

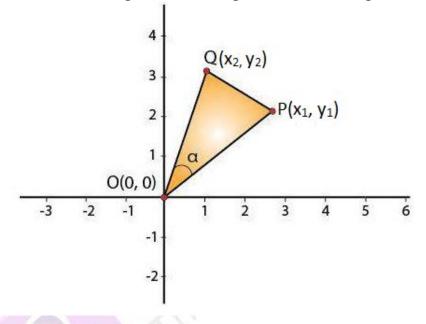
EXERCISE 22.1

PAGE NO: 22.12

1. If the line segment joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ subtends an angle α at the origin O, prove that : OP. OQ cos $\alpha = x_1 x_2 + y_1 y_2$. Solution:

Given,

Two points P and Q subtends an angle α at the origin as shown in figure:

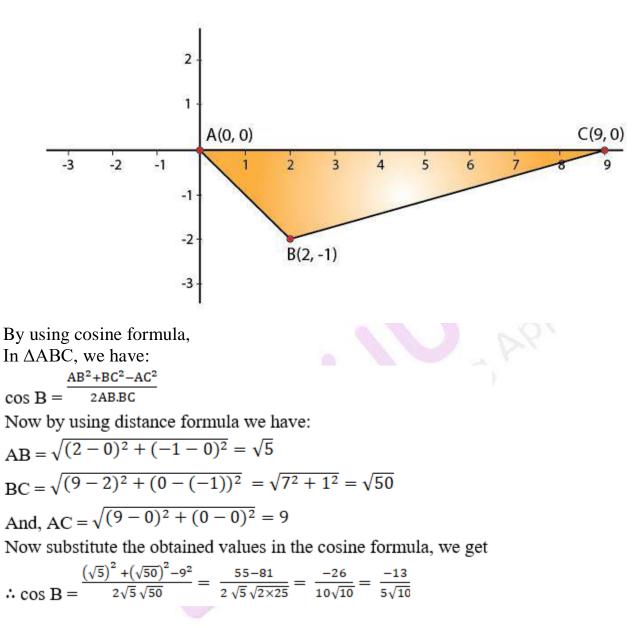


From figure we can see that points O, P and Q forms a triangle. Clearly in $\triangle OPQ$ we have:

 $\cos \alpha = \frac{OP^2 + OQ^2 - PQ^2}{2OP.OQ}$ {from cosine formula} 2 OP.OQ $\cos \alpha = OP^2 + OQ^2 - PQ^2 \dots$ equation (1) We know that the, coordinates of O are $(0, 0) \Rightarrow x_2 = 0$ and $y_2 = 0$ Coordinates of P are $(x_1, y_1) \Rightarrow x_1 = x_1$ and $y_1 = y_1$ By using distance formula we have: $OP = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{(x_1-0)^2+(y_1-0)^2}$ $=\sqrt{x_1^2 + y_1^2}$ Similarly, $OQ = \sqrt{(x_2 - 0)^2 + (y_2 - 0)^2}$ $=\sqrt{x_2^2+y_2^2}$ And, PQ = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $\therefore OP^2 + OQ^2 - PQ^2 = x_1^2 + y_1^2 + x_2^2 + y_2^2 - \{(x_2 - x_1)^2 + (y_2 - y_1)^2\}$ By using $(a-b)^2 = a^2 + b^2 - 2ab$ $\therefore OP^2 + OQ^2 - PQ^2 = 2x_1 x_2 + 2y_1 y_2 \dots$ Equation (2) So now from equation (1) and (2) we have: $20P. OQ \cos \alpha = 2x_1x_2 + 2y_1y_2$ OP. $OQ \cos \alpha = x_1 x_2 + y_1 y_2$ Hence Proved.

2. The vertices of a triangle ABC are A(0, 0), B (2, -1) and C (9, 0). Find cos B. Solution:

Given: The coordinates of triangle. From the figure,



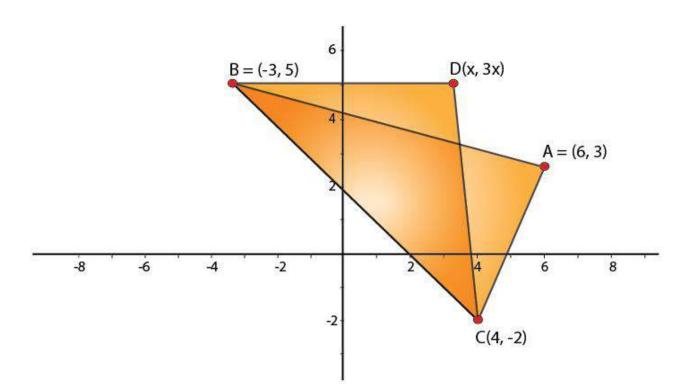
that $\overline{\Delta ABC}^{-2}$, find x.

Solution:

Given:

The coordinates of triangle are shown in the below figure.

Also, $\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}$



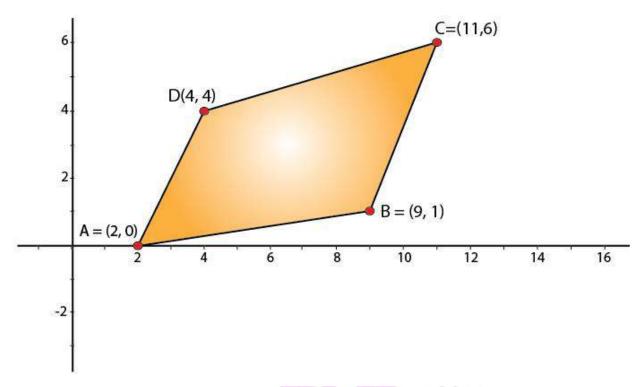
Now let us consider Area of a $\triangle PQR$ Where, $P(x_1, y_1)$, $Q(x_2, y_2)$ and $R(x_3, y_3)$ be the 3 vertices of $\triangle PQR$. So, Area of $(\triangle PQR) = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ Area of $(\triangle DBC) = \frac{1}{2} [x(5 - (-2)) + (-3)(-2 - 3x) + 4(3x - 5)]$ $= \frac{1}{2} [7x + 6 + 9x + 12x - 20] = 14x - 7$ Similarly, area of $(\triangle ABC) = \frac{1}{2} [6(5 - (-2)) + (-3)(-2 - 3) + 4(3 - 5)]$ $= \frac{1}{2} [42 + 15 - 8] = \frac{49}{2} = 24.5$ $\therefore \frac{\triangle DBC}{\triangle ABC} = \frac{1}{2} = \frac{14x - 7}{24.5}$ 24.5 = 28x - 14 28x = 38.5 x = 38.5/28 = 1.375

4. The points A (2, 0), B (9, 1), C (11, 6) and D (4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not. Solution:

Given:

The coordinates of 4 points that form a quadrilateral is shown in the below figure

https://byjus.com



Now by using distance formula, we have: $AB = \sqrt{(9-2)^2 + (1-0)^2} = \sqrt{7^2 + 1} = \sqrt{50}$ $BC = \sqrt{(11-9)^2 + (6-1)^2} = \sqrt{2^2 + 5^2} = \sqrt{29}$ It is clear that, AB \neq BC [quad ABCD does not have all 4 sides equal.] \therefore ABCD is not a Rhombus