1. If the line segment joining the points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ subtends an angle α at the origin O, prove that : OP. OQ $\cos \alpha=x_{1} X_{2}+y_{1} y_{2}$.

Solution:

Given,
Two points P and Q subtends an angle α at the origin as shown in figure:

From figure we can see that points O, P and Q forms a triangle.
Clearly in $\triangle \mathrm{OPQ}$ we have:
$\cos \alpha=\frac{\mathrm{OP}^{2}+\mathrm{OQ}^{2}-\mathrm{PQ}^{2}}{2 \mathrm{OP} . \mathrm{OQ}}$ \{from cosine formula\}
2 OP.OQ $\cos \alpha=\mathrm{OP}^{2}+\mathrm{OQ}^{2}-\mathrm{PQ}^{2} \ldots$ equation (1)
We know that the, coordinates of O are $(0,0) \Rightarrow x_{2}=0$ and $y_{2}=0$
Coordinates of P are $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{1}$ and $\mathrm{y}_{1}=\mathrm{y}_{1}$
By using distance formula we have:

$$
\begin{aligned}
\mathrm{OP} & =\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}} \\
& =\sqrt{\left(\mathrm{x}_{1}-0\right)^{2}+\left(\mathrm{y}_{1}-0\right)^{2}} \\
& =\sqrt{\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}}
\end{aligned}
$$

Similarly, $O Q=\sqrt{\left(x_{2}-0\right)^{2}+\left(y_{2}-0\right)^{2}}$

$$
=\sqrt{x_{2}^{2}+y_{2}^{2}}
$$

And, $\mathrm{PQ}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}$
$\therefore \mathrm{OP}^{2}+\mathrm{OQ}^{2}-\mathrm{PQ}^{2}=\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{y}_{2}^{2}-\left\{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}\right\}$
By using ($\mathrm{a}-\mathrm{b})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab}$
$\therefore \mathrm{OP}^{2}+\mathrm{OQ}^{2}-\mathrm{PQ}^{2}=2 \mathrm{x}_{1} \mathrm{x}_{2}+2 \mathrm{y}_{1} \mathrm{y}_{2} \ldots$. Equation (2)
So now from equation (1) and (2) we have:
20P. OQ $\cos \alpha=2 \mathrm{x}_{1} \mathrm{x}_{2}+2 \mathrm{y}_{1} \mathrm{y}_{2}$
$O P$. OQ $\cos \alpha=x_{1} x_{2}+y_{1} y_{2}$
Hence Proved.
2. The vertices of a triangle $A B C$ are $A(0,0), B(2,-1)$ and $C(9,0)$. Find $\cos B$. Solution:
Given:
The coordinates of triangle.
From the figure,

By using cosine formula,
In $\triangle \mathrm{ABC}$, we have:
$\cos \mathrm{B}=\frac{\mathrm{AB}^{2}+\mathrm{BC}^{2}-\mathrm{AC}^{2}}{2 \mathrm{AB} \cdot \mathrm{BC}}$
Now by using distance formula we have:
$\mathrm{AB}=\sqrt{(2-0)^{2}+(-1-0)^{2}}=\sqrt{5}$
$\mathrm{BC}=\sqrt{(9-2)^{2}+(0-(-1))^{2}}=\sqrt{7^{2}+1^{2}}=\sqrt{50}$
And, $\mathrm{AC}=\sqrt{(9-0)^{2}+(0-0)^{2}}=9$
Now substitute the obtained values in the cosine formula, we get
$\therefore \cos \mathrm{B}=\frac{(\sqrt{5})^{2}+(\sqrt{50})^{2}-9^{2}}{2 \sqrt{5} \sqrt{50}}=\frac{55-81}{2 \sqrt{5} \sqrt{2 \times 25}}=\frac{-26}{10 \sqrt{10}}=\frac{-13}{5 \sqrt{10}}$

3. Four points $A(6,3), B(-3,5), C(4,-2)$ and $D(x, 3 x)$ are given in such a way

 that $\frac{\triangle \mathrm{DBC}}{\triangle \mathrm{ABC}}=\frac{1}{2}$, find \mathbf{x}.
Solution:

Given:
The coordinates of triangle are shown in the below figure.
Also, $\frac{\Delta \mathrm{DBC}}{\Delta \mathrm{ABC}}=\frac{1}{2}$

Now let us consider Area of a $\triangle P Q R$
Where, $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{R}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ be the 3 vertices of $\triangle \mathrm{PQR}$.
So, Area of $(\triangle P Q R)=1 / 2\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
Area of $(\triangle \mathrm{DBC})=\frac{1}{2}[\mathrm{x}(5-(-2))+(-3)(-2-3 \mathrm{x})+4(3 \mathrm{x}-5)]$

$$
=\frac{1}{2}[7 x+6+9 x+12 x-20]=14 x-7
$$

Similarly, area of $(\triangle \mathrm{ABC})=\frac{1}{2}[6(5-(-2))+(-3)(-2-3)+4(3-5)]$

$$
=\frac{1}{2}[42+15-8]=\frac{49}{2}=24.5
$$

$\therefore \frac{\Delta \mathrm{DBC}}{\triangle \mathrm{ABC}}=\frac{1}{2}=\frac{14 \mathrm{x}-7}{24.5}$
$24.5=28 x-14$
$28 \mathrm{x}=38.5$
$\mathrm{x}=38.5 / 28$
$=1.375$

4. The points $A(2,0), B(9,1), C(11,6)$ and $D(4,4)$ are the vertices of a quadrilateral ABCD . Determine whether ABCD is a rhombus or not.
 Solution:

Given:
The coordinates of 4 points that form a quadrilateral is shown in the below figure

Now by using distance formula, we have:
$\mathrm{AB}=\sqrt{(9-2)^{2}+(1-0)^{2}}=\sqrt{7^{2}+1}=\sqrt{50}$
$\mathrm{BC}=\sqrt{(11-9)^{2}+(6-1)^{2}}=\sqrt{2^{2}+5^{2}}=\sqrt{29}$
It is clear that, $A B \neq B C$ [quad $A B C D$ does not have all 4 sides equal.]
$\therefore \mathrm{ABCD}$ is not a Rhombus

1. Find the locus of a point equidistant from the point $(2,4)$ and the y-axis.
 Solution:

Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be any point on the locus and let $\mathrm{A}(2,4)$ and $\mathrm{B}(0, \mathrm{k})$.
Then, $\mathrm{PA}=\mathrm{PB}$
$\mathrm{PA}^{2}=\mathrm{PB}^{2}$
By using distance formula:
Distance of (h, k) from $(2,4)=\sqrt{(\mathrm{h}-2)^{2}+(\mathrm{k}-4)^{2}}$
Distance of (h, k) from $(0, \mathrm{k})=\sqrt{(\mathrm{h}-0)^{2}+(\mathrm{k}-\mathrm{k})^{2}}$
So both the distances are same.
$\therefore \sqrt{(\mathrm{h}-2)^{2}+(\mathrm{k}-4)^{2}}=\sqrt{(\mathrm{h}-0)^{2}+(\mathrm{k}-\mathrm{k})^{2}}$
By squaring on both the sides we get,
$(\mathrm{h}-2)^{2}+(\mathrm{k}-4)^{2}=(\mathrm{h}-0)^{2}+(\mathrm{k}-\mathrm{k})^{2}$
$h^{2}+4-4 h+k^{2}-8 k+16=h^{2}+0$
$\mathrm{k}^{2}-4 \mathrm{~h}-8 \mathrm{k}+20=0$
Replace (h, k) with (x, y)
\therefore The locus of point equidistant from $(2,4)$ and y-axis is

$$
y^{2}-4 x-8 y+20=0
$$

2. Find the equation of the locus of a point which moves such that the ratio of its

 distance from $(2,0)$ and $(1,3)$ is 5: 4.
Solution:

Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be any point on the locus and let $\mathrm{A}(2,0)$ and $\mathrm{B}(1,3)$.
So then, $\mathrm{PA} / \mathrm{BP}=5 / 4$
$\mathrm{PA}^{2}=\mathrm{BP}^{2}=25 / 16$
Distance of (h, k) from $(2,0)=\sqrt{(\mathrm{h}-2)^{2}+(\mathrm{k}-0)^{2}}$
Distance of (h, k) from $(1,3)=\sqrt{(\mathrm{h}-1)^{2}+(\mathrm{k}-3)^{2}}$
So,

$$
\frac{\sqrt{(\mathrm{h}-2)^{2}+(\mathrm{k}-0)^{2}}}{\sqrt{(\mathrm{~h}-1)^{2}+(\mathrm{k}-3)^{2}}}=\frac{5}{4}
$$

By squaring on both the sides we get,

$$
\begin{aligned}
& 16\left\{(\mathrm{~h}-2)^{2}+\mathrm{k}^{2}\right\}=25\left\{(\mathrm{~h}-1)^{2}+(\mathrm{k}-3)^{2}\right\} \\
& 16\left\{\mathrm{~h}^{2}+4-4 \mathrm{~h}+\mathrm{k}^{2}\right\}=25\left\{\mathrm{~h}^{2}-2 \mathrm{~h}+1+\mathrm{k}^{2}-6 \mathrm{k}+9\right\}
\end{aligned}
$$

$9 h^{2}+9 \mathrm{k}^{2}+14 \mathrm{~h}-150 \mathrm{k}+186=0$
Replace (h, k) with (x, y)
\therefore The locus of a point which moves such that the ratio of its distance from $(2,0)$ and $(1,3)$ is $5: 4$ which is
$9 \mathrm{x}^{2}+9 \mathrm{y}^{2}+14 \mathrm{x}-150 \mathrm{y}+186=0$
3. A point moves as so that the difference of its distances from (ae, 0) and (-ae, 0) is 2a, prove that the equation to its locus is

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, \text { where } \mathbf{b}^{\mathbf{2}}=\mathbf{a}^{\mathbf{2}}\left(\mathbf{e}^{\mathbf{2}}-\mathbf{1}\right)
$$

Solution:

Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be any point on the locus and let $\mathrm{A}(\mathrm{ae}, 0)$ and $\mathrm{B}(-\mathrm{ae}, 0)$.
Where, $\mathrm{PA}-\mathrm{PB}=2 \mathrm{a}$
Distance of (h, k) from $(\mathrm{ae}, 0)=\sqrt{(\mathrm{h}-\mathrm{ae})^{2}+(\mathrm{k}-0)^{2}}$
Distance of (h, k) from $(-\mathrm{ae}, 0)=\sqrt{(\mathrm{h}-(-\mathrm{ae}))^{2}+(\mathrm{k}-0)^{2}}$ So,

$$
\begin{aligned}
& \sqrt{(\mathrm{h}-\mathrm{ae})^{2}+(\mathrm{k}-0)^{2}}-\sqrt{(\mathrm{h}-(-\mathrm{ae}))^{2}+(\mathrm{k}-0)^{2}}=2 \mathrm{a} \\
& \sqrt{(\mathrm{~h}-\mathrm{ae})^{2}+(\mathrm{k}-0)^{2}}=2 \mathrm{a}+\sqrt{(\mathrm{h}+\mathrm{ae})^{2}+(\mathrm{k}-0)^{2}}
\end{aligned}
$$

By squaring on both the sides we get:

$$
\begin{aligned}
& (h-a e)^{2}+(k-0)^{2}=\left\{2 a+\sqrt{(h+a e)^{2}+(k-0)^{2}}\right\}^{2} \\
& \Rightarrow h^{2}+a^{2} e^{2}-2 a e h+k^{2}=4 a^{2}+\left\{(h+a e)^{2}+k^{2}\right\}+4 a \sqrt{(h+a e)^{2}+(k-0)^{2}} \\
& \Rightarrow h^{2}+a^{2} e^{2}-2 a e h+k^{2} \\
& \quad=4 a^{2}+h^{2}+2 a e h+a^{2} e^{2}+k^{2}+4 a \sqrt{(h+a e)^{2}+(k-0)^{2}} \\
& -4 a e h-4 a^{2}=4 a \sqrt{(h+a e)^{2}+(k-0)^{2}} \\
& -4 a(e h+a)=4 a \sqrt{(h+a e)^{2}+(k-0)^{2}}
\end{aligned}
$$

Now again let us square on both the sides we get, $(\mathrm{eh}+\mathrm{a})^{2}=(\mathrm{h}+\mathrm{ae})^{2}+(\mathrm{k}-0)^{2}$
$e^{2} h^{2}+a^{2}+2 a e h=h^{2}+a^{2} e^{2}+2 a e h+k^{2}$
$h^{2}\left(e^{2}-1\right)-k^{2}=a^{2}\left(e^{2}-1\right)$
$\frac{h^{2}}{a^{2}}-\frac{k^{2}}{a^{2}\left(e^{2}-1\right)}=1$
$\frac{h^{2}}{a^{2}}-\frac{k^{2}}{b^{2}}=1 \quad\left[\right.$ where,$\left.b^{2}=a^{2}\left(e^{2}-1\right)\right]$

Now let us replace (h, k) with (x, y)
The locus of a point such that the difference of its distances from $(\mathrm{ae}, 0)$ and $(-\mathrm{ae}, 0)$ is 2 a .
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad$ Where $\mathrm{b}^{2}=\mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right)$
Hence proved.
4. Find the locus of a point such that the sum of its distances from $(0,2)$ and $(0,-2)$ is 6.

Solution:

Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be any point on the locus and let $\mathrm{A}(0,2)$ and $\mathrm{B}(0,-2)$.
Where, $\mathrm{PA}-\mathrm{PB}=6$
Distance of (h, k) from $(0,2)=\sqrt{(\mathrm{h}-0)^{2}+(\mathrm{k}-2)^{2}}$
Distance of (h, k) from $(0,-2)=\sqrt{(h-0)^{2}+(k-(-2))^{2}}$
So,
$\sqrt{(\mathrm{h})^{2}+(\mathrm{k}-2)^{2}}+\sqrt{(\mathrm{h})^{2}+(\mathrm{k}+2)^{2}}=6$
$\sqrt{(\mathrm{h})^{2}+(\mathrm{k}-2)^{2}}=6-\sqrt{(\mathrm{h})^{2}+(\mathrm{k}+2)^{2}}$
By squaring on both the sides we get,

$$
\begin{aligned}
& h^{2}+(k-2)^{2}=\left\{6-\sqrt{h^{2}+(k+2)^{2}}\right\}^{2} \\
& \Rightarrow h^{2}+4-4 k+k^{2}=36+\left\{h^{2}+k^{2}+4 k+4\right\}-12 \sqrt{h^{2}+(k+2)^{2}} \\
& \Rightarrow-8 k-36=-12 \sqrt{h^{2}+(k+2)^{2}} \\
& \Rightarrow-4(2 k+9)=-12 \sqrt{h^{2}+(k+2)^{2}}
\end{aligned}
$$

Now, again let us square on both the sides we get,
$(2 \mathrm{k}+9)^{2}=\left\{3 \sqrt{\mathrm{~h}^{2}+(\mathrm{k}+2)^{2}}\right\}^{2}$
$4 \mathrm{k}^{2}+81+36 \mathrm{k}=9\left(\mathrm{~h}^{2}+\mathrm{k}^{2}+4 \mathrm{k}+4\right)$
$9 h^{2}+5 \mathrm{k}^{2}=45$
By replacing (h, k) with (x, y)
\therefore The locus of a point is
$9 x^{2}+5 y^{2}=45$

5. Find the locus of a point which is equidistant from $(1,3)$ and x-axis. Solution:

Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be any point on the locus and let $\mathrm{A}(1,3)$ and $\mathrm{B}(\mathrm{h}, 0)$.
Where, $\mathrm{PA}=\mathrm{PB}$

Distance of (h, k) from $(1,3)=\sqrt{(\mathrm{h}-1)^{2}+(\mathrm{k}-3)^{2}}$
Distance of (h, k) from $(\mathrm{h}, 0)=\sqrt{(\mathrm{h}-\mathrm{h})^{2}+(\mathrm{k}-0)^{2}}$
It is given that both distance are same.
So,
$\sqrt{(\mathrm{h}-1)^{2}+(\mathrm{k}-3)^{2}}=\sqrt{(\mathrm{h}-\mathrm{h})^{2}+(\mathrm{k}-0)^{2}}$
Now, let us square on both the sides we get,
$(\mathrm{h}-1)^{2}+(\mathrm{k}-3)^{2}=(\mathrm{h}-\mathrm{h})^{2}+(\mathrm{k}-0)^{2}$
$\mathrm{h}^{2}+1-2 \mathrm{~h}+\mathrm{k}^{2}-6 \mathrm{k}+9=\mathrm{k}^{2}+0$
$h^{2}-2 h-6 k+10=0$
By replacing (h, k) with (x, y),
\therefore The locus of point equidistant from $(1,3)$ and x -axis is
$x^{2}-2 x-6 y+10=0$

6. Find the locus of a point which moves such that its distance from the origin is three times is distance from x -axis.

Solution:
Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be any point on the locus and let $\mathrm{A}(0,0)$ and $\mathrm{B}(\mathrm{h}, 0)$.
Where, $\mathrm{PA}=3 \mathrm{~PB}$
Distance of (h, k) from $(0,0)=\sqrt{(\mathrm{h}-0)^{2}+(\mathrm{k}-0)^{2}}$
Distance of (h, k) from $(\mathrm{h}, 0)=\sqrt{(\mathrm{h}-\mathrm{h})^{2}+(\mathrm{k}-0)^{2}}$
So, where $\mathrm{PA}=3 \mathrm{~PB}$
$\therefore \sqrt{(\mathrm{h}-0)^{2}+(\mathrm{k}-0)^{2}}=3 \sqrt{(\mathrm{~h}-\mathrm{h})^{2}+(\mathrm{k}-0)^{2}}$
Now by squaring on both the sides we get,
$h^{2}+\mathrm{k}^{2}=9 \mathrm{k}^{2}$
$h^{2}=8 \mathrm{k}^{2}$
By replacing (h, k) with (x, y)
\therefore The locus of point is $\mathrm{x}^{2}=8 \mathrm{y}^{2}$

EXERCISE 22.3

1. What does the equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ become when the axes are transferred to parallel axes through the point (a-c, b)?

Solution:

Given:
The equation, $(x-a)^{2}+(y-b)^{2}=r^{2}$
The given equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ can be transformed into the new equation by changing x by $x-a+c$ and y by $y-b$, i.e. substitution of x by $x+a$ and y by $y+b$.
$((x+a-c)-a)^{2}+((y+b)-b)^{2}=r^{2}$
$(x-c)^{2}+y^{2}=r^{2}$
$x^{2}+c^{2}-2 c x+y^{2}=r^{2}$
$x^{2}+y^{2}-2 c x=r^{2}-c^{2}$
Hence, the transformed equation is $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{cx}=\mathrm{r}^{2}-\mathrm{c}^{2}$
2. What does the equation $(a-b)\left(x^{2}+y^{2}\right)-2 a b x=0$ become if the origin is shifted to the point $(\mathrm{ab} /(\mathrm{a}-\mathrm{b}), 0)$ without rotation?

Solution:

Given:
The equation $(a-b)\left(x^{2}+y^{2}\right)-2 a b x=0$
The given equation $(a-b)\left(x^{2}+y^{2}\right)-2 a b x=0$ can be transformed into new equation by changing x by $[\mathrm{X}+\mathrm{ab} /(\mathrm{a}-\mathrm{b})]$ and y by Y
$(a-b)\left[\left(X+\frac{a b}{a-b}\right)^{2}+Y^{2}\right]-2 a b \times\left(X+\frac{a b}{a-b}\right)=0$
Upon expansion we get,
$(a-b)\left(X^{2}+\frac{a^{2} b^{2}}{(a-b)^{2}}+\frac{2 a b X}{a-b}+Y^{2}\right)-2 a b X-\frac{2 a^{2} b^{2}}{a-b}=0$
Now let us simplify,
$(a-b)\left(X^{2}+Y^{2}\right)+\frac{a^{2} b^{2}}{a-b}+2 a b X-2 a b X-\frac{2 a^{2} b^{2}}{a-b}=0$
$(a-b)\left(X^{2}+Y^{2}\right)-\frac{a^{2} b^{2}}{a-b}=0$
By taking LCM we get, $(a-b)^{2}\left(X^{2}+Y^{2}\right)=a^{2} b^{2}$
Hence, the transformed equation is $(a-b)^{2}\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)=\mathrm{a}^{2} \mathrm{~b}^{2}$
3. Find what the following equations become when the origin is shifted to the point
$(1,1)$?
(i) $x^{2}+x y-3 x-y+2=0$
(ii) $x^{2}-y^{2}-2 x+2 y=0$
(iii) $\mathbf{x y}-\mathrm{x}-\mathrm{y}+\mathbf{1 = 0}$
(iv) $\mathbf{x y}-\mathbf{y}^{2}-x+y=0$

Solution:

(i) $x^{2}+x y-3 x-y+2=0$

Firstly let us substitute the value of x by $x+1$ and y by $y+1$
Then,
$(x+1)^{2}+(x+1)(y+1)-3(x+1)-(y+1)+2=0$
$x^{2}+1+2 x+x y+x+y+1-3 x-3-y-1+2=0$
Upon simplification we get,
$x^{2}+x y=0$
\therefore The transformed equation is $\mathrm{x}^{2}+\mathrm{xy}=0$.
(ii) $x^{2}-y^{2}-2 x+2 y=0$

Let us substitute the value of x by $x+1$ and y by $y+1$
Then,
$(\mathrm{x}+1)^{2}-(\mathrm{y}+1)^{2}-2(\mathrm{x}+1)+2(\mathrm{y}+1)=0$
$x^{2}+1+2 x-y^{2}-1-2 y-2 x-2+2 y+2=0$
Upon simplification we get,
$\mathrm{x}^{2}-\mathrm{y}^{2}=0$
\therefore The transformed equation is $\mathrm{x}^{2}-\mathrm{y}^{2}=0$.
(iii) $\mathbf{x y}-\mathbf{x}-\mathbf{y}+\mathbf{1}=\mathbf{0}$

Let us substitute the value of x by $\mathrm{x}+1$ and y by $\mathrm{y}+1$
Then,
$(x+1)(y+1)-(x+1)-(y+1)+1=0$
$x y+x+y+1-x-1-y-1+1=0$
Upon simplification we get,
$x y=0$
\therefore The transformed equation is $\mathrm{xy}=0$.
(iv) $\mathbf{x y}-\mathbf{y}^{2}-\mathbf{x}+\mathbf{y}=0$

Let us substitute the value of x by $\mathrm{x}+1$ and y by $\mathrm{y}+1$
Then,
$(x+1)(y+1)-(y+1)^{2}-(x+1)+(y+1)=0$
$x y+x+y+1-y^{2}-1-2 y-x-1+y+1=0$
Upon simplification we get,
$x y-y^{2}=0$
\therefore The transformed equation is $\mathrm{xy}-\mathrm{y}^{2}=0$.
4. At what point the origin be shifted so that the equation $x^{2}+x y-3 x+2=0$ does not contain any first-degree term and constant term?

Solution:

Given:
The equation $x^{2}+x y-3 x+2=0$
We know that the origin has been shifted from $(0,0)$ to (p, q)
So any arbitrary point (x, y) will also be converted as ($\mathrm{x}+\mathrm{p}, \mathrm{y}+\mathrm{q}$).
The new equation is:
$(x+p)^{2}+(x+p)(y+q)-3(x+p)+2=0$
Upon simplification,
$\mathrm{x}^{2}+\mathrm{p}^{2}+2 \mathrm{px}+\mathrm{xy}+\mathrm{py}+\mathrm{qx}+\mathrm{pq}-3 \mathrm{x}-3 \mathrm{p}+2=0$
$\mathrm{x}^{2}+\mathrm{xy}+\mathrm{x}(2 \mathrm{p}+\mathrm{q}-3)+\mathrm{y}(\mathrm{q}-1)+\mathrm{p}^{2}+\mathrm{pq}-3 \mathrm{p}-\mathrm{q}+2=0$
For no first degree term, we have $2 p+q-3=0$ and $p-1=0$, and
For no constant term we have $\mathrm{p}^{2}+\mathrm{pq}-3 \mathrm{p}-\mathrm{q}+2=0$.
By solving these simultaneous equations we have $\mathrm{p}=1$ and $\mathrm{q}=1$ from first equation.
The values $\mathrm{p}=1$ and $\mathrm{q}=1$ satisfies $\mathrm{p}^{2}+\mathrm{pq}-3 \mathrm{p}-\mathrm{q}+2=0$.
Hence, the point to which origin must be shifted is $(p, q)=(1,1)$.
5. Verify that the area of the triangle with vertices $(2,3),(5,7)$ and ($-3-1$) remains invariant under the translation of axes when the origin is shifted to the point $(-1,3)$. Solution:
Given:
The points $(2,3),(5,7)$, and $(-3,-1)$.
The area of triangle with vertices $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$, and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ is

$$
=1 / 2\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]
$$

The area of given triangle $=1 / 2[2(7+1)+5(-1-3)-3(3-7)]$

$$
\begin{aligned}
& =1 / 2[16-20+12] \\
& =1 / 2[8] \\
& =4
\end{aligned}
$$

Origin shifted to point $(-1,3)$, the new coordinates of the triangle are $(3,0),(6,4)$, and $(-$ $2,-4$) obtained from subtracting a point $(-1,3)$.
The new area of triangle $=1 / 2[3(4-(-4))+6(-4-0)-2(0-4)]$

$$
\begin{aligned}
& =1 / 2[24-24+8] \\
& =1 / 2[8] \\
& =4
\end{aligned}
$$

Since the area of the triangle before and after the translation after shifting of origin
remains same, i.e. 4.
\therefore We can say that the area of a triangle is invariant to shifting of origin.

