EXERCISE 20.1

1. Show that each one of the following progressions is a G.P. Also, find the common ratio in each case:
(i) $4,-2,1,-1 / 2, \ldots$
(ii) $-2 / 3,-6,-54, \ldots$
(iii) $\mathrm{a}, 3 \mathrm{a}^{2} / 4,9 \mathrm{a}^{3} / 16, \ldots$.
(iv) $1 / 2,1 / 3,2 / 9,4 / 27, \ldots$

Solution:
(i) $4,-2,1,-1 / 2, \ldots$

Let $\mathrm{a}=4, \mathrm{~b}=-2, \mathrm{c}=1$
In GP,
$\mathrm{b}^{2}=\mathrm{ac}$
$(-2)^{2}=4(1)$
$4=4$
So, the Common ratio $=r=-2 / 4=-1 / 2$
(ii) $-2 / 3,-6,-54, \ldots$.

Let $\mathrm{a}=-2 / 3, \mathrm{~b}=-6, \mathrm{c}=-54$
In GP,
$\mathrm{b}^{2}=\mathrm{ac}$
$(-6)^{2}=-2 / 3 \times(-54)$
$36=36$
So, the Common ratio $=r=-6 /(-2 / 3)=-6 \times 3 /-2=9$
(iii) $a, 3 a^{2} / 4,9 a^{3} / 16, \ldots$

Let $\mathrm{a}=\mathrm{a}, \mathrm{b}=3 \mathrm{a}^{2} / 4, \mathrm{c}=9 \mathrm{a}^{3} / 16$
In GP,
$\mathrm{b}^{2}=\mathrm{ac}$
$\left(3 a^{2} / 4\right)^{2}=9 a^{3} / 16 \times a$
$9 a^{4} / 16=9 a^{4} / 16$
So, the Common ratio $=r=\left(3 a^{2} / 4\right) / a=3 a^{2} / 4 a=3 a / 4$
(iv) $1 / 2,1 / 3,2 / 9,4 / 27, \ldots$

Let $\mathrm{a}=1 / 2, \mathrm{~b}=1 / 3, \mathrm{c}=2 / 9$
In GP,
$\mathrm{b}^{2}=\mathrm{ac}$
$(1 / 3)^{2}=1 / 2 \times(2 / 9)$
$1 / 9=1 / 9$

So, the Common ratio $=r=(1 / 3) /(1 / 2)=(1 / 3) \times 2=2 / 3$
2. Show that the sequence defined by $a_{n}=2 / 3^{n}, n \in N$ is a G.P. Solution:

Given:

$\mathrm{a}_{\mathrm{n}}=2 / 3^{\mathrm{n}}$
Let us consider $\mathrm{n}=1,2,3,4, \ldots$ since n is a natural number.
So,

$$
\begin{aligned}
\mathrm{a}_{1} & =2 / 3 \\
\mathrm{a}_{2} & =2 / 3^{2}=2 / 9 \\
\mathrm{a}_{3} & =2 / 3^{3}=2 / 27 \\
\mathrm{a}_{4} & =2 / 3^{4}=2 / 81 \\
\mathrm{In} \mathrm{GP} & \\
\mathrm{a}_{3} / \mathrm{a}_{2} & =(2 / 27) /(2 / 9) \\
& =2 / 27 \times 9 / 2 \\
& =1 / 3 \\
& \\
\mathrm{a}_{2} / \mathrm{a}_{1} & =(2 / 9) /(2 / 3) \\
& =2 / 9 \times 3 / 2 \\
& =1 / 3
\end{aligned}
$$

\therefore Common ratio of consecutive term is $1 / 3$. Hence $\mathrm{n} \in \mathrm{N}$ is a G.P.

3. Find:

(i) the ninth term of the G.P. $1,4,16,64, \ldots$.
(ii) the $10^{\text {th }}$ term of the G.P. $-3 / 4,1 / 2,-1 / 3,2 / 9, \ldots$.
(iii) the $8^{\text {th }}$ term of the G.P. $0.3,0.06,0.012, \ldots$.
(iv) the $12^{\text {th }}$ term of the G.P. $1 / a^{3} \mathbf{x}^{3}$, ax, $a^{5} x^{5}, \ldots$.
(v) nth term of the G.P. $\sqrt{ } 3,1 / \sqrt{ } 3,1 / 3 \sqrt{ } 3, \ldots$
(vi) the $10^{\text {th }}$ term of the G.P. $\sqrt{ } 2,1 / \sqrt{ } 2,1 / 2 \sqrt{ } 2, \ldots$

Solution:
(i) the ninth term of the G.P. $1,4,16,64, \ldots$.

We know that,
$\mathrm{t}_{1}=\mathrm{a}=1, \mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=4 / 1=4$
By using the formula,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{n}} & =\mathrm{ar}^{\mathrm{n}-1} \\
\mathrm{~T}_{9} & =1(4)^{9-1} \\
& =1(4)^{8} \\
& =4^{8}
\end{aligned}
$$

(ii) the $10^{\text {th }}$ term of the G.P. $-3 / 4,1 / 2,-1 / 3,2 / 9, \ldots$.

We know that,
$\mathrm{t}_{1}=\mathrm{a}=-3 / 4, \mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=(1 / 2) /(-3 / 4)=1 / 2 \times-4 / 3=-2 / 3$
By using the formula,
$\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$

$$
\begin{aligned}
\mathrm{T}_{10} & =-3 / 4(-2 / 3)^{10-1} \\
& =-3 / 4(-2 / 3)^{9} \\
& =1 / 2(2 / 3)^{8}
\end{aligned}
$$

(iii) the $8^{\text {th }}$ term of the G.P., $0.3,0.06,0.012, \ldots$

We know that,
$\mathrm{t}_{1}=\mathrm{a}=0.3, \mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=0.06 / 0.3=0.2$
By using the formula,
$\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$\mathrm{T}_{8}=0.3(0.2)^{8-1}$

$$
=0.3(0.2)^{7}
$$

(iv) the $12^{\text {th }}$ term of the G.P. $1 / \mathrm{a}^{3} \mathrm{x}^{3}, a x, a^{5} x^{5}, \ldots$

We know that,
$t_{1}=a=1 / a^{3} x^{3}, r=t_{2} / t_{1}=a x /\left(1 / a^{3} x^{3}\right)=a x\left(a^{3} x^{3}\right)=a^{4} x^{4}$
By using the formula,

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1} \\
& \mathrm{~T}_{12}=1 / \mathrm{a}^{3} \mathrm{x}^{3}\left(\mathrm{a}^{4} \mathrm{x}^{4}\right)^{12-1} \\
& =1 / \mathrm{a}^{3} \mathrm{x}^{3}\left(\mathrm{a}^{4} \mathrm{x}^{4}\right)^{11} \\
& \\
& =(\mathrm{ax})^{41}
\end{aligned}
$$

(v) nth term of the G.P. $\sqrt{ } 3,1 / \sqrt{ } 3,1 / 3 \sqrt{ } 3, \ldots$

We know that,
$\mathrm{t}_{1}=\mathrm{a}=\sqrt{ } 3, \mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=(1 / \sqrt{ } 3) / \sqrt{ } 3=1 /(\sqrt{ } 3 \times \sqrt{ } 3)=1 / 3$
By using the formula,
$\mathrm{T}_{\mathrm{n}}=\mathrm{an}^{\mathrm{n}-1}$
$\mathrm{T}_{\mathrm{n}}=\sqrt{ } 3(1 / 3)^{\mathrm{n}-1}$
(vi) the $10^{\text {th }}$ term of the G.P. $\sqrt{ } 2,1 / \sqrt{ } 2,1 / 2 \sqrt{ } 2, \ldots$

We know that,
$\mathrm{t}_{1}=\mathrm{a}=\sqrt{ } 2, \mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=(1 / \sqrt{ } 2) / \sqrt{ } 2=1 /(\sqrt{ } 2 \times \sqrt{ } 2)=1 / 2$
By using the formula,
$\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$\mathrm{T}_{10}=\sqrt{ } 2(1 / 2)^{10-1}$

$$
\begin{aligned}
& =\sqrt{ } 2(1 / 2)^{9} \\
& =1 / \sqrt{ } 2(1 / 2)^{8}
\end{aligned}
$$

4. Find the $4^{\text {th }}$ term from the end of the G.P. $2 / 27,2 / 9,2 / 3, \ldots ., 162$.

Solution:
The nth term from the end is given by:
$\mathrm{a}_{\mathrm{n}}=1(1 / \mathrm{r})^{\mathrm{n}-1}$ where, 1 is the last term, r is the common ratio, n is the nth term
Given: last term, $1=162$

$$
\begin{aligned}
\mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1} & =(2 / 9) /(2 / 27) \\
& =2 / 9 \times 27 / 2 \\
& =3
\end{aligned}
$$

$$
\mathrm{n}=4
$$

$$
\text { So, } a_{n}=1(1 / r)^{n-1}
$$

$$
a_{4}=162(1 / 3)^{4-1}
$$

$$
=162(1 / 3)^{3}
$$

$$
=162 \times 1 / 27
$$

$$
=6
$$

$\therefore 4^{\text {th }}$ term from last is 6 .
5. Which term of the progression $0.004,0.02,0.1, \ldots$. is 12.5 ?

Solution:

By using the formula,
$\mathrm{T}_{\mathrm{n}}=\mathrm{an}^{\mathrm{n}-1}$
Given:
$\mathrm{a}=0.004$
$r=t_{2} / t_{1}=(0.02 / 0.004)$

$$
=5
$$

$\mathrm{T}_{\mathrm{n}}=12.5$
$\mathrm{n}=$?
So, $\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$

$$
12.5=(0.004)(5)^{n-1}
$$

$$
12.5 / 0.004=5^{n-1}
$$

$$
3000=5^{n-1}
$$

$$
5^{5}=5^{n-1}
$$

$$
5=n-1
$$

$$
\mathrm{n}=5+1
$$

$$
=6
$$

$\therefore 6^{\text {th }}$ term of the progression $0.004,0.02,0.1, \ldots$ is 12.5 .

6. Which term of the G.P.:

(i) $\sqrt{ } 2,1 / \sqrt{ } 2,1 / 2 \sqrt{ } 2,1 / 4 \sqrt{ } 2, \ldots$ is $1 / 512 \sqrt{ } 2$?
(ii) $2,2 \sqrt{ } 2,4, \ldots$ is 128 ?
(iii) $\sqrt{ } 3,3,3 \sqrt{ } 3, \ldots$ is 729 ?
(iv) $1 / 3,1 / 9,1 / 27 \ldots$ is $1 / 19683$?

Solution:
(i) $\sqrt{ } 2,1 / \sqrt{ } 2,1 / 2 \sqrt{ } 2,1 / 4 \sqrt{ } 2, \ldots$ is $1 / 512 \sqrt{ } 2$?

By using the formula,
$\mathrm{T}_{\mathrm{n}}=\mathrm{an}^{\mathrm{n}-1}$
$\mathrm{a}=\sqrt{ } 2$
$\mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=(1 / \sqrt{ } 2) /(\sqrt{ } 2)$

$$
=1 / 2
$$

$\mathrm{T}_{\mathrm{n}}=1 / 512 \sqrt{ } 2$
$\mathrm{n}=$?
$\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$1 / 512 \sqrt{ } 2=(\sqrt{ } 2)(1 / 2)^{\mathrm{n}-1}$
$1 / 512 \sqrt{ } 2 \times \sqrt{2}=(1 / 2)^{\mathrm{n}-1}$
$1 / 512 \times 2=(1 / 2)^{\mathrm{n}-1}$
$1 / 1024=(1 / 2)^{\mathrm{n}-1}$
$(1 / 2)^{10}=(1 / 2)^{\mathrm{n}-1}$
$10=\mathrm{n}-1$
$\mathrm{n}=10+1$
$=11$
$\therefore 11^{\text {th }}$ term of the G.P is $1 / 512 \sqrt{ } 2$
(ii) $2,2 \sqrt{ } 2,4, \ldots$ is 128 ?

By using the formula,
$\mathrm{T}_{\mathrm{n}}=\mathrm{an}^{\mathrm{n}-1}$
$\mathrm{a}=2$
$\mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=(2 \sqrt{ } 2 / 2)$

$$
=\sqrt{ } 2
$$

$\mathrm{T}_{\mathrm{n}}=128$
$\mathrm{n}=$?
$\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$128=2(\sqrt{ } 2)^{\mathrm{n}-1}$
$128 / 2=(\sqrt{ } 2)^{n-1}$
$64=(\sqrt{ } 2)^{\mathrm{n}-1}$
$2^{6}=(\sqrt{ } 2)^{n-1}$
$12=\mathrm{n}-1$
$\mathrm{n}=12+1$
$=13$
$\therefore 13^{\text {th }}$ term of the G.P is 128
(iii) $\sqrt{ } 3,3,3 \sqrt{ } 3, \ldots$ is 729 ?

By using the formula,
$\mathrm{T}_{\mathrm{n}}=\mathrm{an}^{\mathrm{n}-1}$
$\mathrm{a}=\sqrt{ } 3$
$\mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=(3 / \sqrt{ } 3)$
$=\sqrt{ } 3$
$\mathrm{T}_{\mathrm{n}}=729$
$\mathrm{n}=$?
$\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$729=\sqrt{3}(\sqrt{ } 3)^{\mathrm{n}-1}$
$729=(\sqrt{ } 3)^{\mathrm{n}}$
$3^{6}=(\sqrt{3})^{n}$
$(\sqrt{3})^{12}=(\sqrt{3})^{\mathrm{n}}$
$\mathrm{n}=12$
$\therefore 12^{\text {th }}$ term of the G.P is 729
(iv) $1 / 3,1 / 9,1 / 27 \ldots$ is $1 / 19683$?

By using the formula,
$\mathrm{T}_{\mathrm{n}}=\mathrm{an}^{\mathrm{n}-1}$
$\mathrm{a}=1 / 3$
$\mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=(1 / 9) /(1 / 3)$

$$
=1 / 9 \times 3 / 1
$$

$$
=1 / 3
$$

$\mathrm{T}_{\mathrm{n}}=1 / 19683$
$\mathrm{n}=$?
$\mathrm{T}_{\mathrm{n}}=\mathrm{an}^{\mathrm{n}-1}$
$1 / 19683=(1 / 3)(1 / 3)^{\mathrm{n}-1}$
$1 / 19683=(1 / 3)^{\mathrm{n}}$
$(1 / 3)^{9}=(1 / 3)^{\mathrm{n}}$
$\mathrm{n}=9$
$\therefore 9^{\text {th }}$ term of the G.P is $1 / 19683$
7. Which term of the progression $18,-12,8, \ldots$ is $512 / 729$?

Solution:
By using the formula,

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1} \\
& \mathrm{a}=18 \\
& \mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=(-12 / 18) \\
& \quad=-2 / 3 \\
& \mathrm{~T}_{\mathrm{n}}=512 / 729 \\
& \mathrm{n}=? \\
& \mathrm{~T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1} \\
& 512 / 729=18(-2 / 3)^{\mathrm{n}-1} \\
& 2^{9} /(729 \times 18)=(-2 / 3)^{\mathrm{n}-1} \\
& 2^{9} / 36 \times 1 / 2 \times 3^{2}=(-2 / 3 \mathrm{n}-\mathrm{n} \\
& (2 / 3)^{8}=(-1)^{\mathrm{n}-1}(2 / 3)^{\mathrm{n}-1} \\
& 8=\mathrm{n}-1 \\
& \mathrm{n}=8+1 \\
& \quad=9
\end{aligned}
$$

$\therefore 9^{\text {th }}$ term of the Progression is $512 / 729$
8. Find the 4th term from the end of the G.P. $1 / 2,1 / 6,1 / 18,1 / 54, \ldots, 1 / 4374$ Solution:
The nth term from the end is given by:
$a_{n}=1(1 / r)^{n-1}$ where, 1 is the last term, r is the common ratio, n is the nth term
Given: last term, $1=1 / 4374$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=(1 / 6) /(1 / 2) \\
&=1 / 6 \times 2 / 1 \\
&=1 / 3 \\
& \mathrm{n}=4 \\
& \text { So, } \mathrm{a}_{\mathrm{n}}=1(1 / \mathrm{r})^{\mathrm{n}-1} \\
& \mathrm{a}_{4}=1 / 4374(1 /(1 / 3))^{4-1} \\
&==1 / 4374(3 / 1)^{3} \\
&= 1 / 4374 \times 3^{3} \\
&= 1 / 4374 \times 27 \\
&= 1 / 162
\end{aligned}
$$

$\therefore 4^{\text {th }}$ term from last is $1 / 162$.

EXERCISE 20.2

1. Find three numbers in G.P. whose sum is 65 and whose product is 3375. Solution:

Let the three numbers be a / r, a , ar
So, according to the question
$\mathrm{a} / \mathrm{r}+\mathrm{a}+\mathrm{ar}=65 \ldots$ equation (1)
$\mathrm{a} / \mathrm{r} \times \mathrm{a} \times \mathrm{ar}=3375 \ldots$ equation (2)
From equation (2) we get,
$\mathrm{a}^{3}=3375$
$\mathrm{a}=15$.
From equation (1) we get,
$\left(a+a r+a r^{2}\right) / r=65$
$a+a r+a r^{2}=65 r \ldots$ equation (3)
Substituting $\mathrm{a}=15$ in equation (3) we get

$$
\begin{aligned}
& 15+15 r+15 r^{2}=65 r \\
& 15 r^{2}-50 r+15=0 \ldots \text { equation (4) }
\end{aligned}
$$

Dividing equation (4) by 5 we get
$3 r^{2}-10 r+3=0$
$3 r^{2}-9 r-r+3=0$
$3 \mathrm{r}(\mathrm{r}-3)-1(\mathrm{r}-3)=0$
$r=3$ or $r=1 / 3$
Now, the equation will be
$15 / 3,15,15 \times 3$ or
$15 /(1 / 3), 15,15 \times 1 / 3$
So the terms are $5,15,45$ or $45,15,5$
\therefore The three numbers are $5,15,45$.
2. Find three number in G.P. whose sum is 38 and their product is 1728. Solution:
Let the three numbers be a / r, a , ar
So, according to the question
$\mathrm{a} / \mathrm{r}+\mathrm{a}+\mathrm{ar}=38 \ldots$ equation (1)
$\mathrm{a} / \mathrm{r} \times \mathrm{a} \times \mathrm{ar}=1728 \ldots$ equation (2)
From equation (2) we get,
$\mathrm{a}^{3}=1728$
$\mathrm{a}=12$.

From equation (1) we get,
$\left(a+a r+a r^{2}\right) / r=38$
$a+a r+a r^{2}=38 r \ldots$ equation (3)
Substituting $\mathrm{a}=12$ in equation (3) we get
$12+12 \mathrm{r}+12 \mathrm{r}^{2}=38 \mathrm{r}$
$12 r^{2}-26 r+12=0 \ldots$ equation (4)
Dividing equation (4) by 2 we get
$6 r^{2}-13 r+6=0$
$6 \mathrm{r}^{2}-9 \mathrm{r}-4 \mathrm{r}+6=0$
$3 r(3 r-3)-2(3 r-3)=0$
$r=3 / 2$ or $r=2 / 3$
Now the equation will be
$12 /(3 / 2)=8$ or
$12 /(2 / 3)=18$
So the terms are $8,12,18$
\therefore The three numbers are $8,12,18$
3. The sum of first three terms of a G.P. is $\mathbf{1 3} / 12$, and their product is $\mathbf{- 1}$. Find the G.P.

Solution:

Let the three numbers be a / r, a , ar
So, according to the question
$\mathrm{a} / \mathrm{r}+\mathrm{a}+\mathrm{ar}=13 / 12 \ldots$ equation (1)
$\mathrm{a} / \mathrm{r} \times \mathrm{a} \times \mathrm{ar}=-1 \ldots$ equation (2)
From equation (2) we get,
$a^{3}=-1$
$a=-1$
From equation (1) we get,
$\left(a+a r+a r^{2}\right) / r=13 / 12$
$12 \mathrm{a}+12 \mathrm{ar}+12 \mathrm{ar}^{2}=13 \mathrm{r} \ldots$ equation (3)
Substituting $\mathrm{a}=-1$ in equation (3) we get
$12(-1)+12(-1) \mathrm{r}+12(-1) \mathrm{r}^{2}=13 \mathrm{r}$
$12 \mathrm{r}^{2}+25 \mathrm{r}+12=0$
$12 \mathrm{r}^{2}+16 \mathrm{r}+9 \mathrm{r}+12=0 \ldots$ equation (4)
$4 \mathrm{r}(3 \mathrm{r}+4)+3(3 \mathrm{r}+4)=0$
$\mathrm{r}=-3 / 4$ or $\mathrm{r}=-4 / 3$

Now the equation will be
$-1 /(-3 / 4),-1,-1 \times-3 / 4$ or $-1 /(-4 / 3),-1,-1 \times-4 / 3$
$4 / 3,-1,3 / 4$ or $3 / 4,-1,4 / 3$
\therefore The three numbers are $4 / 3,-1,3 / 4$ or $3 / 4,-1,4 / 3$
4. The product of three numbers in G.P. is $\mathbf{1 2 5}$ and the sum of their products taken in pairs is $871 / 2$. Find them.

Solution:

Let the three numbers be a / r, a , ar
So, according to the question
$\mathrm{a} / \mathrm{r} \times \mathrm{a} \times \mathrm{ar}=125 \ldots$ equation (1)
From equation (1) we get,
$\mathrm{a}^{3}=125$
$\mathrm{a}=5$
$\mathrm{a} / \mathrm{r} \times \mathrm{a}+\mathrm{a} \times \mathrm{ar}+\mathrm{ar} \times \mathrm{a} / \mathrm{r}=871 / 2$
$\mathrm{a} / \mathrm{r} \times \mathrm{a}+\mathrm{a} \times \mathrm{ar}+\mathrm{ar} \times \mathrm{a} / \mathrm{r}=195 / 2$
$a^{2} / r+a^{2} r+a^{2}=195 / 2$
$\mathrm{a}^{2}(1 / \mathrm{r}+\mathrm{r}+1)=195 / 2$
Substituting a = 5 in above equation we get,
$5^{2}\left[\left(1+r^{2}+r\right) / r\right]=195 / 2$
$1+\mathrm{r}^{2}+\mathrm{r}=(195 \mathrm{r} / 2 \times 25)$
$2\left(1+\mathrm{r}^{2}+\mathrm{r}\right)=39 \mathrm{r} / 5$
$10+10 r^{2}+10 r=39 r$
$10 r^{2}-29 \mathrm{r}+10=0$
$10 r^{2}-25 r-4 r+10=0$
$5 \mathrm{r}(2 \mathrm{r}-5)-2(2 \mathrm{r}-5)=0$
$r=5 / 2,2 / 5$
So G.P is $10,5,5 / 2$ or $5 / 2,5,10$
\therefore The three numbers are $10,5,5 / 2$ or $5 / 2,5,10$

5. The sum of the first three terms of a G.P. is $\mathbf{3 9 / 1 0}$, and their product is 1 . Find the common ratio and the terms.

Solution:

Let the three numbers be a / r, a , ar
So, according to the question
$\mathrm{a} / \mathrm{r}+\mathrm{a}+\mathrm{ar}=39 / 10 \ldots$ equation (1)
$\mathrm{a} / \mathrm{r} \times \mathrm{a} \times \mathrm{ar}=1 \ldots$ equation (2)
From equation (2) we get,
$\mathrm{a}^{3}=1$
$\mathrm{a}=1$
From equation (1) we get,
$\left(a+a r+a^{2}\right) / r=39 / 10$
$10 \mathrm{a}+10 \mathrm{ar}+10 \mathrm{ar}^{2}=39 \mathrm{r} \ldots$ equation (3)
Substituting $\mathrm{a}=1$ in 3 we get
$10(1)+10(1) r+10(1) \mathrm{r}^{2}=39 \mathrm{r}$
$10 \mathrm{r}^{2}-29 \mathrm{r}+10=0$
$10 r^{2}-25 r-4 r+10=0 \ldots$ equation (4)
$5 \mathrm{r}(2 \mathrm{r}-5)-2(2 \mathrm{r}-5)=0$
$\mathrm{r}=2 / 5$ or $5 / 2$
so now the equation will be,
$1 /(2 / 5), 1,1 \times 2 / 5$ or $1 /(5 / 2), 1,1 \times 5 / 2$
$5 / 2,1,2 / 5$ or $2 / 5,1,5 / 2$
\therefore The three numbers are $2 / 5,1,5 / 2$

EXERCISE 20.3

1. Find the sum of the following geometric progressions:

(i) $\mathbf{2 , 6}, \mathbf{1 8}, \ldots$ to 7 terms
(ii) $1,3,9,27, \ldots$ to 8 terms
(iii) $1,-1 / 2,1 / 4,-1 / 8, \ldots$
(iv) $\left(\mathbf{a}^{2}-\mathbf{b}^{2}\right),(\mathbf{a}-\mathrm{b}),(\mathbf{a}-\mathrm{b}) /(\mathbf{a}+\mathrm{b}), \ldots$ to n terms
(v) $4,2,1,1 / 2 \ldots$ to 10 terms

Solution:
(i) $2,6,18, \ldots$ to 7 terms

We know that, sum of GP for n terms $=a\left(r^{n}-1\right) /(r-1)$
Given:
$\mathrm{a}=2, \mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=6 / 2=3, \mathrm{n}=7$
Now let us substitute the values in

$$
\begin{aligned}
\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1) & =2\left(3^{7}-1\right) /(3-1) \\
& =2\left(3^{7}-1\right) / 2 \\
& =3^{7}-1 \\
& =2187-1 \\
& =2186
\end{aligned}
$$

(ii) $1,3,9,27, \ldots$ to 8 terms

We know that, sum of GP for n terms $=a\left(r^{n}-1\right) /(r-1)$
Given:
$\mathrm{a}=1, \mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=3 / 1=3, \mathrm{n}=8$
Now let us substitute the values in

$$
\begin{aligned}
\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1) & =1\left(3^{8}-1\right) /(3-1) \\
& =\left(3^{8}-1\right) / 2 \\
& =(6561-1) / 2 \\
& =6560 / 2 \\
& =3280
\end{aligned}
$$

(iii) $1,-1 / 2,1 / 4,-1 / 8, \ldots$

We know that, sum of GP for infinity $=a /(1-r)$
Given:
$\mathrm{a}=1, \mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=(-1 / 2) / 1=-1 / 2$
Now let us substitute the values in

$$
\begin{aligned}
\mathrm{a} /(1-\mathrm{r}) & =1 /(1-(-1 / 2)) \\
& =1 /(1+1 / 2) \\
& =1 /((2+1) / 2)
\end{aligned}
$$

$$
\begin{aligned}
& =1 /(3 / 2) \\
& =2 / 3
\end{aligned}
$$

(iv) $\left(a^{2}-b^{2}\right),(a-b),(a-b) /(a+b), \ldots$ to n terms

We know that, sum of GP for n terms $=a\left(r^{n}-1\right) /(r-1)$
Given:
$\mathrm{a}=\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right), \mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=(\mathrm{a}-\mathrm{b}) /\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)=(\mathrm{a}-\mathrm{b}) /(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})=1 /(\mathrm{a}+\mathrm{b}), \mathrm{n}=\mathrm{n}$
Now let us substitute the values in

$$
\begin{aligned}
& \mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1)= \\
& =\left(a^{2}-b^{2}\right)\left(\frac{1-\left(\frac{1}{a+b}\right)^{n}}{1-\left(\frac{1}{a+b}\right)}\right) \\
& =\left(a^{2}-b^{2}\right)\left(\frac{\left(\frac{(a+b)^{n}-1}{(a+b)^{n}}\right)}{\frac{(a+b)-1}{a+b}}\right) \\
& =\frac{(a+b)(a-b)}{(a+b)^{n-1}}\left(\frac{(a+b)^{n}-1}{(a+b)-1}\right) \\
& =\frac{(a-b)}{(a+b)^{n-2}}\left(\frac{(a+b)^{n}-1}{(a+b)-1}\right)
\end{aligned}
$$

(v) $4,2,1,1 / 2 \ldots$ to 10 terms

We know that, sum of GP for n terms $=a\left(r^{n}-1\right) /(r-1)$
Given:
$\mathrm{a}=4, \mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=2 / 4=1 / 2, \mathrm{n}=10$
Now let us substitute the values in

$$
\begin{aligned}
\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1) & =4\left((1 / 2)^{10}-1\right) /((1 / 2)-1) \\
& =4\left((1 / 2)^{10}-1\right) /((1-2) / 2) \\
& =4\left((1 / 2)^{10}-1\right) /(-1 / 2) \\
& =4\left((1 / 2)^{10}-1\right) \times-2 / 1 \\
& =-8[1 / 1024-1] \\
& =-8[1-1024] / 1024 \\
& =-8[-1023] / 1024 \\
& =1023 / 128
\end{aligned}
$$

2. Find the sum of the following geometric series :
(i) $0.15+0.015+0.0015+\ldots$ to 8 terms;
(ii) $\sqrt{ } 2+1 / \sqrt{ } 2+1 / 2 \sqrt{ } 2+\ldots$ to 8 terms;
(iii) $2 / 9-1 / 3+1 / 2-3 / 4+\ldots$ to 5 terms;
(iv) $(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+\ldots$ to n terms ;
(v) $3 / 5+4 / 5^{2}+3 / 5^{3}+4 / 5^{4}+\ldots$ to $2 n$ terms;

Solution:

(i) $0.15+0.015+0.0015+\ldots$ to 8 terms

Given:
$\mathrm{a}=0.15$
$\mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=0.015 / 0.15=0.1=1 / 10$
$\mathrm{n}=8$
By using the formula,
Sum of GP for n terms $=\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right) /(1-\mathrm{r})$

$$
\begin{aligned}
\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right) /(1-\mathrm{r}) & =0.15\left(1-(1 / 10)^{8}\right) /(1-(1 / 10)) \\
& =0.15\left(1-1 / 10^{8}\right) /(1-(1 / 10)) \\
& =1 / 6\left(1-1 / 10^{8}\right)
\end{aligned}
$$

(ii) $\sqrt{ } 2+1 / \sqrt{ } 2+1 / 2 \sqrt{ } 2+\ldots$ to 8 terms;

Given:
$a=\sqrt{ } 2$
$\mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=(1 / \sqrt{ } 2) / \sqrt{ } 2=1 / 2$
$\mathrm{n}=8$
By using the formula,
Sum of GP for n terms $=a\left(1-r^{n}\right) /(1-r)$

$$
\begin{aligned}
\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right) /(1-\mathrm{r}) & =\sqrt{ } 2\left(1-(1 / 2)^{8}\right) /(1-(1 / 2)) \\
& =\sqrt{ } 2(1-1 / 256) /(1 / 2) \\
& =\sqrt{ } 2((256-1) / 256) \times 2 \\
& =\sqrt{ } 2(255 \times 2) / 256 \\
& =(255 \sqrt{ } 2) / 128
\end{aligned}
$$

(iii) $2 / 9-1 / 3+1 / 2-3 / 4+\ldots$ to 5 terms;

Given:
$\mathrm{a}=2 / 9$
$\mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=(-1 / 3) /(2 / 9)=-3 / 2$
$\mathrm{n}=5$
By using the formula,
Sum of GP for n terms $=\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right) /(1-\mathrm{r})$

$$
\begin{aligned}
\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right) /(1-\mathrm{r}) & =(2 / 9)\left(1-(-3 / 2)^{5}\right) /(1-(-3 / 2)) \\
& =(2 / 9)\left(1+(3 / 2)^{5}\right) /(1+3 / 2) \\
& =(2 / 9)\left(1+(3 / 2)^{5}\right) /(5 / 2) \\
& =(2 / 9)(1+243 / 32) /(5 / 2) \\
& =(2 / 9)((32+243) / 32) /(5 / 2) \\
& =(2 / 9)(275 / 32) \times 2 / 5
\end{aligned}
$$

$$
=55 / 72
$$

(iv) $(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+\ldots$ to n terms;

Let $S_{n}=(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+\ldots$ to n terms
Let us multiply and divide by ($x-y$) we get,
$S_{n}=1 /(x-y)\left[(x+y)(x-y)+\left(x^{2}+x y+y^{2}\right)(x-y) \ldots\right.$ upto n terms $]$
$(x-y) S_{n}=\left(x^{2}-y^{2}\right)+x^{3}+x^{2} y+x y^{2}-x^{2} y-x y^{2}-y^{3}$.. upto n terms
$(x-y) S_{n}=\left(x^{2}+x^{3}+x^{4}+\ldots n\right.$ terms $)-\left(y^{2}+y^{3}+y^{4}+\ldots n\right.$ terms $)$
By using the formula,
Sum of GP for n terms $=\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right) /(1-\mathrm{r})$
We have two G.Ps in above sum, so,
$(x-y) S_{n}=x^{2}\left[\left(x^{n}-1\right) /(x-1)\right]-y^{2}\left[\left(y^{n}-1\right) /(y-1)\right]$
$\mathrm{S}_{\mathrm{n}}=1 /(\mathrm{x}-\mathrm{y})\left\{\mathrm{x}^{2}\left[\left(\mathrm{x}^{\mathrm{n}}-1\right) /(\mathrm{x}-1)\right]-\mathrm{y}^{2}\left[\left(\mathrm{y}^{\mathrm{n}}-1\right) /(\mathrm{y}-1)\right]\right\}$
(v) $3 / 5+4 / 5^{2}+3 / 5^{3}+4 / 5^{4}+\ldots$ to 2 n terms;

The series can be written as:
$3\left(1 / 5+1 / 5^{3}+1 / 5^{5}+\ldots\right.$ to n terms $)+4\left(1 / 5^{2}+1 / 5^{4}+1 / 5^{6}+\ldots\right.$ to n terms $)$
Firstly let us consider $3\left(1 / 5+1 / 5^{3}+1 / 5^{5}+\ldots\right.$ to n terms $)$
So, $a=1 / 5$
$\mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=1 / 5^{2}=1 / 25$
By using the formula,
Sum of GP for n terms $=\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right) /(1-\mathrm{r})$

$$
\begin{aligned}
3\left(\frac{1}{5}+\frac{1}{5^{3}}+\frac{1}{5^{5}}+\cdots n \text { terms }\right) & =3 \cdot \frac{\frac{1}{5}\left(1-\left(\frac{1}{25}\right)^{n}\right)}{1-\frac{1}{25}} \\
& =\frac{5}{8}\left(1-\frac{1}{5^{2 n}}\right)
\end{aligned}
$$

Now, Let us consider $4\left(1 / 5^{2}+1 / 5^{4}+1 / 5^{6}+\ldots\right.$ to n terms $)$
So, $\mathrm{a}=1 / 25$
$\mathrm{r}=\mathrm{t}_{2} / \mathrm{t}_{1}=1 / 5^{2}=1 / 25$
By using the formula,
Sum of GP for n terms $=a\left(1-r^{n}\right) /(1-r)$

$$
4\left(\frac{1}{5^{2}}+\frac{1}{5^{4}}+\frac{1}{5^{6}}+\cdots n \text { terms }\right)=4 \cdot \frac{\frac{1}{25}\left(1-\left(\frac{1}{25}\right)^{n}\right)}{1-\frac{1}{25}}
$$

$$
=\frac{1}{6}\left(1-\frac{1}{5^{2 n}}\right)
$$

Now,

$$
\begin{aligned}
\frac{3}{5}+\frac{4}{5^{2}}+\frac{3}{5^{3}}+\cdots 2 n \text { terms } & =\frac{5}{8}\left(1-\frac{1}{5^{2 n}}\right)+\frac{1}{6}\left(1-\frac{1}{5^{2 n}}\right) \\
& =19 / 24\left(1-1 / 5^{2 n}\right)
\end{aligned}
$$

3. Evaluate the following:

(i) $\sum_{\substack{n=1 \\ n}}^{11}\left(2+3^{n}\right)$
(ii) $\sum_{k=1}^{n}\left(2^{k}+3^{k-1}\right)$
(iii) $\sum_{n=2}^{10} 4^{n}$

Solution:

(i) $\sum_{n=1}^{11}\left(2+3^{n}\right)$
$=\left(2+3^{1}\right)+\left(2+3^{2}\right)+\left(2+3^{3}\right)+\ldots+\left(2+3^{11}\right)$
$=2 \times 11+3^{1}+3^{2}+3^{3}+\ldots+3^{11}$
$=22+3\left(3^{11}-1\right) /(3-1)$ [by using the formula, $\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right) /(1-\mathrm{r})$]
$=22+3\left(3^{11}-1\right) / 2$
$=[44+3(177147-1)] / 2$
$=[44+3(177146)] / 2$
$=265741$
(ii) $\sum_{k=1}^{n}\left(2^{k}+3^{k-1}\right)$
$=\left(2+3^{0}\right)+\left(2^{2}+3\right)+\left(2^{3}+3^{2}\right)+\ldots+\left(2^{\mathrm{n}}+3^{\mathrm{n}-1}\right)$
$=\left(2+2^{2}+2^{3}+\ldots+2^{n}\right)+\left(3^{0}+3^{1}+3^{2}+\ldots .+3^{n-1}\right)$
Firstly let us consider,
$\left(2+2^{2}+2^{3}+\ldots+2^{n}\right)$
Where, $\mathrm{a}=2, \mathrm{r}=2^{2} / 2=4 / 2=2, \mathrm{n}=\mathrm{n}$
By using the formula,
Sum of GP for n terms $=a\left(r^{n}-1\right) /(r-1)$

$$
\begin{aligned}
& =2\left(2^{\mathrm{n}}-1\right) /(2-1) \\
& =2\left(2^{\mathrm{n}}-1\right)
\end{aligned}
$$

Now, let us consider
$\left(3^{0}+3^{1}+3^{2}+\ldots .+3^{n}\right)$
Where, $\mathrm{a}=3^{0}=1, \mathrm{r}=3 / 1=3, \mathrm{n}=\mathrm{n}$
By using the formula,
Sum of GP for n terms $=\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1)$

$$
\begin{aligned}
& =1\left(3^{n}-1\right) /(3-1) \\
& =\left(3^{n}-1\right) / 2
\end{aligned}
$$

So,

$$
\begin{aligned}
\sum_{k=1}^{n}\left(2^{k}+3^{k-1}\right) & \\
& =\left(2+2^{2}+2^{3}+\ldots+2^{\mathrm{n}}\right)+\left(3^{0}+3^{1}+3^{2}+\ldots .+3^{\mathrm{n}}\right) \\
& =2\left(2^{\mathrm{n}}-1\right)+\left(3^{\mathrm{n}}-1\right) / 2 \\
& =1 / 2\left[2^{\mathrm{n}+2}+3^{\mathrm{n}}-4-1\right] \\
& =1 / 2\left[2^{\mathrm{n}+2}+3^{\mathrm{n}}-5\right]
\end{aligned}
$$

(iii) $\sum_{n=2}^{10} 4^{n}$
$=4^{2}+4^{3}+4^{4}+\ldots+4^{10}$
Where, $\mathrm{a}=4^{2}=16, \mathrm{r}=4^{3} / 4^{2}=4, \mathrm{n}=9$
By using the formula,
Sum of GP for n terms $=a\left(r^{n}-1\right) /(r-1)$

$$
\begin{aligned}
& =16\left(4^{9}-1\right) /(4-1) \\
& =16\left(4^{9}-1\right) / 3 \\
& =16 / 3\left[4^{9}-1\right]
\end{aligned}
$$

4. Find the sum of the following series :
(i) $\mathbf{5}+\mathbf{5 5}+\mathbf{5 5 5}+\ldots$ to n terms.
(ii) $7+77+777+\ldots$ to n terms.
(iii) $9+99+999+\ldots$ to n terms.
(iv) $0.5+0.55+0.555+\ldots$ to n terms
(v) $0.6+0.66+0.666+\ldots$. to n terms.

Solution:

(i) $5+55+555+\ldots$ to n terms.

Let us take 5 as a common term so we get,
$5[1+11+111+\ldots \mathrm{n}$ terms $]$
Now multiply and divide by 9 we get,
$5 / 9[9+99+999+\ldots$ n terms $]$
$5 / 9\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\ldots n\right.$ terms $]$
$5 / 9\left[\left(10+10^{2}+10^{3}+\ldots \mathrm{n}\right.\right.$ terms $\left.)-\mathrm{n}\right]$

So the G.P is
$5 / 9\left[\left(10+10^{2}+10^{3}+\ldots \mathrm{n}\right.\right.$ terms $\left.)-\mathrm{n}\right]$
By using the formula,
Sum of GP for n terms $=a\left(r^{n}-1\right) /(r-1)$
Where, $\mathrm{a}=10, \mathrm{r}=10^{2} / 10=10, \mathrm{n}=\mathrm{n}$
$\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1)=$
$=\frac{5}{9}\left\{10 \times \frac{\left(10^{n}-1\right)}{10-1}-n\right\}$
$=\frac{5}{9}\left\{\frac{10}{9}\left(10^{n}-1\right)-n\right\}$
$=\frac{5}{81}\left\{10^{n+1}-9 n-10\right\}$
(ii) $7+77+777+\ldots$ to n terms.

Let us take 7 as a common term so we get, $7[1+11+111+\ldots$ to n terms $]$
Now multiply and divide by 9 we get,
$7 / 9[9+99+999+\ldots$ n terms $]$
$7 / 9\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\ldots+\left(10^{n}-1\right)\right]$
$7 / 9\left[\left(10+10^{2}+10^{3}+\ldots+10^{\mathrm{n}}\right)\right]-7 / 9[(1+1+1+\ldots$ to n terms $)]$
So the terms are in G.P
Where, $a=10, r=10^{2} / 10=10, n=n$
By using the formula,
Sum of GP for n terms $=a\left(r^{n}-1\right) /(r-1)$
7/9 [10 (10 $\left.\left.0^{\mathrm{n}}-1\right) /(10-1)\right]-\mathrm{n}$
7/9 [10/9 (10 $\left.\left.{ }^{\mathrm{n}}-1\right)-\mathrm{n}\right]$
7/81 [10 (10n-1) - n]
$7 / 81\left(10^{n+1}-9 n-10\right)$
(iii) $9+99+999+\ldots$ to n terms.

The given terms can be written as
$(10-1)+(100-1)+(1000-1)+\ldots+n$ terms
$\left(10+10^{2}+10^{3}+\ldots \mathrm{n}\right.$ terms $)-\mathrm{n}$
By using the formula,
Sum of GP for n terms $=a\left(r^{n}-1\right) /(r-1)$
Where, $\mathrm{a}=10, \mathrm{r}=10, \mathrm{n}=\mathrm{n}$

$$
\begin{aligned}
\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1) & =\left[10\left(10^{\mathrm{n}}-1\right) /(10-1)\right]-\mathrm{n} \\
& =10 / 9\left(10^{\mathrm{n}}-1\right)-\mathrm{n} \\
& =1 / 9\left[10^{\mathrm{n}+1}-10-9 \mathrm{n}\right] \\
& =1 / 9\left[10^{\mathrm{n}+1}-9 \mathrm{n}-10\right]
\end{aligned}
$$

(iv) $0.5+0.55+0.555+\ldots$ to n terms

Let us take 5 as a common term so we get,
$5(0.1+0.11+0.111+\ldots$ nterms $)$
Now multiply and divide by 9 we get,
$5 / 9[0.9+0.99+0.999+\ldots+$ to n terms $]$
$5 / 9[9 / 10+9 / 100+9 / 1000+\ldots+n$ terms $]$
This can be written as
$5 / 9[(1-1 / 10)+(1-1 / 100)+(1-1 / 1000)+\ldots+n$ terms $]$
$5 / 9\left[\mathrm{n}-\left\{1 / 10+1 / 10^{2}+1 / 10^{3}+\ldots+\mathrm{n}\right.\right.$ terms $\left.\}\right]$
$5 / 9\left[n-1 / 10\left\{1-(1 / 10)^{\mathrm{n}}\right\} /\{1-1 / 10\}\right]$
$5 / 9\left[n-1 / 9\left(1-1 / 10^{n}\right)\right]$
(v) $0.6+0.66+0.666+\ldots$ to n terms.

Let us take 6 as a common term so we get, $6(0.1+0.11+0.111+\ldots$ terms $)$
Now multiply and divide by 9 we get,
$6 / 9[0.9+0.99+0.999+\ldots+n$ terms $]$
$6 / 9[9 / 10+9 / 100+9 / 1000+\ldots+\mathrm{n}$ terms $]$
This can be written as
$6 / 9[(1-1 / 10)+(1-1 / 100)+(1-1 / 1000)+\ldots+n$ terms $]$
$6 / 9\left[\mathrm{n}-\left\{1 / 10+1 / 10^{2}+1 / 10^{3}+\ldots+\mathrm{n}\right.\right.$ terms $\left.\}\right]$
$6 / 9\left[n-1 / 10\left\{1-(1 / 10)^{n}\right\} /\{1-1 / 10\}\right]$
6/9 [n-1/9 (1-1/10 $\left.\left.{ }^{n}\right)\right]$

5. How many terms of the G.P. 3, 3/2, $3 / 4, \ldots$ Be taken together to make $3069 / 512$? Solution:

Given:
Sum of G.P = 3069/512
Where, $a=3, r=(3 / 2) / 3=1 / 2, n=$?
By using the formula,
Sum of GP for n terms $=\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1)$
$3069 / 512=3\left((1 / 2)^{\mathrm{n}}-1\right) /(1 / 2-1)$
$3069 / 512 \times 3 \times 2=1-(1 / 2)^{\mathrm{n}}$
$3069 / 3072-1=-(1 / 2)^{\mathrm{n}}$
$(3069-3072) / 3072=-(1 / 2)^{\mathrm{n}}$
$-3 / 3072=-(1 / 2)^{\mathrm{n}}$
$1 / 1024=(1 / 2)^{\mathrm{n}}$
$(1 / 2)^{10}=(1 / 2)^{\mathrm{n}}$
$10=\mathrm{n}$
$\therefore 10$ terms are required to make 3069/512
6. How many terms of the series $2+6+18+\ldots$. Must be taken to make the sum equal to 728 ?

Solution:

Given:
Sum of GP = 728
Where, $a=2, r=6 / 2=3, n=$?
By using the formula,
Sum of GP for n terms $=\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1)$
$728=2\left(3^{n}-1\right) /(3-1)$
$728=2\left(3^{\mathrm{n}}-1\right) / 2$
$728=3^{\mathrm{n}}-1$
$729=3^{\mathrm{n}}$
$3^{6}=3^{n}$
$6=n$
$\therefore 6$ terms are required to make a sum equal to 728
7. How many terms of the sequence $\sqrt{ } 3,3,3 \sqrt{ } 3, \ldots$ must be taken to make the sum 39+13 $\sqrt{ } 3$?

Solution:

Given:
Sum of GP $=39+13 \sqrt{3}$
Where, $a=\sqrt{ } 3, r=3 / \sqrt{ } 3=\sqrt{ } 3, n=$?
By using the formula,
Sum of GP for n terms $=\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1)$
$39+13 \sqrt{ } 3=\sqrt{3}\left(\sqrt{ } 3^{\mathrm{n}}-1\right) /(\sqrt{ } 3-1)$
$(39+13 \sqrt{3})(\sqrt{3}-1)=\sqrt{3}\left(\sqrt{ } 3^{n}-1\right)$
Let us simplify we get,
$39 \sqrt{3}-39+13(3)-13 \sqrt{3}=\sqrt{3}\left(\sqrt{3}{ }^{n}-1\right)$
$39 \sqrt{ } 3-39+39-13 \sqrt{ } 3=\sqrt{ } 3\left(\sqrt{ } 3^{n}-1\right)$
$39 \sqrt{ } 3-39+39-13 \sqrt{ } 3=\sqrt{ } 3^{n+1}-\sqrt{ } 3$
$26 \sqrt{3}+\sqrt{3}=\sqrt{ } 3^{n+1}$
$27 \sqrt{ } 3=\sqrt{ } 3^{n+1}$
$\sqrt{ } 3^{6} \sqrt{3}=\sqrt{3} 3^{n+1}$
$6+1=n+1$
$7=\mathrm{n}+1$
$7-1=n$
$6=n$
$\therefore 6$ terms are required to make a sum of $39+13 \sqrt{ } 3$
8. The sum of \boldsymbol{n} terms of the G.P. 3, 6, 12, \ldots is 381 . Find the value of \mathbf{n}. Solution:
Given:
Sum of GP = 381
Where, $a=3, r=6 / 3=2, n=$?
By using the formula,
Sum of GP for n terms $=\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1)$
$381=3\left(2^{\mathrm{n}}-1\right) /(2-1)$
$381=3\left(2^{\mathrm{n}}-1\right)$
$381 / 3=2^{\mathrm{n}}-1$
$127=2^{\mathrm{n}}-1$
$127+1=2^{n}$
$128=2^{\text {n }}$
$2^{7}=2^{n}$
$\mathrm{n}=7$
\therefore value of n is 7
9. The common ratio of a G.P. is 3 , and the last term is 486 . If the sum of these terms be 728, find the first term.

Solution:

Given:

Sum of GP = 728
Where, $\mathrm{r}=3, \mathrm{a}=$?
Firstly,

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{n}}=a \mathrm{ar}^{\mathrm{n}-1} \\
& 486=a 3^{\mathrm{n}-1} \\
& 486=a 3^{n} / 3 \\
& 486(3)=a 3^{\mathrm{n}} \\
& 1458=\mathrm{a} 3^{\mathrm{n}} \ldots . \text { Equation (i) }
\end{aligned}
$$

By using the formula,
Sum of GP for n terms $=\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1)$
$728=\mathrm{a}\left(3^{\mathrm{n}}-1\right) / 2$
$1456=a 3^{n}-a \ldots$ equation (2)
Subtracting equation (1) from (2) we get

$$
1458-1456=\mathrm{a} \cdot 3^{\mathrm{n}}-\mathrm{a} \cdot 3^{\mathrm{n}}+\mathrm{a}
$$

$\mathrm{a}=2$.
\therefore The first term is 2
10. The ratio of the sum of the first three terms is to that of the first 6 terms of a G.P. is $125: 152$. Find the common ratio.

Solution:
Given:
Sum of G.P of 3 terms is 125
By using the formula,
Sum of GP for n terms $=a\left(r^{n}-1\right) /(r-1)$
$125=\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1)$
$125=\mathrm{a}\left(\mathrm{r}^{3}-1\right) /(\mathrm{r}-1) \ldots$ equation (1)
Now,
Sum of G.P of 6 terms is 152
By using the formula,
Sum of GP for n terms $=a\left(r^{n}-1\right) /(r-1)$
$152=\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1)$
$152=\mathrm{a}\left(\mathrm{r}^{6}-1\right) /(\mathrm{r}-1) \ldots$ equation (2)
Let us divide equation (i) by (ii) we get,
$125 / 152=\left[\mathrm{a}\left(\mathrm{r}^{3}-1\right) /(\mathrm{r}-1)\right] /\left[\mathrm{a}\left(\mathrm{r}^{6}-1\right) /(\mathrm{r}-1)\right]$
$125 / 152=\left(\mathrm{r}^{3}-1\right) /\left(\mathrm{r}^{6}-1\right)$
$125 / 152=\left(\mathrm{r}^{3}-1\right) /\left[\left(\mathrm{r}^{3}-1\right)\left(\mathrm{r}^{3}+1\right)\right]$
$125 / 152=1 /\left(\mathrm{r}^{3}+1\right)$
$125\left(\mathrm{r}^{3}+1\right)=152$
$125 \mathrm{r}^{3}+125=152$
$125 \mathrm{r}^{3}=152-125$
$125 \mathrm{r}^{3}=27$
$\mathrm{r}^{3}=27 / 125$
$\mathrm{r}^{3}=3^{3} / 5^{3}$
$\mathrm{r}=3 / 5$
\therefore The common ratio is $3 / 5$

EXERCISE 20.4

1. Find the sum of the following series to infinity:
(i) $1-1 / 3+1 / 3^{2}-1 / 3^{3}+1 / 3^{4}+\ldots \infty$
(ii) $8+4 \sqrt{ } 2+4+\ldots \infty$
(iii) $2 / 5+3 / 5^{2}+2 / 5^{3}+3 / 5^{4}+\ldots \infty$
(iv) $10-9+8.1-7.29+\ldots \infty$

Solution:
(i) $1-1 / 3+1 / 3^{2}-1 / 3^{3}+1 / 3^{4}+\ldots \infty$

Given:
$S_{\infty}=1-1 / 3+1 / 3^{2}-1 / 3^{3}+1 / 3^{4}+\ldots \infty$
Where, $\mathrm{a}=1, \mathrm{r}=-1 / 3$
By using the formula,

$$
\begin{aligned}
\mathrm{S}_{\infty} & =\mathrm{a} /(1-\mathrm{r}) \\
& =1 /(1-(-1 / 3)) \\
& =1 /(1+1 / 3) \\
& =1 /((3+1) / 3) \\
& =1 /(4 / 3) \\
& =3 / 4
\end{aligned}
$$

(ii) $8+4 \sqrt{ } 2+4+\ldots \infty$

Given:
$\mathrm{S}_{\infty}=8+4 \sqrt{ } 2+4+\ldots \infty$
Where, $a=8, r=4 / 4 \sqrt{ } 2=1 / \sqrt{ } 2$
By using the formula,

$$
\begin{aligned}
\mathrm{S}_{\infty} & =\mathrm{a} /(1-\mathrm{r}) \\
& =8 /(1-(1 / \sqrt{ } 2)) \\
& =8 /((\sqrt{ } 2-1) / \sqrt{ } 2) \\
& =8 \sqrt{ } 2 /(\sqrt{ } 2-1)
\end{aligned}
$$

Multiply and divide with $\sqrt{ } 2+1$ we get,

$$
\begin{aligned}
& =8 \sqrt{2} /(\sqrt{ } 2-1) \times(\sqrt{ } 2+1) /(\sqrt{ } 2+1) \\
& =8(2+\sqrt{2}) /(2-1) \\
& =8(2+\sqrt{2})
\end{aligned}
$$

(iii) $2 / 5+3 / 5^{2}+2 / 5^{3}+3 / 5^{4}+\ldots \infty$

The given terms can be written as,
$\left(2 / 5+2 / 5^{3}+\ldots\right)+\left(3 / 5^{2}+3 / 5^{4}+\ldots\right)$
$(\mathrm{a}=2 / 5, \mathrm{r}=1 / 25)$ and $(\mathrm{a}=3 / 25, \mathrm{r}=1 / 25)$
By using the formula,

$$
\begin{aligned}
\mathrm{S}_{\infty} & =\mathrm{a} /(1-\mathrm{r}) \\
& =\left(\frac{\frac{2}{5}}{1-\frac{1}{25}}\right)+\left(\frac{\frac{3}{5}}{1-\frac{1}{25}}\right) \\
& =\left(\frac{\frac{2}{5}}{\frac{54}{25}}\right)+\left(\frac{\frac{3}{5}}{24}\right) \\
& =\left(\frac{10}{24}+\frac{3}{24}\right) \\
& =\frac{13}{24}
\end{aligned}
$$

(iv) $10-9+8.1-7.29+\ldots \infty$

Given:
$S_{\infty}=8+4 \sqrt{ } 2+4+\ldots \infty$
Where, $a=10, r=-9 / 10$
By using the formula,

$$
\begin{aligned}
\mathrm{S}_{\infty} & =\mathrm{a} /(1-\mathrm{r}) \\
& =10 /(1-(-9 / 10)) \\
& =10 /(1+9 / 10) \\
& =10 /((10+9) / 10) \\
& =10 /(19 / 10) \\
& =100 / 19 \\
& =5.263
\end{aligned}
$$

2. Prove that :

$\left(9^{1 / 3} \cdot 9^{1 / 9} \cdot 9^{1 / 27} \ldots \infty\right)=3$.

Solution:

Let us consider the LHS
$\left(9^{1 / 3} \cdot 9^{1 / 9} \cdot 9^{1 / 27} \ldots \infty\right)$
This can be written as
$9^{1 / 3+1 / 9+1 / 27+\ldots \infty}$
So let us consider $\mathrm{m}=1 / 3+1 / 9+1 / 27+\ldots \infty$
Where, $a=1 / 3, r=(1 / 9) /(1 / 3)=1 / 3$
By using the formula,

$$
\begin{aligned}
\mathrm{S}_{\infty} & =\mathrm{a} /(1-\mathrm{r}) \\
& =(1 / 3) /(1-(1 / 3)) \\
& =(1 / 3) /((3-1) / 3) \\
& =(1 / 3) /(2 / 3) \\
& =1 / 2
\end{aligned}
$$

So, $9^{m}=9^{1 / 2}=3=$ RHS
Hence proved.

3. Prove that :

$\left(2^{1 / 4} \cdot 4^{1 / 8} \cdot 8^{1 / 16} \cdot 16^{1 / 32} \ldots \infty\right)=2$.

Solution:

Let us consider the LHS
($\left.2^{1 / 4} \cdot 4^{1 / 8} \cdot 8^{1 / 16} \cdot 16^{1 / 32} \ldots \infty\right)$
This can be written as
$2^{1 / 4} \cdot 2^{2 / 8} \cdot 2^{3 / 16} \cdot 2^{1 / 8} \ldots \infty$
Now,
$2^{1 / 4+2 / 8+3 / 16+1 / 8+\ldots \infty}$
So let us consider 2^{x}, where $\mathrm{x}=1 / 4+2 / 8+3 / 16+1 / 8+\ldots \infty \ldots$. (1)
Multiply both sides of the equation with $1 / 2$, we get

$$
\begin{align*}
\mathrm{x} / 2 & =1 / 2(1 / 4+2 / 8+3 / 16+1 / 8+\ldots \infty) \\
& =1 / 8+2 / 16+3 / 32+\ldots+\infty \ldots(2) \tag{2}
\end{align*}
$$

Now, subtract (2) from (1) we get,

$$
x-x / 2=(1 / 4+2 / 8+3 / 16+1 / 8+\ldots \infty)-(1 / 8+2 / 16+3 / 32+\ldots+\infty)
$$

By grouping similar terms,

$$
\mathrm{x} / 2=1 / 4+(2 / 8-1 / 8)+(3 / 16-2 / 16)+\ldots \infty
$$

$\mathrm{x} / 2=1 / 4+1 / 8+1 / 16+\ldots \infty$
$\mathrm{x}=1 / 2+1 / 4+1 / 8+1 / 16+\ldots \infty$
Where, $a=1 / 2, r=(1 / 4) /(1 / 2)=1 / 2$
By using the formula,

$$
\begin{aligned}
\mathrm{S}_{\infty} & =\mathrm{a} /(1-\mathrm{r}) \\
& =(1 / 2) /(1-1 / 2) \\
& =(1 / 2) /((2-1) / 2) \\
& =(1 / 2) /(1 / 2) \\
& =1
\end{aligned}
$$

From equation (1), $2^{x}=2^{1}=2=$ RHS
Hence proved.
4. If S_{p} denotes the sum of the series $1+r^{p}+r^{2 p}+\ldots$ to ∞ and s_{p} the sum of the series $1-r^{p}+r^{2 p}-\ldots$ to \propto, prove that $s_{p}+S_{p}=2 S_{2 p}$.
Solution:
Given:
$\mathrm{S}_{\mathrm{p}}=1+\mathrm{r}^{\mathrm{p}}+\mathrm{r}^{2 \mathrm{p}}+\ldots \infty$
By using the formula,
$\mathrm{S}_{\infty}=\mathrm{a} /(1-\mathrm{r})$

Where, $\mathrm{a}=1, \mathrm{r}=\mathrm{r}^{\mathrm{p}}$
So,
$\mathrm{S}_{\mathrm{p}}=1 /\left(1-\mathrm{r}^{\mathrm{p}}\right)$
Similarly, $\mathrm{s}_{\mathrm{p}}=1-\mathrm{r}^{\mathrm{p}}+\mathrm{r}^{2 \mathrm{p}}-\ldots \infty$
By using the formula,
$\mathrm{S}_{\infty}=\mathrm{a} /(1-\mathrm{r})$
Where, $\mathrm{a}=1, \mathrm{r}=-\mathrm{r}^{\mathrm{p}}$
So,
$\mathrm{S}_{\mathrm{p}}=1 /\left(1-\left(-\mathrm{r}^{\mathrm{p}}\right)\right)$
$=1 /\left(1+r^{\mathrm{p}}\right)$
Now, $\mathrm{S}_{\mathrm{p}}+\mathrm{S}_{\mathrm{p}}=\left[1 /\left(1-\mathrm{r}^{\mathrm{p}}\right)\right]+\left[1 /\left(1+\mathrm{r}^{\mathrm{p}}\right)\right]$

$$
\begin{aligned}
2 \mathrm{~S}_{2 \mathrm{p}} & =\left[\left(1-\mathrm{r}^{\mathrm{p}}\right)+\left(1+\mathrm{r}^{\mathrm{p}}\right)\right] /\left(1-\mathrm{r}^{2 \mathrm{p}}\right) \\
& =2 /\left(1-\mathrm{r}^{2 \mathrm{p}}\right)
\end{aligned}
$$

$\therefore 2 \mathrm{~S}_{2 \mathrm{p}}=\mathrm{S}_{\mathrm{p}}+\mathrm{S}_{\mathrm{p}}$
5. Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4 , and the difference between the third and fifth term is equal to 32/81.

Solution:

Let ' a ' be the first term of GP and ' r ' be the common ratio.
We know that nth term of a GP is given by-

$$
\begin{aligned}
& a_{n}=a r^{n-1} \\
& \text { As, } a=4 \text { (given) } \\
& \text { And } a_{5}-a_{3}=32 / 81 \text { (given) } \\
& 4 r^{4}-4 r^{2}=32 / 81 \\
& 4 r^{2}\left(r^{2}-1\right)=32 / 81 \\
& r^{2}\left(r^{2}-1\right)=8 / 81
\end{aligned}
$$

Let us denote r^{2} with y
$81 \mathrm{y}(\mathrm{y}-1)=8$
$81 y^{2}-81 y-8=0$
Using the formula of the quadratic equation to solve the equation, we get

$$
\begin{aligned}
y & =\frac{-(-81) \pm \sqrt{81^{2}-4(-8)(81)}}{16} \\
& =\frac{81 \pm \sqrt{6561-2592}}{162} \\
& =\frac{81 \pm 63}{162} \\
y & =18 / 162=1 / 9 \text { or }
\end{aligned}
$$

$\mathrm{y}=144 / 162$

$$
=8 / 9
$$

So, $r^{2}=1 / 9$ or $8 / 9$

$$
=1 / 3 \text { or } 2 \sqrt{ } 2 / 3
$$

We know that,
Sum of infinite, $S_{\infty}=a /(1-r)$
Where, $a=4, r=1 / 3$
$\mathrm{S}_{\infty}=4 /(1-(1 / 3))$
$=4 /((3-1) / 3)$
$=4 /(2 / 3)$
$=12 / 2$
$=6$
Sum of infinite, $\mathrm{S}_{\infty}=\mathrm{a} /(1-\mathrm{r})$
Where, $a=4, r=2 \sqrt{ } 2 / 3$
$\begin{aligned} \mathrm{S}_{\infty} & =4 /(1-(2 \sqrt{ } 2 / 3)) \\ & =12 /(3-2 \sqrt{ } 2)\end{aligned}$
6. Express the recurring decimal $0.125125125 \ldots$ as a rational number.

Solution:
Given:
0.125125125

So, $0.125125125=0 . \overline{125}$
$=0.125+0.000125+0.000000125+\ldots$
This can be written as
$125 / 10^{3}+125 / 10^{6}+125 / 10^{9}+\ldots$
$125 / 10^{3}\left[1+1 / 10^{3}+1 / 10^{6}+\ldots\right]$
By using the formula,
$\mathrm{S}_{\infty}=\mathrm{a} /(1-\mathrm{r})$
$125 / 10^{3}[1 /(1-1 / 1000)]$
$125 / 10^{3}$ [1/ /(1000-1)/1000))]
$125 / 10^{3}$ [1/(999/1000)]
125/1000 (1000/999)
125/999
\therefore The decimal 0.125125125 can be expressed in rational number as $125 / 999$

EXERCISE 20.5

1. If a, b, c are in G.P., prove that $\log a, \log b, \log c$ are in A.P.

Solution:

It is given that a, b and c are in G.P.
$\mathrm{b}^{2}=\mathrm{ac}\{$ using property of geometric mean $\}$
Now, apply \log on both the sides we get,
$\log \mathrm{b}^{2}=\log (\mathrm{ac})$
$\log (b)^{2}=\log a+\log c$
$2 \log \mathrm{~b}=\log \mathrm{a}+\log \mathrm{c}$
$\therefore \log \mathrm{a}, \log \mathrm{b}, \log \mathrm{c}$ are in A.P
2. If $\mathbf{a}, \mathrm{b}, \mathrm{c}$ are in G.P., prove that $1 / \log _{\mathrm{a}} \mathrm{m}, 1 / \log _{\mathrm{b}} \mathrm{m}, 1 / \log _{\mathrm{c}} \mathrm{m}$ are in A.P.

Solution:

Given:
a, b and c are in GP
$\mathrm{b}^{2}=\mathrm{ac}$ \{property of geometric mean $\}$
Apply log on both sides with base m
$\log _{\mathrm{m}} \mathrm{b}^{2}=\log _{\mathrm{m}} \mathrm{ac}$
$\log _{\mathrm{m}} \mathrm{b}^{2}=\log _{\mathrm{m}} \mathrm{a}+\log _{\mathrm{m}} \mathrm{c}\{$ using property of $\log \}$
$2 \log _{\mathrm{m}} \mathrm{b}=\log _{\mathrm{m}} \mathrm{a}+\log _{\mathrm{m}} \mathrm{c}$
$2 / \log _{b} \mathrm{~m}=1 / \log _{\mathrm{a}} \mathrm{m}+1 / \log _{\mathrm{c}} \mathrm{m}$
$\therefore 1 / \log _{\mathrm{a}} \mathrm{m}, 1 / \log _{\mathrm{b}} \mathrm{m}, 1 / \log _{\mathrm{c}} \mathrm{m}$ are in A.P.
3. Find k such that $k+9, k-6$ and 4 form three consecutive terms of a G.P. Solution:
Let $\mathrm{a}=\mathrm{k}+9 ; \mathrm{b}=\mathrm{k}-6$; and $\mathrm{c}=4$;
We know that a, b and c are in GP, then
$\mathrm{b}^{2}=\mathrm{ac}$ \{using property of geometric mean \}
$(\mathrm{k}-6)^{2}=4(\mathrm{k}+9)$
$\mathrm{k}^{2}-12 \mathrm{k}+36=4 \mathrm{k}+36$
$\mathrm{k}^{2}-16 \mathrm{k}=0$
$\mathrm{k}=0$ or $\mathrm{k}=16$
4. Three numbers are in A.P., and their sum is 15 . If $1,3,9$ be added to them respectively, they from a G.P. find the numbers.
Solution:

Let the first term of an A.P. be ' a ' and its common difference be' d '.
$a_{1}+a_{2}+a_{3}=15$
Where, the three number are: $a, a+d$, and $a+2 d$
So,
$a+a+d+a+2 d=15$
$3 \mathrm{a}+3 \mathrm{~d}=15$ or $\mathrm{a}+\mathrm{d}=5$
$\mathrm{d}=5-\mathrm{a} \ldots$ (i)
Now, according to the question:
$a+1, a+d+3$, and $a+2 d+9$
they are in GP, that is:
$(a+d+3) /(a+1)=(a+2 d+9) /(a+d+3)$
$(a+d+3)^{2}=(a+2 d+9)(a+1)$
$a^{2}+d^{2}+9+2 a d+6 d+6 a=a^{2}+a+2 d a+2 d+9 a+9$
$(5-a)^{2}-4 a+4(5-a)=0$
$25+a^{2}-10 a-4 a+20-4 a=0$
$a^{2}-18 a+45=0$
$a^{2}-15 a-3 a+45=0$
$a(a-15)-3(a-15)=0$
$\mathrm{a}=3$ or $\mathrm{a}=15$
$\mathrm{d}=5-\mathrm{a}$
$\mathrm{d}=5-3$ or $\mathrm{d}=5-15$
$\mathrm{d}=2$ or -10
Then,
For $\mathrm{a}=3$ and $\mathrm{d}=2$, the A.P is $3,5,7$
For $\mathrm{a}=15$ and $\mathrm{d}=-10$, the A.P is $15,5,-5$
\therefore The numbers are $3,5,7$ or $15,5,-5$
5. The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1 , we obtain three consecutive terms of a G.P. Find the numbers.

Solution:

Let the first term of an A.P. be ' a ' and its common difference be' d '.
$\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}=21$
Where, the three number are: $a, a+d$, and $a+2 d$
So,
$3 \mathrm{a}+3 \mathrm{~d}=21$ or
$\mathrm{a}+\mathrm{d}=7$.
$\mathrm{d}=7-\mathrm{a} \ldots$. (i)

Now, according to the question:
$\mathrm{a}, \mathrm{a}+\mathrm{d}-1$, and $\mathrm{a}+2 \mathrm{~d}+1$
they are now in GP, that is:
$(a+d-1) / a=(a+2 d+1) /(a+d-1)$
$(\mathrm{a}+\mathrm{d}-1)^{2}=\mathrm{a}(\mathrm{a}+2 \mathrm{~d}+1)$
$\mathrm{a}^{2}+\mathrm{d}^{2}+1+2 \mathrm{ad}-2 \mathrm{~d}-2 \mathrm{a}=\mathrm{a}^{2}+\mathrm{a}+2 \mathrm{da}$
$(7-a)^{2}-3 a+1-2(7-a)=0$
$49+a^{2}-14 a-3 a+1-14+2 a=0$
$\mathrm{a}^{2}-15 \mathrm{a}+36=0$
$a^{2}-12 a-3 a+36=0$
$a(a-12)-3(a-12)=0$
$\mathrm{a}=3$ or $\mathrm{a}=12$
$\mathrm{d}=7-\mathrm{a}$
$\mathrm{d}=7-3$ or $\mathrm{d}=7-12$
$\mathrm{d}=4$ or -5
Then,
For $\mathrm{a}=3$ and $\mathrm{d}=4$, the A.P is $3,7,11$
For $\mathrm{a}=12$ and $\mathrm{d}=-5$, the A.P is $12,7,2$
\therefore The numbers are $3,7,11$ or $12,7,2$
6. The sum of three numbers a, b, c in A.P. is 18 . If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.

Solution:

Let the first term of an A.P. be ' a ' and its common difference be' d '.
$\mathrm{b}=\mathrm{a}+\mathrm{d} ; \mathrm{c}=\mathrm{a}+2 \mathrm{~d}$.
Given:
$\mathrm{a}+\mathrm{b}+\mathrm{c}=18$
$3 a+3 d=18$ or $a+d=6$.
$\mathrm{d}=6-\mathrm{a} \ldots$ (i)
Now, according to the question:
$a+4, a+d+4$, and $a+2 d+36$
they are now in GP, that is:
$(a+d+4) /(a+4)=(a+2 d+36) /(a+d+4)$
$(a+d+4)^{2}=(a+2 d+36)(a+4)$
$a^{2}+d^{2}+16+8 a+2 a d+8 d=a^{2}+4 a+2 d a+36 a+144+8 d$
$\mathrm{d}^{2}-32 \mathrm{a}-128=0$
$(6-a)^{2}-32 a-128=0$
$36+a^{2}-12 a-32 a-128=0$
$a^{2}-44 a-92=0$
$a^{2}-46 a+2 a-92=0$
$a(a-46)+2(a-46)=0$
$\mathrm{a}=-2$ or $\mathrm{a}=46$
$\mathrm{d}=6-\mathrm{a}$
$\mathrm{d}=6-(-2)$ or $\mathrm{d}=6-46$
$\mathrm{d}=8$ or -40
Then,
For $\mathrm{a}=-2$ and $\mathrm{d}=8$, the A.P is $-2,6,14$
For $\mathrm{a}=46$ and $\mathrm{d}=-40$, the A.P is $46,6,-34$
\therefore The numbers are $-2,6,14$ or $46,6,-34$

7. The sum of three numbers in G.P. is 56. If we subtract $1,7,21$ from these numbers in that order, we obtain an A.P. Find the numbers.
 Solution:

Let the three numbers be $\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}$
According to the question
$a+a r+a r^{2}=56 \ldots$ (1)
Let us subtract $1,7,21$ we get,
(a-1), (ar-7), $\left(\mathrm{ar}^{2}-21\right)$
The above numbers are in AP.
If three numbers are in AP, by the idea of the arithmetic mean, we can write $2 b=a+c$

$$
\begin{align*}
& 2(\mathrm{ar}-7)=\mathrm{a}-1+\mathrm{ar}^{2}-21 \\
&=\left(\mathrm{ar}^{2}+\mathrm{a}\right)-22 \\
& 2 \mathrm{ar}-14=(56-\mathrm{ar})-22 \\
& 2 \mathrm{ar}-14=34-\mathrm{ar} \\
& 3 \mathrm{ar}=48 \\
& \mathrm{ar}=48 / 3 \\
& \mathrm{ar}=16 \\
& \mathrm{a}=16 / \mathrm{r} \ldots(2) \tag{2}
\end{align*}
$$

Now, substitute the value of a in equation (1) we get,
$\left(16+16 r+16 r^{2}\right) / r=56$

$$
16+16 r+16 r^{2}=56 r
$$

$$
16 r^{2}-40 r+16=0
$$

$$
2 \mathrm{r}^{2}-5 \mathrm{r}+2=0
$$

$$
2 r^{2}-4 r-r+2=0
$$

$$
2 \mathrm{r}(\mathrm{r}-2)-1(\mathrm{r}-2)=0
$$

$$
(r-2)(2 r-1)=0
$$

$\mathrm{r}=2$ or $1 / 2$
Substitute the value of r in equation (2) we get,
$\mathrm{a}=16 / \mathrm{r}$

$$
\begin{aligned}
& =16 / 2 \text { or } 16 /(1 / 2) \\
& =8 \text { or } 32
\end{aligned}
$$

\therefore The three numbers are $\left(\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}\right)$ is $(8,16,32)$

8. if $\mathbf{a}, \mathrm{b}, \mathrm{c}$ are in G.P., prove that:

(i) $\mathbf{a}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)=\mathbf{c}\left(\mathbf{a}^{2}+\mathbf{b}^{2}\right)$
(ii) $\mathbf{a}^{2} \mathbf{b}^{2} \mathbf{c}^{2}\left[1 / a^{3}+1 / b^{3}+1 / c^{3}\right]=a^{3}+b^{3}+c^{3}$
(iii) $(\mathbf{a}+\mathrm{b}+\mathrm{c})^{2} /\left(\mathbf{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)=(\mathbf{a}+\mathrm{b}+\mathrm{c}) /(\mathbf{a}-\mathrm{b}+\mathrm{c})$
(iv) $1 /\left(\mathbf{a}^{2}-b^{2}\right)+1 / b^{2}=1 /\left(b^{2}-c^{2}\right)$
(v) $(a+2 b+2 c)(a-2 b+2 c)=a^{2}+4 c^{2}$

Solution:
(i) $a\left(b^{2}+c^{2}\right)=c\left(a^{2}+b^{2}\right)$

Given that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP.
By using the property of geometric mean,
$\mathrm{b}^{2}=\mathrm{ac}$
Let us consider LHS: $a\left(b^{2}+c^{2}\right)$
Now, substituting $b^{2}=a c$, we get
$\mathrm{a}\left(\mathrm{ac}+\mathrm{c}^{2}\right)$
$a^{2} c+a c^{2}$
$c\left(a^{2}+a c\right)$
Substitute $a c=b^{2}$ we get,
$c\left(a^{2}+b^{2}\right)=$ RHS
\therefore LHS $=$ RHS
Hence proved.
(ii) $a^{2} b^{2} c^{2}\left[1 / a^{3}+1 / b^{3}+1 / c^{3}\right]=a^{3}+b^{3}+c^{3}$

Given that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP.
By using the property of geometric mean,
$\mathrm{b}^{2}=\mathrm{ac}$
Let us consider LHS: $a^{2} b^{2} c^{2}\left[1 / a^{3}+1 / b^{3}+1 / c^{3}\right]$
$a^{2} b^{2} c^{2} / a^{3}+a^{2} b^{2} c^{2} / b^{3}+a^{2} b^{2} c^{2} / c^{3}$
$b^{2} c^{2} / a+a^{2} c^{2} / b+a^{2} b^{2} / c$
(ac) $c^{2} / a+\left(b^{2}\right)^{2} / b+a^{2}(a c) / c$ [by substituting the $b^{2}=a c$]
$\mathrm{ac}^{3} / \mathrm{a}+\mathrm{b}^{4} / \mathrm{b}+\mathrm{a}^{3} \mathrm{c} / \mathrm{c}$
$c^{3}+b^{3}+a^{3}=$ RHS
\therefore LHS $=$ RHS

Hence proved.
(iii) $(\mathrm{a}+\mathrm{b}+\mathrm{c})^{2} /\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)=(\mathrm{a}+\mathrm{b}+\mathrm{c}) /(\mathrm{a}-\mathrm{b}+\mathrm{c})$

Given that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP.
By using the property of geometric mean,
$\mathrm{b}^{2}=\mathrm{ac}$
Let us consider LHS: $(\mathrm{a}+\mathrm{b}+\mathrm{c})^{2} /\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)$
$(a+b+c)^{2} /\left(a^{2}+b^{2}+c^{2}\right)=(a+b+c)^{2} /\left(a^{2}-b^{2}+c^{2}+2 b^{2}\right)$

$$
\begin{aligned}
& =(a+b+c)^{2} /\left(\mathrm{a}^{2}-\mathrm{b}^{2}+\mathrm{c}^{2}+2 \mathrm{ac}\right)\left[\text { Since, } \mathrm{b}^{2}=\mathrm{ac}\right] \\
& =(\mathrm{a}+\mathrm{b}+\mathrm{c})^{2} /(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{a}-\mathrm{b}+\mathrm{c})\left[\text { Since, }(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{a}-\mathrm{b}+\mathrm{c})=\mathrm{a}^{2}-\mathrm{b}^{2}+\mathrm{c}^{2}+2 \mathrm{ac}\right] \\
& =(\mathrm{a}+\mathrm{b}+\mathrm{c}) /(\mathrm{a}-\mathrm{b}+\mathrm{c}) \\
& =\text { RHS }
\end{aligned}
$$

\therefore LHS $=$ RHS
Hence proved.
(iv) $1 /\left(a^{2}-b^{2}\right)+1 / b^{2}=1 /\left(b^{2}-c^{2}\right)$

Given that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP.
By using the property of geometric mean,
$\mathrm{b}^{2}=\mathrm{ac}$
Let us consider LHS: $1 /\left(a^{2}-b^{2}\right)+1 / b^{2}$
Let us take LCM

$$
\begin{aligned}
1 /\left(a^{2}-b^{2}\right)+1 / b^{2} & =\left(b^{2}+a^{2}-b^{2}\right) /\left(a^{2}-b^{2}\right) b^{2} \\
& =a^{2} /\left(a^{2} b^{2}-b^{4}\right) \\
& =a^{2} /\left(a^{2} b^{2}-\left(b^{2}\right)^{2}\right) \\
& =a^{2} /\left(a^{2} b^{2}-(a c)^{2}\right)\left[\text { Since, } b^{2}=a c\right] \\
& =a^{2} /\left(a^{2} b^{2}-a^{2} c^{2}\right) \\
& =a^{2} / a^{2}\left(b^{2}-c^{2}\right) \\
& =1 /\left(b^{2}-c^{2}\right) \\
& =\text { RHS }
\end{aligned}
$$

\therefore LHS $=$ RHS
Hence proved.
(v) $(a+2 b+2 c)(a-2 b+2 c)=a^{2}+4 c^{2}$

Given that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP.
By using the property of geometric mean,
$\mathrm{b}^{2}=\mathrm{ac}$
Let us consider LHS: $(a+2 b+2 c)(a-2 b+2 c)$
Upon expansion we get,

$$
(a+2 b+2 c)(a-2 b+2 c)=a^{2}-2 a b+2 a c+2 a b-4 b^{2}+4 b c+2 a c-4 b c+4 c^{2}
$$

$$
\begin{aligned}
& =a^{2}+4 a c-4 b^{2}+4 c^{2} \\
& =a^{2}+4 a c-4(a c)+4 c^{2}\left[\text { Since, } b^{2}=a c\right] \\
& =a^{2}+4 c^{2} \\
& =\text { RHS }
\end{aligned}
$$

\therefore LHS $=$ RHS
Hence proved.
9. If a, b, c, d are in G.P., prove that:
(i) $(\mathbf{a b}-\mathbf{c d}) /\left(\mathbf{b}^{2}-\mathbf{c}^{2}\right)=(\mathbf{a}+\mathbf{c}) / \mathrm{b}$
(ii) $(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d})^{2}=(\mathrm{a}+\mathrm{b})^{2}+2(\mathrm{~b}+\mathrm{c})^{2}+(\mathrm{c}+\mathrm{d})^{2}$
(iii) $(b+c)(b+d)=(c+a)(c+d)$

Solution:

(i) $(\mathrm{ab}-\mathrm{cd}) /\left(\mathrm{b}^{2}-\mathrm{c}^{2}\right)=(\mathrm{a}+\mathrm{c}) / \mathrm{b}$

Given that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP.
By using the property of geometric mean,
$\mathrm{b}^{2}=\mathrm{ac}$
$\mathrm{bc}=\mathrm{ad}$
$c^{2}=\mathrm{bd}$
Let us consider LHS: $(a b-c d) /\left(b^{2}-c^{2}\right)$
$(\mathrm{ab}-\mathrm{cd}) /\left(\mathrm{b}^{2}-\mathrm{c}^{2}\right)=(\mathrm{ab}-\mathrm{cd}) /(\mathrm{ac}-\mathrm{bd})$
$=(\mathrm{ab}-\mathrm{cd}) \mathrm{b} /(\mathrm{ac}-\mathrm{bd}) \mathrm{b}$
$=\left(\mathrm{ab}^{2}-\mathrm{bcd}\right) /(\mathrm{ac}-\mathrm{bd}) \mathrm{b}$
$=\left[\mathrm{a}(\mathrm{ac})-\mathrm{c}\left(\mathrm{c}^{2}\right)\right] /(\mathrm{ac}-\mathrm{bd}) \mathrm{b}$
$=\left(\mathrm{a}^{2} \mathrm{c}-\mathrm{c}^{3}\right) /(\mathrm{ac}-\mathrm{bd}) \mathrm{b}$
$=\left[c\left(a^{2}-c^{2}\right)\right] /(a c-b d) b$
$=\left[(a+c)\left(a c-c^{2}\right)\right] /(a c-b d) b$
$=[(a+c)(a c-b d)] /(a c-b d) b$
$=(a+c) / b$
$=$ RHS
\therefore LHS $=$ RHS
Hence proved.
(ii) $(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d})^{2}=(\mathrm{a}+\mathrm{b})^{2}+2(\mathrm{~b}+\mathrm{c})^{2}+(\mathrm{c}+\mathrm{d})^{2}$

Given that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP.
By using the property of geometric mean,
$\mathrm{b}^{2}=\mathrm{ac}$
$\mathrm{bc}=\mathrm{ad}$
$c^{2}=\mathrm{bd}$
Let us consider RHS: $(\mathrm{a}+\mathrm{b})^{2}+2(\mathrm{~b}+\mathrm{c})^{2}+(\mathrm{c}+\mathrm{d})^{2}$

Let us expand

$$
\begin{aligned}
(a+b)^{2}+2(b+c)^{2}+(c+d)^{2} & =(a+b)^{2}+2(a+b)(c+d)+(c+d)^{2} \\
& =a^{2}+b^{2}+2 a b+2\left(c^{2}+b^{2}+2 c b\right)+c^{2}+d^{2}+2 c d \\
& =a^{2}+b^{2}+c^{2}+d^{2}+2 a b+2\left(c^{2}+b^{2}+2 c b\right)+2 c d \\
& =a^{2}+b^{2}+c^{2}+d^{2}+2(a b+b d+a c+c b+c d)\left[\text { Since, } c^{2}=\right.
\end{aligned}
$$

bd, $\left.\mathrm{b}^{2}=\mathrm{ac}\right]$
You can visualize the above expression by making separate terms for $(a+b+c)^{2}+d^{2}+$ $2 \mathrm{~d}(\mathrm{a}+\mathrm{b}+\mathrm{c})=\{(\mathrm{a}+\mathrm{b}+\mathrm{c})+\mathrm{d}\}^{2}$
\therefore RHS $=$ LHS
Hence proved.
(iii) $(b+c)(b+d)=(c+a)(c+d)$

Given that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP.
By using the property of geometric mean,
$b^{2}=\mathrm{ac}$
$\mathrm{bc}=\mathrm{ad}$
$c^{2}=\mathrm{bd}$
Let us consider LHS: $(b+c)(b+d)$
Upon expansion we get,
$(b+c)(b+d)=b^{2}+b d+c b+c d$
$=a c+c^{2}+a d+c d$ [by using property of geometric mean]
$=c(a+c)+d(a+c)$
$=(a+c)(c+d)$
$=$ RHS
\therefore LHS $=$ RHS
Hence proved.
10. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are in G.P., prove that the following are also in G.P.:
(i) a^{2}, b^{2}, c^{2}
(ii) $\mathbf{a}^{3}, \mathbf{b}^{3}, \mathbf{c}^{3}$
(iii) $\mathbf{a}^{2}+\mathbf{b}^{2}, a b+b c, b^{2}+c^{2}$

Solution:

(i) a^{2}, b^{2}, c^{2}

Given that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP.
By using the property of geometric mean,
$b^{2}=\mathrm{ac}$
on squaring both the sides we get,
$\left(b^{2}\right)^{2}=(a c)^{2}$
$\left(b^{2}\right)^{2}=a^{2} c^{2}$
$\therefore \mathrm{a}^{2}, \mathrm{~b}^{2}, \mathrm{c}^{2}$ are in G.P.
(ii) $\mathrm{a}^{3}, \mathrm{~b}^{3}, \mathrm{c}^{3}$

Given that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP.
By using the property of geometric mean,
$\mathrm{b}^{2}=\mathrm{ac}$
on squaring both the sides we get,
$\left(b^{2}\right)^{3}=(a c)^{3}$
$\left(b^{2}\right)^{3}=a^{3} c^{3}$
$\left(b^{3}\right)^{2}=a^{3} c^{3}$
$\therefore \mathrm{a}^{3}, \mathrm{~b}^{3}, \mathrm{c}^{3}$ are in G.P.
(iii) $a^{2}+b^{2}, a b+b c, b^{2}+c^{2}$

Given that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP.
By using the property of geometric mean,
$\mathrm{b}^{2}=\mathrm{ac}$
$a^{2}+b^{2}, a b+b c, b^{2}+c^{2}$ or $(a b+b c)^{2}=\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)$ [by using the property of GM]
Let us consider LHS: $(a b+b c)^{2}$
Upon expansion we get,

$$
\begin{aligned}
(a b+b c)^{2} & =a^{2} b^{2}+2 a b^{2} c+b^{2} c^{2} \\
& \left.=a^{2} b^{2}+2 b^{2}\left(b^{2}\right)+b^{2} c^{2} \text { [Since, } a c=b^{2}\right] \\
& =a^{2} b^{2}+2 b^{4}+b^{2} c^{2} \\
& =a^{2} b^{2}+b^{4}+a^{2} c^{2}+b^{2} c^{2}\left\{\text { again using } b^{2}=a c\right\} \\
& =b^{2}\left(b^{2}+a^{2}\right)+c^{2}\left(a^{2}+b^{2}\right) \\
& =\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right) \\
& =\text { RHS }
\end{aligned}
$$

\therefore LHS $=$ RHS
Hence $a^{2}+b^{2}, a b+b c, b^{2}+c^{2}$ are in GP.

EXERCISE 20.6

1. Insert 6 geometric means between 27 and 1/81.
 Solution:

Let the six terms be $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$.
A = 27, B = 1/81
Now, these 6 terms are between A and B.
So the GP is: A, $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, B$.
So we now have 8 terms in GP with the first term being 27 and eighth being $1 / 81$.
We know that, $\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
Here, $\mathrm{T}_{\mathrm{n}}=1 / 81, \mathrm{a}=27$ and
$1 / 81=27 \mathrm{r}^{8-1}$
$1 /(81 \times 27)=r^{7}$
$r=1 / 3$
$\mathrm{a}_{1}=\mathrm{Ar}=27 \times 1 / 3=9$
$\mathrm{a}_{2}=\mathrm{Ar}^{2}=27 \times 1 / 9=3$
$\mathrm{a}_{3}=\mathrm{Ar}^{3}=27 \times 1 / 27=1$
$\mathrm{a}_{4}=\mathrm{Ar}^{4}=27 \times 1 / 81=1 / 3$
$\mathrm{a}_{5}=\mathrm{Ar}^{5}=27 \times 1 / 243=1 / 9$
$\mathrm{a}_{6}=\mathrm{Ar}^{6}=27 \times 1 / 729=1 / 27$
\therefore The six GM between 27 and $1 / 81$ are $9,3,1,1 / 3,1 / 9,1 / 27$

2. Insert 5 geometric means between 16 and 1/4.

Solution:

Let the five terms be $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$.
$\mathrm{A}=16, \mathrm{~B}=1 / 4$
Now, these 5 terms are between A and B.
So the GP is: A, $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, B$.
So we now have 7 terms in GP with the first term being 16 and seventh being 1/4.
We know that, $\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
Here, $\mathrm{T}_{\mathrm{n}}=1 / 4, \mathrm{a}=16$ and

$$
1 / 4=16 r^{7-1}
$$

$1 /(4 \times 16)=r^{6}$
$\mathrm{r}=1 / 2$
$\mathrm{a}_{1}=\mathrm{Ar}=16 \times 1 / 2=8$
$\mathrm{a}_{2}=\mathrm{Ar}^{2}=16 \times 1 / 4=4$
$\mathrm{a}_{3}=\mathrm{Ar}^{3}=16 \times 1 / 8=2$
$\mathrm{a}_{4}=\mathrm{Ar}^{4}=16 \times 1 / 16=1$
$\mathrm{a}_{5}=\mathrm{Ar}^{5}=16 \times 1 / 32=1 / 2$
\therefore The five GM between 16 and $1 / 4$ are $8,4,2,1,1 / 2$

3. Insert 5 geometric means between 32/9 and 81/2.

Solution:

Let the five terms be $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$.
A $=32 / 9, B=81 / 2$
Now, these 5 terms are between A and B.
So the GP is: A, $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, B$.
So we now have 7 terms in GP with the first term being 32/9 and seventh being 81/2.
We know that, $\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
Here, $\mathrm{T}_{\mathrm{n}}=81 / 2, \mathrm{a}=32 / 9$ and
$81 / 2=32 / 9 \mathrm{r}^{7-1}$
$(81 \times 9) /(2 \times 32)=r^{6}$
$\mathrm{r}=3 / 2$
$\mathrm{a}_{1}=\mathrm{Ar}=(32 / 9) \times 3 / 2=16 / 3$
$\mathrm{a}_{2}=\mathrm{Ar}^{2}=(32 / 9) \times 9 / 4=8$
$\mathrm{a}_{3}=\mathrm{Ar}^{3}=(32 / 9) \times 27 / 8=12$
$\mathrm{a}_{4}=\mathrm{Ar}^{4}=(32 / 9) \times 81 / 16=18$
$\mathrm{a}_{5}=\mathrm{Ar}^{5}=(32 / 9) \times 243 / 32=27$
\therefore The five GM between $32 / 9$ and $81 / 2$ are $16 / 3,8,12,18,27$

4. Find the geometric means of the following pairs of numbers:

(i) 2 and 8
(ii) $a^{3} b$ and a^{3}
(iii) -8 and -2

Solution:

(i) 2 and 8

GM between a and b is $\sqrt{ } \mathrm{ab}$
Let $\mathrm{a}=2$ and $\mathrm{b}=8$

$$
\begin{aligned}
\text { GM } & =\sqrt{ } 2 \times 8 \\
& =\sqrt{ } 16 \\
& =4
\end{aligned}
$$

(ii) $a^{3} b$ and $a b^{3}$

GM between a and b is $\sqrt{\mathrm{ab}}$
Let $a=a^{3} b$ and $b=a b^{3}$

$$
\begin{aligned}
\text { GM } & =\sqrt{ }\left(a^{3} b \times a b^{3}\right) \\
& =\sqrt{a^{4} b^{4}} \\
& =a^{2} b^{2}
\end{aligned}
$$

(iii) -8 and -2

GM between a and b is $\sqrt{ } \mathrm{ab}$
Let $\mathrm{a}=-2$ and $\mathrm{b}=-8$
$\mathrm{GM}=\sqrt{ }(-2 x-8)$
$=\sqrt{ } 16$
$=4,-4$

5. If a is the G.M. of 2 and $1 / 4$ find a.

Solution:

We know that GM between a and b is $\sqrt{ } \mathrm{ab}$
Let $\mathrm{a}=2$ and $\mathrm{b}=1 / 4$

$$
\begin{aligned}
\mathrm{GM} & =\sqrt{ }(2 \times 1 / 4) \\
& =\sqrt{ }(1 / 2) \\
& =1 / \sqrt{ } 2
\end{aligned}
$$

\therefore value of a is $1 / \sqrt{ } 2$
6. Find the two numbers whose A.M. is 25 and GM is 20 .

Solution:

Given: A.M $=25$, G.M $=20$.
$\mathrm{G} . \mathrm{M}=\sqrt{ } \mathrm{ab}$
A. $M=(a+b) / 2$

So,

$$
\begin{align*}
& \sqrt{ } \mathrm{ab}=20 \ldots \ldots . \text { (1) } \tag{1}\\
& (\mathrm{a}+\mathrm{b}) / 2=25 \ldots \ldots .(2) \\
& \mathrm{a}+\mathrm{b}=50 \\
& \mathrm{a}=50-\mathrm{b}
\end{align*}
$$

Putting the value of ' a ' in equation (1), we get,
$\sqrt{[(50-b) b]}=20$
$50 b-b^{2}=400$
$b^{2}-50 b+400=0$
$b^{2}-40 b-10 b+400=0$
$b(b-40)-10(b-40)=0$
$b=40$ or $b=10$
If $b=40$ then $a=10$
If $b=10$ then $a=40$
\therefore The numbers are 10 and 40 .
7. Construct a quadratic equation in x such that A.M. of its roots is A and G.M. is G.

Solution:
Let the root of the quadratic equation be a and b.
So, according to the given condition,
A. $\mathrm{M}=(\mathrm{a}+\mathrm{b}) / 2=\mathrm{A}$
$a+b=2 A \ldots .$. (1)

$$
\begin{aligned}
& \mathrm{GM}=\sqrt{ } \mathrm{ab}=\mathrm{G} \\
& \mathrm{ab}=\mathrm{G}^{2} \ldots \text { (2) }
\end{aligned}
$$

The quadratic equation is given by, $x^{2}-x$ (Sum of roots) $+($ Product of roots $)=0$
$x^{2}-x(2 A)+\left(G^{2}\right)=0$
$x^{2}-2 A x+G^{2}=0[U \operatorname{sing}$ (1) and (2)]
\therefore The required quadratic equation is $\mathrm{x}^{2}-2 \mathrm{Ax}+\mathrm{G}^{2}=0$.

