EXERCISE 23.13

1. Find the angles between each of the following pairs of straight lines:

(i) $3 x+y+12=0$ and $x+2 y-1=0$
(ii) $3 x-y+5=0$ and $x-3 y+1=0$

Solution:

(i) $3 x+y+12=0$ and $x+2 y-1=0$

Given:
The equations of the lines are

$$
\begin{aligned}
& 3 x+y+12=0 \ldots(1) \\
& x+2 y-1=0 \ldots(2)
\end{aligned}
$$

Let m_{1} and m_{2} be the slopes of these lines.
$m_{1}=-3, m_{2}=-1 / 2$
Let θ be the angle between the lines.
Then, by using the formula

$$
\begin{aligned}
\tan \theta & =\left[\left(m_{1}-m_{2}\right) /\left(1+m_{1} m_{2}\right)\right] \\
& =[(-3+1 / 2) /(1+3 / 2)] \\
& =1
\end{aligned}
$$

So,
$\theta=\pi / 4$ or 45°
\therefore The acute angle between the lines is 45°
(ii) $3 x-y+5=0$ and $x-3 y+1=0$

Given:
The equations of the lines are
$3 x-y+5=0 \ldots$ (1)
$x-3 y+1=0 \ldots$ (2)
Let m_{1} and m_{2} be the slopes of these lines.
$\mathrm{m}_{1}=3, \mathrm{~m}_{2}=1 / 3$
Let θ be the angle between the lines.
Then, by using the formula
$\tan \theta=\left[\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right) /\left(1+\mathrm{m}_{1} \mathrm{~m}_{2}\right)\right]$
$=[(3-1 / 3) /(1+3(1 / 3))]$
$=[((9-1) / 3) /(1+1)]$

$$
=8 / 6
$$

$$
=4 / 3
$$

So,
$\theta=\tan ^{-1}(4 / 3)$
\therefore The acute angle between the lines is $\tan ^{-1}(4 / 3)$.
2. Find the acute angle between the lines $2 x-y+3=0$ and $x+y+2=0$.

Solution:

Given:
The equations of the lines are
$2 \mathrm{x}-\mathrm{y}+3=0$
$x+y+2=0$

Let m_{1} and m_{2} be the slopes of these lines.
$\mathrm{m}_{1}=2, \mathrm{~m}_{2}=-1$
Let θ be the angle between the lines.
Then, by using the formula

$$
\begin{aligned}
\tan \theta & =\left[\left(m_{1}-m_{2}\right) /\left(1+m_{1} m_{2}\right)\right] \\
& =[(2-(-1) /(1+(2)(-1))] \\
& =[3 /(1-2)] \\
& =3
\end{aligned}
$$

So,
$\theta=\tan ^{-1}$ (3)
\therefore The acute angle between the lines is $\tan ^{-1}(3)$.
3. Prove that the points $(2,-1),(0,2),(2,3)$ and $(4,0)$ are the coordinates of the vertices of a parallelogram and find the angle between its diagonals.

Solution:

To prove:
The points $(2,-1),(0,2),(2,3)$ and $(4,0)$ are the coordinates of the vertices of a parallelogram
Let us assume the points, $\mathrm{A}(2,-1), \mathrm{B}(0,2), \mathrm{C}(2,3)$ and $\mathrm{D}(4,0)$ be the vertices. Now, let us find the slopes

$$
\begin{aligned}
\text { Slope of } \mathrm{AB} & =[(2+1) /(0-2)] \\
& =-3 / 2
\end{aligned}
$$

Slope of BC $=[(3-2) /(2-0)]$

$$
=1 / 2
$$

Slope of CD $=[(0-3) /(4-2)]$

$$
=-3 / 2
$$

Slope of DA $=[(-1-0) /(2-4)]$

$$
=1 / 2
$$

Thus, $A B$ is parallel to $C D$ and $B C$ is parallel to $D A$.
Hence proved, the given points are the vertices of a parallelogram.

Now, let us find the angle between the diagonals AC and BD.
Let m_{1} and m_{2} be the slopes of AC and BD , respectively.

$$
\begin{aligned}
\mathrm{m}_{1} & =[(3+1) /(2-2)] \\
& =\infty \\
\mathrm{m}_{2} & =[(0-2) /(4-0)] \\
& =-1 / 2
\end{aligned}
$$

Thus, the diagonal AC is parallel to the y -axis.
$\angle \mathrm{ODB}=\tan ^{-1}(1 / 2)$
In triangle MND,
$\angle \mathrm{DMN}=\pi / 2-\tan ^{-1}(1 / 2)$
\therefore The angle between the diagonals is $\pi / 2-\tan ^{-1}(1 / 2)$.
4. Find the angle between the line joining the points $(2,0),(0,3)$ and the line $x+y=$ 1.

Solution:

Given:
Points $(2,0),(0,3)$ and the line $x+y=1$.
Let us assume $\mathrm{A}(2,0), \mathrm{B}(0,3)$ be the given points.
Now, let us find the slopes
Slope of $\mathrm{AB}=\mathrm{m}_{1}$

$$
\begin{aligned}
& =[(3-0) /(0-2)] \\
& =-3 / 2
\end{aligned}
$$

Slope of the line $\mathrm{x}+\mathrm{y}=1$ is -1
$\therefore \mathrm{m}_{2}=-1$
Let θ be the angle between the line joining the points $(2,0),(0,3)$ and the line $\mathrm{x}+\mathrm{y}=$ $\tan \theta=\left|\left[\left(m_{1}-m_{2}\right) /\left(1+m_{1} m_{2}\right)\right]\right|$

$$
=[(-3 / 2+1) /(1+3 / 2)]
$$

$$
=1 / 5
$$

$\theta=\tan ^{-1}(1 / 5)$
\therefore The acute angle between the line joining the points $(2,0),(0,3)$ and the line $\mathrm{x}+\mathrm{y}=1$ is $\tan ^{-1}(1 / 5)$.

5. If $\boldsymbol{\theta}$ is the angle which the straight line joining the points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$)

subtends at the origin, provethat $\tan \theta=\frac{x_{2} y_{1}-x_{1} y_{2}}{x_{1} x_{2}+y_{1} y_{2}}$ and $\cos \theta=\frac{x_{1} y_{2}+y_{1} y_{2}}{\sqrt{x_{1}^{2}+y_{1}^{2}} \sqrt{x_{2}^{2}+y_{2}^{2}}}$

Solution:

We need to prove:

$$
\tan \theta=\frac{x_{2} y_{1}-x_{1} y_{2}}{x_{1} x_{2}+y_{1} y_{2}} \text { and } \cos \theta=\frac{x_{1} x_{2}+y_{1} y_{2}}{\sqrt{x_{1}^{2}+y_{1}^{2}} \sqrt{x_{2}^{2}+y_{2}^{2}}} .
$$

Let us assume $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ be the given points and O be the origin.
Slope of OA = $m_{1}=y_{1} x_{1}$
Slope of $\mathrm{OB}=\mathrm{m}_{2}=\mathrm{y}_{2} \mathrm{x}_{2}$
It is given that θ is the angle between lines OA and OB.

$$
\tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|
$$

Now, substitute the values, we get

$$
\begin{aligned}
& =\frac{\frac{y_{1}}{x_{1}}-\frac{y_{2}}{x_{2}}}{1+\frac{y_{1}}{x_{1}} \times \frac{y_{2}}{x_{2}}} \\
\tan \theta & =\frac{x_{2} y_{1}-\bar{x}_{1} y_{2}}{x_{1} x_{2}+y_{1} y_{2}}
\end{aligned}
$$

Now,
As we know that $\cos \theta=\sqrt{\frac{1}{1+\tan ^{2} \theta}}$ Now, substitute the values, we get

$$
\begin{aligned}
& \cos \theta=\frac{x_{1} x_{2}+y_{1} y_{2}}{\sqrt{\left(x_{2} y_{1}-x_{1} y_{2}\right)^{2}+\left(x_{1} x_{2}+y_{1} y_{2}\right)^{2}}} \\
& \cos \theta=\frac{x_{1} x_{2}+y_{1} y_{2}}{\sqrt{x_{1}^{2} y_{1}^{2}+x_{1}^{2} y_{2}^{2}+x_{1}^{2} x_{2}^{2}+y_{1}^{2} y_{2}^{2}}} \\
& \cos \theta=\frac{x_{1} x_{2}+y_{1} y_{2}}{\sqrt{x_{1}^{2}+y_{1}^{2}} \sqrt{x_{2}^{2}+y_{2}^{2}}}
\end{aligned}
$$

Hence proved.

