

EXERCISE 22.1

PAGE NO: 22.12

1. If the line segment joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ subtends an angle α at the origin O, prove that : OP. OQ cos $\alpha = x_1 x_2 + y_1 y_2$. Solution:

Given,

Two points P and Q subtends an angle α at the origin as shown in figure:

From figure we can see that points O, P and Q forms a triangle. Clearly in $\triangle OPQ$ we have:

 $\cos \alpha = \frac{OP^2 + OQ^2 - PQ^2}{2OP.OQ}$ {from cosine formula} 2 OP.OQ $\cos \alpha = OP^2 + OQ^2 - PQ^2 \dots$ equation (1) We know that the, coordinates of O are $(0, 0) \Rightarrow x_2 = 0$ and $y_2 = 0$ Coordinates of P are $(x_1, y_1) \Rightarrow x_1 = x_1$ and $y_1 = y_1$ By using distance formula we have: $OP = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{(x_1-0)^2+(y_1-0)^2}$ $=\sqrt{x_1^2 + y_1^2}$ Similarly, $OQ = \sqrt{(x_2 - 0)^2 + (y_2 - 0)^2}$ $=\sqrt{x_2^2+y_2^2}$ And, PQ = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $\therefore OP^2 + OQ^2 - PQ^2 = x_1^2 + y_1^2 + x_2^2 + y_2^2 - \{(x_2 - x_1)^2 + (y_2 - y_1)^2\}$ By using $(a-b)^2 = a^2 + b^2 - 2ab$ $\therefore OP^2 + OQ^2 - PQ^2 = 2x_1 x_2 + 2y_1 y_2 \dots$ Equation (2) So now from equation (1) and (2) we have: $20P. OQ \cos \alpha = 2x_1x_2 + 2y_1y_2$ OP. $OQ \cos \alpha = x_1 x_2 + y_1 y_2$ Hence Proved.

2. The vertices of a triangle ABC are A(0, 0), B (2, -1) and C (9, 0). Find cos B. Solution:

Given: The coordinates of triangle. From the figure,

3. Four points A (6, 3), B (-3, 5), C (4, -2) and D (x, 3x) are given in such a way <u>ADBC</u> 1

that $\overline{\Delta ABC}^{-2}$, find x.

Solution:

Given:

The coordinates of triangle are shown in the below figure.

Also, $\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}$

Now let us consider Area of a $\triangle PQR$ Where, $P(x_1, y_1)$, $Q(x_2, y_2)$ and $R(x_3, y_3)$ be the 3 vertices of $\triangle PQR$. So, Area of $(\triangle PQR) = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ Area of $(\triangle DBC) = \frac{1}{2} [x(5 - (-2)) + (-3)(-2 - 3x) + 4(3x - 5)]$ $= \frac{1}{2} [7x + 6 + 9x + 12x - 20] = 14x - 7$ Similarly, area of $(\triangle ABC) = \frac{1}{2} [6(5 - (-2)) + (-3)(-2 - 3) + 4(3 - 5)]$ $= \frac{1}{2} [42 + 15 - 8] = \frac{49}{2} = 24.5$ $\therefore \frac{\triangle DBC}{\triangle ABC} = \frac{1}{2} = \frac{14x - 7}{24.5}$ 24.5 = 28x - 14 28x = 38.5 x = 38.5/28 = 1.375

4. The points A (2, 0), B (9, 1), C (11, 6) and D (4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not. Solution:

Given:

The coordinates of 4 points that form a quadrilateral is shown in the below figure

Now by using distance formula, we have: $AB = \sqrt{(9-2)^2 + (1-0)^2} = \sqrt{7^2 + 1} = \sqrt{50}$ $BC = \sqrt{(11-9)^2 + (6-1)^2} = \sqrt{2^2 + 5^2} = \sqrt{29}$ It is clear that, AB \neq BC [quad ABCD does not have all 4 sides equal.] \therefore ABCD is not a Rhombus

EXERCISE 22.2

PAGE NO: 22.18

1. Find the locus of a point equidistant from the point (2, 4) and the y-axis. Solution:

Let P (h, k) be any point on the locus and let A (2, 4) and B (0, k). Then, PA = PB $PA^2 = PB^2$

By using distance formula:

Distance of (h, k) from (2, 4) = $\sqrt{(h-2)^2 + (k-4)^2}$

Distance of (h, k) from (0, k) = $\sqrt{(h - 0)^2 + (k - k)^2}$

So both the distances are same.

$$\therefore \sqrt{(h-2)^2 + (k-4)^2} = \sqrt{(h-0)^2 + (k-k)^2}$$

By squaring on both the sides we get, $(h-2)^2 + (k-4)^2 = (h-0)^2 + (k-k)^2$ $h^2 + 4 - 4h + k^2 - 8k + 16 = h^2 + 0$ $k^2 - 4h - 8k + 20 = 0$ Replace (h, k) with (x, y)

: The locus of point equidistant from (2, 4) and y-axis is $v^2 - 4x - 8v + 20 = 0$

2. Find the equation of the locus of a point which moves such that the ratio of its distance from (2, 0) and (1, 3) is 5: 4.

Solution:

Let P (h, k) be any point on the locus and let A (2, 0) and B (1, 3). So then, PA/ BP = 5/4PA² = BP² = 25/16

Distance of (h, k) from (2, 0) = $\sqrt{(h-2)^2 + (k-0)^2}$

Distance of (h, k) from $(1, 3) = \sqrt{(h-1)^2 + (k-3)^2}$ So,

 $\frac{\sqrt{(h-2)^2 + (k-0)^2}}{\sqrt{(h-1)^2 + (k-3)^2}} = \frac{5}{4}$ By squaring on both the sides we get, $16\{(h-2)^2 + k^2\} = 25\{(h-1)^2 + (k-3)^2\}$ $16\{h^2 + 4 - 4h + k^2\} = 25\{h^2 - 2h + 1 + k^2 - 6k + 9\}$

$$9h^2 + 9k^2 + 14h - 150k + 186 = 0$$

Replace (h, k) with (x, y) \therefore The locus of a point which moves such that the ratio of its distance from (2, 0) and (1, 3) is 5: 4 which is $9x^2 + 9y^2 + 14x - 150y + 186 = 0$

3. A point moves as so that the difference of its distances from (ae, 0) and (-ae, 0) is 2a, prove that the equation to its locus is

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, where $\mathbf{b}^2 = \mathbf{a}^2 (\mathbf{e}^2 - 1)$.

Solution:

Let P (h, k) be any point on the locus and let A (ae, 0) and B (-ae, 0). Where, PA - PB = 2a

Distance of (h, k) from (ae, 0) = $\sqrt{(h - ae)^2 + (k - 0)^2}$

Distance of (h, k) from (-ae, 0) = $\sqrt{(h - (-ae))^2 + (k - 0)^2}$ So,

$$\begin{split} \sqrt{(h-ae)^2 + (k-0)^2} &- \sqrt{(h-(-ae))^2 + (k-0)^2} = 2a \\ \sqrt{(h-ae)^2 + (k-0)^2} &= 2a + \sqrt{(h+ae)^2 + (k-0)^2} \\ \text{By squaring on both the sides we get:} \\ (h-ae)^2 + (k-0)^2 &= \left\{ 2a + \sqrt{(h+ae)^2 + (k-0)^2} \right\}^2 \\ \Rightarrow h^2 + a^2e^2 - 2aeh + k^2 &= 4a^2 + \{(h+ae)^2 + k^2\} + 4a\sqrt{(h+ae)^2 + (k-0)^2} \\ \Rightarrow h^2 + a^2e^2 - 2aeh + k^2 &= 4a^2 + k^2 + 4a\sqrt{(h+ae)^2 + (k-0)^2} \\ = 4a^2 + h^2 + 2aeh + a^2e^2 + k^2 + 4a\sqrt{(h+ae)^2 + (k-0)^2} \\ -4aeh - 4a^2 &= 4a\sqrt{(h+ae)^2 + (k-0)^2} \\ -4a(eh + a) &= 4a\sqrt{(h+ae)^2 + (k-0)^2} \\ \text{Now again let us square on both the sides we get,} \\ (eh + a)^2 &= (h + ae)^2 + (k - 0)^2 \\ e^{h^2} + a^2 + 2aeh = h^2 + a^2e^2 + 2aeh + k^2 \\ h^2(e^2 - 1) - k^2 &= a^2(e^2 - 1) \\ \frac{h^2}{a^2} - \frac{k^2}{a^2(e^2 - 1)} &= 1 \\ \frac{h^2}{a^2} - \frac{k^2}{b^2} &= 1 \ [where, b^2 &= a^2(e^2 - 1)] \end{split}$$

Now let us replace (h, k) with (x, y)

The locus of a point such that the difference of its distances from (ae, 0) and (-ae, 0) is 2a. $x^2 = y^2$

$$\frac{1}{a^2} - \frac{1}{b^2} = 1$$
 Where $b^2 = a^2 (e^2 - 1)$

Hence proved.

4. Find the locus of a point such that the sum of its distances from (0, 2) and (0, -2) is 6.

Solution:

Let P (h, k) be any point on the locus and let A (0, 2) and B (0, -2). Where, PA - PB = 6Distance of (h, k) from (0, 2) = $\sqrt{(h-0)^2 + (k-2)^2}$ Distance of (h, k) from (0, -2) = $\sqrt{(h-0)^2 + (k-(-2))^2}$ So, $\sqrt{(h)^2 + (k-2)^2} + \sqrt{(h)^2 + (k+2)^2} = 6$ $\sqrt{(h)^2 + (k-2)^2} = 6 - \sqrt{(h)^2 + (k+2)^2}$ By squaring on both the sides we get, $h^{2} + (k-2)^{2} = \left\{ 6 - \sqrt{h^{2} + (k+2)^{2}} \right\}^{2}$ $\Rightarrow h^{2} + 4 - 4k + k^{2} = 36 + \{h^{2} + k^{2} + 4k + 4\} - 12\sqrt{h^{2} + (k + 2)^{2}}$ $\Rightarrow -8k - 36 = -12\sqrt{h^2 + (k+2)^2}$ $\rightarrow -4(2k+9) = -12\sqrt{h^2 + (k+2)^2}$ Now, again let us square on both the sides we get, $(2k+9)^2 = \left\{3\sqrt{h^2 + (k+2)^2}\right\}^2$ $4k^{2} + 81 + 36k = 9(h^{2} + k^{2} + 4k + 4)$ $9h^2 + 5k^2 = 45$ By replacing (h, k) with (x, y)∴ The locus of a point is $9x^2 + 5v^2 = 45$

5. Find the locus of a point which is equidistant from (1, 3) and x-axis. Solution:

Let P (h, k) be any point on the locus and let A (1, 3) and B (h, 0). Where, PA = PB

Distance of (h, k) from $(1, 3) = \sqrt{(h-1)^2 + (k-3)^2}$ Distance of (h, k) from (h, 0) = $\sqrt{(h-h)^2 + (k-0)^2}$ It is given that both distance are same. So, $\sqrt{(h-1)^2 + (k-3)^2} = \sqrt{(h-h)^2 + (k-0)^2}$ Now, let us square on both the sides we get, $(h-1)^2 + (k-3)^2 = (h-h)^2 + (k-0)^2$ $h^2 + 1 - 2h + k^2 - 6k + 9 = k^2 + 0$ $h^2 - 2h - 6k + 10 = 0$ By replacing (h, k) with (x, y), \therefore The locus of point equidistant from (1, 3) and x-axis is $x^2 - 2x - 6y + 10 = 0$

6. Find the locus of a point which moves such that its distance from the origin is three times is distance from x-axis. Solution:

Let P (h, k) be any point on the locus and let A (0, 0) and B (h, 0). Where, PA = 3PB Distance of (h, k) from $(0, 0) = \sqrt{(h - 0)^2 + (k - 0)^2}$ Distance of (h, k) from (h, 0) = $\sqrt{(h - h)^2 + (k - 0)^2}$ So, where PA = 3PB $\therefore \sqrt{(h - 0)^2 + (k - 0)^2} = 3\sqrt{(h - h)^2 + (k - 0)^2}$ Now by squaring on both the sides we get, $h^2 + k^2 = 9k^2$ $h^2 = 8k^2$ By replacing (h, k) with (x, y) \therefore The locus of point is $x^2 = 8y^2$

EXERCISE 22.3

PAGE NO: 22.21

1. What does the equation $(x - a)^2 + (y - b)^2 = r^2$ become when the axes are transferred to parallel axes through the point (a-c, b)? Solution:

Given:

The equation, $(x - a)^2 + (y - b)^2 = r^2$ The given equation $(x - a)^2 + (y - b)^2 = r^2$ can be transformed into the new equation by changing x by x - a + c and y by y - b, i.e. substitution of x by x + a and y by y + b. $((x + a - c) - a)^2 + ((y + b) - b)^2 = r^2$ $(x - c)^2 + y^2 = r^2$ $x^2 + c^2 - 2cx + y^2 = r^2$ $x^2 + y^2 - 2cx = r^2 - c^2$ Hence, the transformed equation is $x^2 + y^2 - 2cx = r^2 - c^2$

2. What does the equation $(a - b) (x^2 + y^2) - 2abx = 0$ become if the origin is shifted to the point (ab / (a-b), 0) without rotation? Solution:

Given:

The equation $(a - b) (x^2 + y^2) - 2abx = 0$

The given equation $(a - b)(x^2 + y^2) - 2abx = 0$ can be transformed into new equation by changing x by [X + ab / (a-b)] and y by Y

$$(a-b)\left[\left(X+rac{ab}{a-b}
ight)^2+Y^2
ight]-2ab imes\left(X+rac{ab}{a-b}
ight)=0$$

Upon expansion we get,

$$(a-b)\left(X^2+rac{a^2b^2}{\left(a-b
ight)^2}+rac{2abX}{a-b}+Y^2
ight)-2abX-rac{2a^2b^2}{a-b}=0$$

Now let us simplify,

$$(a-b)\left(X^2+Y^2\right)+rac{a^2b^2}{a-b}+2abX-2abX-rac{2a^2b^2}{a-b}=0$$

 $(a-b)\left(X^2+Y^2\right)-rac{a^2b^2}{a-b}=0$

By taking LCM we get, $(a-b)^2 (X^2 + Y^2) = a^2 b^2$ Hence, the transformed equation is $(a-b)^2 (X^2 + Y^2) = a^2 b^2$

3. Find what the following equations become when the origin is shifted to the point

(1, 1)?(i) $x^2 + xy - 3x - y + 2 = 0$ (ii) $x^2 - y^2 - 2x + 2y = 0$ (iii) xy - x - y + 1 = 0(iv) $xy - y^2 - x + y = 0$ Solution: (i) $x^2 + xy - 3x - y + 2 = 0$ Firstly let us substitute the value of x by x + 1 and y by y + 1Then. $(x + 1)^{2} + (x + 1)(y + 1) - 3(x + 1) - (y + 1) + 2 = 0$ $x^{2} + 1 + 2x + xy + x + y + 1 - 3x - 3 - y - 1 + 2 = 0$ Upon simplification we get, $\mathbf{x}^2 + \mathbf{x}\mathbf{y} = \mathbf{0}$: The transformed equation is $x^2 + xy = 0$. (ii) $x^2 - y^2 - 2x + 2y = 0$ Let us substitute the value of x by x + 1 and y by y + 1Then, $(x + 1)^{2} - (y + 1)^{2} - 2(x + 1) + 2(y + 1) = 0$ $x^{2} + 1 + 2x - y^{2} - 1 - 2y - 2x - 2 + 2y + 2 = 0$ Upon simplification we get, $x^2 - y^2 = 0$: The transformed equation is $x^2 - y^2 = 0$. (iii) xy - x - y + 1 = 0Let us substitute the value of x by x + 1 and y by y + 1Then, (x + 1) (y + 1) - (x + 1) - (y + 1) + 1 = 0xy + x + y + 1 - x - 1 - y - 1 + 1 = 0Upon simplification we get, xy = 0 \therefore The transformed equation is xy = 0. (iv) $xy - y^2 - x + y = 0$ Let us substitute the value of x by x + 1 and y by y + 1Then. $(x + 1) (y + 1) - (y + 1)^{2} - (x + 1) + (y + 1) = 0$

 $xy + x + y + 1 - y^2 - 1 - 2y - x - 1 + y + 1 = 0$

Upon simplification we get,

 $xy - y^2 = 0$

: The transformed equation is $xy - y^2 = 0$.

4. At what point the origin be shifted so that the equation $x^2 + xy - 3x + 2 = 0$ does not contain any first-degree term and constant term? Solution:

Given:

The equation $x^2 + xy - 3x + 2 = 0$ We know that the origin has been shifted from (0, 0) to (p, q)So any arbitrary point (x, y) will also be converted as (x + p, y + q). The new equation is: $(x + p)^2 + (x + p)(y + q) - 3(x + p) + 2 = 0$ Upon simplification, $x^2 + p^2 + 2px + xy + py + qx + pq - 3x - 3p + 2 = 0$ $x^2 + xy + x(2p + q - 3) + y(q - 1) + p^2 + pq - 3p - q + 2 = 0$ For no first degree term, we have 2p + q - 3 = 0 and p - 1 = 0, and For no constant term we have $p^2 + pq - 3p - q + 2 = 0$. By solving these simultaneous equations we have p = 1 and q = 1 from first equation. The values p = 1 and q = 1 satisfies $p^2 + pq - 3p - q + 2 = 0$. Hence, the point to which origin must be shifted is (p, q) = (1, 1).

5. Verify that the area of the triangle with vertices (2, 3), (5, 7) and (-3 -1) remains invariant under the translation of axes when the origin is shifted to the point (-1, 3). Solution:

Given:

The points (2, 3), (5, 7), and (-3, -1). The area of triangle with vertices (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) is $= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ The area of given triangle = $\frac{1}{2} [2(7+1) + 5(-1-3) - 3(3-7)]$ $= \frac{1}{2} [16 - 20 + 12]$ $= \frac{1}{2} [8]$ = 4Origin shifted to point (-1, 3), the new coordinates of the triangle are (3, 0), (6, 4), and (-2, -4) obtained from subtracting a point (-1, 3). The new area of triangle = $\frac{1}{2} [3(4-(-4)) + 6(-4-0) - 2(0-4)]$ $= \frac{1}{2} [24-24+8]$ $= \frac{1}{2} [8]$ = 4

Since the area of the triangle before and after the translation after shifting of origin

remains same, i.e. 4.

 \therefore We can say that the area of a triangle is invariant to shifting of origin.

