1. Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line $\sqrt{3} x+y=11$.

Solution:

Given:
Equation passes through $(0,0)$ and make an angle of 45° with the line $\sqrt{3 x}+y=11$. We know that, the equations of two lines passing through a point $\mathrm{x}_{1}, \mathrm{y}_{1}$ and making an angle α with the given line $y=m x+c$ are

$$
\mathrm{y}-\mathrm{y}_{1}=\frac{\mathrm{m} \pm \tan \alpha}{1 \mp \mathrm{mtan} \alpha}\left(\mathrm{x}-\mathrm{x}_{1}\right)
$$

Here,

$$
\mathrm{x}_{1}=0, \mathrm{y}_{1}=0, \alpha=45^{\circ} \text { and } \mathrm{m}=-\sqrt{ } 3
$$

So, the equations of the required lines are

$$
\begin{aligned}
y-0 & =\frac{-\sqrt{3}+\tan 45^{\circ}}{1+\sqrt{3} \tan 45^{\circ}}(x-0) \text { and } y-0 \\
& =\frac{-\sqrt{3}-\tan 45^{\circ}}{1-\sqrt{3} \tan 45^{\circ}}(x-0) \\
& =\frac{-\sqrt{3}+1}{1+\sqrt{3}} x \text { and } y=\frac{\sqrt{3}+1}{\sqrt{3}-1} x \\
& =-\frac{3+1-2 \sqrt{3}}{3-1} x \text { and } y=\frac{3+1+2 \sqrt{3}}{3-1} x \\
& =(\sqrt{3}-2) x \text { and } y=(\sqrt{3}+2) x
\end{aligned}
$$

\therefore The equation of given line is $y=(\sqrt{3}-2) x$ and $y=(\sqrt{3}+2) x$

2. Find the equations to the straight lines which pass through the origin and are

 inclined at an angle of 75° to the straight line $x+y+\sqrt{3}(y-x)=a$.
Solution:

Given:
The equation passes through $(0,0)$ and make an angle of 75° with the line $x+y+\sqrt{3}(y-$ $\mathrm{x})=\mathrm{a}$.
We know that the equations of two lines passing through a point $\mathrm{x}_{1}, \mathrm{y}_{1}$ and making an angle α with the given line $y=m x+c$ are
$y-y_{1}=\frac{m \pm \tan \alpha}{1 \mp m \tan \alpha}\left(x-x_{1}\right)$

Here, equation of the given line is,

$$
\begin{aligned}
& x+y+\sqrt{3}(y-x)=a \\
& (\sqrt{3}+1) y=(\sqrt{3}-1) x+a \\
& y=\frac{\sqrt{3}-1}{\sqrt{3}+1} x+\frac{a}{\sqrt{3}+1}
\end{aligned}
$$

Comparing this equation with $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
We get,

$$
\begin{aligned}
& \mathrm{m}=\frac{\sqrt{3}-1}{\sqrt{3}+1} \\
& \therefore \mathrm{x}_{1}=0, \mathrm{y}_{1}=0, \alpha=75^{\circ}, \\
& \mathrm{m}=\frac{\sqrt{3}-1}{\sqrt{3}+1}=2-\sqrt{3} \text { and } \tan 75^{\circ}=2+\sqrt{3}
\end{aligned}
$$

So, the equations of the required lines are

$$
\begin{aligned}
& \begin{array}{l}
y-0=\frac{2-\sqrt{3}+\tan 75^{\circ}}{1-(2-\sqrt{3}) \tan 75^{\circ}}(x-0) \text { and } y-0 \\
\quad=\frac{2-\sqrt{3}-\tan 75^{\circ}}{1+(2-\sqrt{3}) \tan 75^{\circ}}(x-0) \\
y=\frac{2-\sqrt{3}+2+\sqrt{3}}{1-(2-\sqrt{3})(2+\sqrt{3})} x \text { and } y=\frac{2-\sqrt{3}-2-\sqrt{3}}{1+(2-\sqrt{3})(2+\sqrt{3})} x \\
y=\frac{4}{1-1} x \text { and } y=-\sqrt{3} \mathrm{x} \\
\mathrm{x}=0 \text { and } \sqrt{3} \mathrm{x}+\mathrm{y}=0
\end{array}
\end{aligned}
$$

\therefore The equation of given line is $\mathrm{x}=0$ and $\sqrt{3} \mathrm{x}+\mathrm{y}=0$
3. Find the equations of straight lines passing through ($2,-1$) and making an angle of 45° with the line $6 x+5 y-8=0$.

Solution:

Given:
The equation passes through $(2,-1)$ and make an angle of 45° with the line $6 x+5 y-8=0$ We know that the equations of two lines passing through a point $\mathrm{x}_{1}, \mathrm{y}_{1}$ and making an angle α with the given line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ are

$$
\mathrm{y}-\mathrm{y}_{1}=\frac{\mathrm{m} \pm \tan \alpha}{1 \mp \mathrm{mtan} \alpha}\left(\mathrm{x}-\mathrm{x}_{1}\right)
$$

Here, equation of the given line is,
$6 x+5 y-8=0$
$5 y=-6 x+8$
$y=-6 x / 5+8 / 5$
Comparing this equation with $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
We get, $m=-6 / 5$
Where, $\mathrm{x}_{1}=2, \mathrm{y}_{1}=-1, \alpha=45^{\circ}, \mathrm{m}=-6 / 5$
So, the equations of the required lines are

$$
\begin{aligned}
& y+1=\frac{\left(-\frac{6}{5}+\tan 45^{\circ}\right)}{\left(1+\frac{6}{5} \tan 45^{\circ}\right)}(x-2) \text { and } y+1=\frac{\left(-\frac{6}{5}-\tan 45^{\circ}\right)}{\left(1-\frac{6}{5} \tan 45^{\circ}\right)}(x-2) \\
& y+1=\frac{\left(-\frac{6}{5}+1\right)}{\left(1+\frac{6}{5}\right)}(x-2) \text { and } y+1=\frac{\left(-\frac{6}{5}-1\right)}{\left(1-\frac{6}{5}\right)}(x-2) \\
& y+1=-\frac{1}{11}(x-2) \text { and } y+1=-\frac{11}{-1}(x-2) \\
& x+11 y+9=0 \text { and } 11 x-y-23=0
\end{aligned}
$$

\therefore The equation of given line is $\mathrm{x}+11 \mathrm{y}+9=0$ and $11 \mathrm{x}-\mathrm{y}-23=0$

4. Find the equations to the straight lines which pass through the point (h, k) and

 are inclined at angle $\tan ^{-1} \mathrm{~m}$ to the straight line $\mathbf{y}=\mathbf{m x}+c$.
Solution:

Given:
The equation passes through (h, k) and make an angle of $\tan ^{-1} m$ with the line $y=m x+c$ We know that the equations of two lines passing through a point $\mathrm{x}_{1}, \mathrm{y}_{1}$ and making an angle α with the given line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ are
$\mathrm{m}^{\prime}=\mathrm{m}$
So,
$y-y_{1}=\frac{m \pm \tan \alpha}{1 \mp m \tan \alpha}\left(x-x_{1}\right)$
Here,
$\mathrm{x}_{1}=\mathrm{h}, \mathrm{y}_{1}=\mathrm{k}, \alpha=\tan ^{-1} \mathrm{~m}, \mathrm{~m}^{\prime}=\mathrm{m}$.
So, the equations of the required lines are

$$
\begin{aligned}
& y-k=\frac{m+m}{1-m^{2}}(x-h) \text { and } y-k=\frac{m-m}{1+m^{2}}(x-h) \\
& y-k=\frac{2 m}{1-m^{2}}(x-h) \text { and } y-k=0 \\
& (y-k)\left(1-m^{2}\right)=2 m(x-h) \text { and } y=k
\end{aligned}
$$

\therefore The equation of given line is $(y-k)\left(1-m^{2}\right)=2 m(x-h)$ and $y=k$.
5. Find the equations to the straight lines passing through the point $(2,3)$ and inclined at an angle of 45° to the lines $3 x+y-5=0$.

Solution:

Given:
The equation passes through $(2,3)$ and make an angle of 45° with the line $3 x+y-5=0$. We know that the equations of two lines passing through a point $\mathrm{x}_{1}, \mathrm{y}_{1}$ and making an angle α with the given line $y=m x+c$ are

$$
\mathrm{y}-\mathrm{y}_{1}=\frac{\mathrm{m} \pm \tan \alpha}{1 \mp \mathrm{~m} \tan \alpha}\left(\mathrm{x}-\mathrm{x}_{1}\right)
$$

Here,
Equation of the given line is,
$3 x+y-5=0$
$y=-3 x+5$
Comparing this equation with $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ we get, $\mathrm{m}=-3$
$\mathrm{x}_{1}=2, \mathrm{y}_{1}=3, \alpha=45 \circ, \mathrm{~m}=-3$.
So, the equations of the required lines are

$$
\begin{aligned}
y-3 & =\frac{-3+\tan 45^{\circ}}{1+3 \tan 45^{\circ}}(x-2) \text { and } y-3=\frac{-3-\tan 45^{\circ}}{1-3 \tan 45^{\circ}}(x-2) \\
y-3 & =\frac{-3+1}{1+3}(x-2) \text { and } y-3=\frac{-3-1}{1-3}(x-2) \\
y-3 & =\frac{-1}{2}(x-2) \text { and } y-3=2(x-2) \\
x+2 y-8 & =0 \text { and } 2 x-y-1=0
\end{aligned}
$$

\therefore The equation of given line is $\mathrm{x}+2 \mathrm{y}-8=0$ and $2 \mathrm{x}-\mathrm{y}-1=0$

