Therefore, R is transitive.

- 30. The maximum number of equivalence relations on the set $A = \{1, 2, 3\}$ are
- (A) 1
- (B) 2
- (C) 3
- (D) 5

Solution:

(D) 5

Given, set $A = \{1, 2, 3\}$

Now, the number of equivalence relations as follows

 $R_1 = \{(1, 1), (2, 2), (3, 3)\}$

 $R_2 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$

 $R_3 = \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)\}$

 $R_4 = \{(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)\}$

 $R_5 = \{(1, 2, 3) \Leftrightarrow A \times A = A^2\}$

Thus, maximum number of equivalence relation is '5'.

- 31. If a relation R on the set $\{1, 2, 3\}$ be defined by $R = \{(1, 2)\}$, then R is
- (A) reflexive
- (B) transitive
- (C) symmetric
- (D) none of these

Solution:

(D) none of these

R on the set $\{1, 2, 3\}$ be defined by $R = \{(1, 2)\}$

Hence, its clear that R is not reflexive, transitive and symmetric.