EXERCISE 23.11

1. Prove that the following sets of three lines are concurrent:

(i) $15 x-18 y+1=0,12 x+10 y-3=0$ and $6 x+66 y-11=0$
(ii) $3 x-5 y-11=0,5 x+3 y-7=0$ and $x+2 y=0$

Solution:

(i) $15 x-18 y+1=0,12 x+10 y-3=0$ and $6 x+66 y-11=0$

Given:

$$
\begin{align*}
& 15 x-18 y+1=0 \\
& 12 x+10 y-3=0 \tag{ii}\\
& 6 x+66 y-11=0 \tag{iii}
\end{align*}
$$

Now, consider the following determinant:

$$
\left|\begin{array}{ccc}
15 & -18 & 1 \\
12 & 10 & -3 \\
6 & 66 & -11
\end{array}\right|=15(-110+198)+18(-132+18)+1(792-60)
$$

$\Rightarrow 1320-2052+732=0$
Hence proved, the given lines are concurrent.
(ii) $3 x-5 y-11=0,5 x+3 y-7=0$ and $x+2 y=0$

Given:
$3 x-5 y-11=0$
$5 x+3 y-7=0$
$x+2 y=0$ \qquad
Now, consider the following determinant:
$\left|\begin{array}{ccc}3 & -5 & -11 \\ 5 & 3 & -7 \\ 1 & 2 & 0\end{array}\right|=3 \times 14+5 \times 7-11 \times 7=0$
Hence, the given lines are concurrent.
2. For what value of λ are the three lines $2 x-5 y+3=0,5 x-9 y+\lambda=0$ and $x-2 y+$ 1 = 0 concurrent?

Solution:

Given:
$2 \mathrm{x}-5 \mathrm{y}+3=0$
$5 \mathrm{x}-9 \mathrm{y}+\lambda=0$
$\mathrm{x}-2 \mathrm{y}+1=0$
It is given that the three lines are concurrent.
Now, consider the following determinant:

$$
\therefore\left|\begin{array}{lll}
2 & -5 & 3 \\
5 & -9 & \lambda \\
1 & -2 & 1
\end{array}\right|=0
$$

$2(-9+2 \lambda)+5(5-\lambda)+3(-10+9)=0$
$-18+4 \lambda+25-5 \lambda-3=0$
$\lambda=4$
\therefore The value of λ is 4 .
3. Find the conditions that the straight lines $y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $y=m_{3} x+$ \mathbf{c}_{3} may meet in a point.
Solution:
Given:

$$
\begin{align*}
& \mathrm{m}_{1} \mathrm{x}-\mathrm{y}+\mathrm{c}_{1}=0 \ldots \text { (1) } \\
& \mathrm{m}_{2} \mathrm{x}-\mathrm{y}+\mathrm{c}_{2}=0 \ldots \text { (2) } \\
& \mathrm{m}_{3} \mathrm{x}-\mathrm{y}+\mathrm{c}_{3}=0 \ldots \text { (3) } \tag{3}
\end{align*}
$$

It is given that the three lines are concurrent.
Now, consider the following determinant:
$\therefore\left|\begin{array}{lll}\mathrm{m}_{1} & -1 & \mathrm{c}_{1} \\ \mathrm{~m}_{2} & -1 & \mathrm{c}_{2} \\ \mathrm{~m}_{3} & -1 & \mathrm{c}_{3}\end{array}\right|=0$
$m_{1}\left(-c_{3}+c_{2}\right)+1\left(m_{2} c_{3}-m_{3} c_{2}\right)+c_{1}\left(-m_{2}+m_{3}\right)=0$
$\mathrm{m}_{1}\left(\mathrm{c}_{2}-\mathrm{c}_{3}\right)+\mathrm{m}_{2}\left(\mathrm{c}_{3}-\mathrm{c}_{1}\right)+\mathrm{m}_{3}\left(\mathrm{c}_{1}-\mathrm{c}_{2}\right)=0$
\therefore The required condition is $\mathrm{m}_{1}\left(\mathrm{c}_{2}-\mathrm{c}_{3}\right)+\mathrm{m}_{2}\left(\mathrm{c}_{3}-\mathrm{c}_{1}\right)+\mathrm{m}_{3}\left(\mathrm{c}_{1}-\mathrm{c}_{2}\right)=0$
4. If the lines $p_{1} x+q_{1} y=1, p_{2} x+q_{2} y=1$ and $p_{3} x+q_{3} y=1$ be concurrent, show that the points $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ and $\left(p_{3}, q_{3}\right)$ are collinear.
Solution:
Given:
$\mathrm{p}_{1} \mathrm{x}+\mathrm{q}_{1} \mathrm{y}=1$
$\mathrm{p}_{2} \mathrm{x}+\mathrm{q}_{2} \mathrm{y}=1$
$p_{3} \mathrm{x}+\mathrm{q}_{3} \mathrm{y}=1$
The given lines can be written as follows:
$\mathrm{p}_{1} \mathrm{x}+\mathrm{q}_{1} \mathrm{y}-1=0 \ldots$ (1)
$\mathrm{p}_{2} \mathrm{x}+\mathrm{q}_{2} \mathrm{y}-1=0 \ldots$ (2)
$\mathrm{p}_{3} \mathrm{x}+\mathrm{q}_{3} \mathrm{y}-1=0 \ldots$ (3)
It is given that the three lines are concurrent.
Now, consider the following determinant:

$$
\left|\begin{array}{lll}
\mathrm{p}_{1} & \mathrm{q}_{1} & -1 \\
\mathrm{p}_{2} & \mathrm{q}_{2} & -1 \\
\mathrm{p}_{3} & \mathrm{q}_{3} & -1
\end{array}\right|=0
$$

$-\left|\begin{array}{lll}\mathrm{p}_{1} & \mathrm{q}_{1} & 1 \\ \mathrm{p}_{2} & \mathrm{q}_{2} & 1 \\ \mathrm{p}_{3} & \mathrm{q}_{3} & 1\end{array}\right|=0$
$\left|\begin{array}{lll}\mathrm{p}_{1} & \mathrm{q}_{1} & 1 \\ \mathrm{p}_{2} & \mathrm{q}_{2} & 1 \\ \mathrm{p}_{3} & \mathrm{q}_{3} & 1\end{array}\right|=0$
Hence proved, the given three points, $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ and $\left(p_{3}, q_{3}\right)$ are collinear.
5. Show that the straight lines $L_{1}=(b+c) x+a y+1=0, L_{2}=(c+a) x+b y+1=0$ and $L_{3}=(a+b) x+c y+1=0$ are concurrent.
Solution:
Given:
$\mathrm{L}_{1}=(\mathrm{b}+\mathrm{c}) \mathrm{x}+\mathrm{ay}+1=0$
$L_{2}=(c+a) x+b y+1=0$
$\mathrm{L}_{3}=(\mathrm{a}+\mathrm{b}) \mathrm{x}+\mathrm{cy}+1=0$
The given lines can be written as follows:
$(b+c) x+a y+1=0 \ldots$ (1)
$(c+a) x+b y+1=0 \ldots$ (2)
$(a+b) x+c y+1=0 \ldots$ (3)
Consider the following determinant.

$$
\left|\begin{array}{lll}
\mathrm{b}+\mathrm{c} & \mathrm{a} & 1 \\
\mathrm{c}+\mathrm{a} & \mathrm{~b} & 1 \\
\mathrm{a}+\mathrm{b} & \mathrm{c} & 1
\end{array}\right|
$$

Let us apply the transformation $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}$, we get

$$
\begin{aligned}
& \left|\begin{array}{lll}
\mathrm{b}+\mathrm{c} & \mathrm{a} & 1 \\
\mathrm{c}+\mathrm{a} & \mathrm{~b} & 1 \\
\mathrm{a}+\mathrm{b} & \mathrm{c} & 1
\end{array}\right|=\left|\begin{array}{lll}
\mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{a} & 1 \\
\mathrm{c}+\mathrm{a}+\mathrm{b} & \mathrm{~b} & 1 \\
\mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{c} & 1
\end{array}\right| \\
& \left|\begin{array}{lll}
\mathrm{b}+\mathrm{c} & \mathrm{a} & 1 \\
\mathrm{c}+\mathrm{a} & \mathrm{~b} & 1 \\
\mathrm{a}+\mathrm{b} & \mathrm{c} & 1
\end{array}\right|
\end{aligned}=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{lll}
1 & \mathrm{a} & 1 \\
1 & \mathrm{~b} & 1 \\
1 & \mathrm{c} & 1
\end{array}\right|,
$$

Hence proved, the given lines are concurrent.

