EXERCISE 26.1

1. Find the equation of the ellipse whose focus is (1, -2), the directrix $3 x-2 y+5=0$ and eccentricity equal to $\mathbf{1 / 2}$.

Solution:

Given:
Focus $=(1,-2)$
Directrix $=3 x-2 y+5=0$
Eccentricity $=1 / 2$
Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the ellipse.
We know that distance between the points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) is given as
$\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}}$
We also know that the perpendicular distance from the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the line $\mathrm{ax}+\mathrm{by}+$ $\mathrm{c}=0$ is given as $\frac{\left|\mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{c}\right|}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}$
So,
SP = ePM
$\mathrm{SP}^{2}=\mathrm{e}^{2} \mathrm{PM}^{2}$

$$
\begin{aligned}
& (x-1)^{2}+(y-(-2))^{2}=\left(\frac{1}{2}\right)^{2}\left(\frac{|3 x-2 y+5|}{\left.\sqrt{3^{2}+(-2)^{2}}\right)^{2}}\right. \\
& x^{2}-2 x+1+y^{2}+4 y+4=\frac{1}{4} \times \frac{(|3 x-2 y+5|)^{2}}{9+4} \\
& x^{2}+y^{2}-2 x+4 y+5=\frac{1}{52} \times\left(9 x^{2}+4 y^{2}+25-12 x y-20 y+30 x\right)
\end{aligned}
$$

Upon cross multiplying, we get
$52 \mathrm{x}^{2}+52 \mathrm{y}^{2}-104 \mathrm{x}+208 \mathrm{y}+260=9 \mathrm{x}^{2}+4 \mathrm{y}^{2}-12 \mathrm{xy}-20 \mathrm{y}+30 \mathrm{x}+25$
$43 x^{2}+48 y^{2}+12 x y-134 x+228 y+235=0$
\therefore The equation of the ellipse is $43 x^{2}+48 y^{2}+12 x y-134 x+228 y+235=0$
2. Find the equation of the ellipse in the following cases:
(i) focus is $(0,1)$, directrix is $\mathbf{x}+\mathbf{y}=0$ and $\mathrm{e}=1 / 2$.
(ii) focus is $(-1,1)$, directrix is $\mathbf{x}-\mathrm{y}+3=0$ and $\mathrm{e}=1 / 2$.
(iii) focus is $(-2,3)$, directrix is $2 x+3 y+4=0$ and $e=4 / 5$.
(iv) focus is $(\mathbf{1}, 2)$, directrix is $3 x+4 y-7=0$ and $\mathrm{e}=1 / 2$.

Solution:
(i) focus is $(0,1)$, directrix is $x+y=0$ and $e=1 / 2$

Given:
Focus is $(0,1)$

Directrix is $x+y=0$
$\mathrm{e}=1 / 2$
Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the ellipse.
We know that distance between the points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) is given as $\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}}$

We also know that the perpendicular distance from the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the line $\mathrm{ax}+\mathrm{by}+$
$\mathrm{c}=0$ is given as $\frac{\left|a x_{1}+\mathrm{by}_{1}+\mathrm{c\mid}\right|}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}$
So,
SP = ePM
$\mathrm{SP}^{2}=\mathrm{e}^{2} \mathrm{PM}^{2}$
$(x-0)^{2}+(y-1)^{2}=\left(\frac{1}{2}\right)^{2}\left(\frac{|x+y|}{\sqrt{1^{2}+1^{2}}}\right)^{2}$
$x^{2}+y^{2}-2 y+1=\frac{1}{4} \times \frac{(|x+y|)^{2}}{1+1}$
$x^{2}+y^{2}-2 y+1=\frac{1}{8} \times\left(x^{2}+y^{2}+2 x y\right)$
Upon cross multiplying, we get
$8 x^{2}+8 y^{2}-16 y+8=x^{2}+y^{2}+2 x y$
$7 \mathrm{x}^{2}+7 \mathrm{y}^{2}-2 \mathrm{xy}-16 \mathrm{y}+8=0$
\therefore The equation of the ellipse is $7 \mathrm{x}^{2}+7 \mathrm{y}^{2}-2 \mathrm{xy}-16 \mathrm{y}+8=0$
(ii) focus is $(-1,1)$, directrix is $\mathrm{x}-\mathrm{y}+3=0$ and $\mathrm{e}=1 / 2$

Given:
Focus is $(-1,1)$
Directrix is $\mathrm{x}-\mathrm{y}+3=0$
$\mathrm{e}=1 / 2$
Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the ellipse.
We know that distance between the points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) is given as
$\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
We also know that the perpendicular distance from the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the line $\mathrm{ax}+\mathrm{by}+$ $\mathrm{c}=0$ is given as $\frac{\left|a x_{1}+\mathrm{by}_{1}+\mathrm{c\mid}\right|}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}$
So,
SP = ePM
$\mathrm{SP}^{2}=\mathrm{e}^{2} \mathrm{PM}^{2}$

$$
\begin{aligned}
& (x-(-1))^{2}+(y-1)^{2}=\left(\frac{1}{2}\right)^{2}\left(\frac{|x-y+3|}{\sqrt{1^{2}+1^{2}}}\right)^{2} \\
& x^{2}+2 x+1+y^{2}-2 y+1=\frac{1}{4} \times \frac{(|x-y+3|)^{2}}{1+1} \\
& x^{2}+y^{2}+2 x-2 y+2=\frac{1}{8} \times\left(x^{2}+y^{2}+9-2 x y-6 y+6 x\right)
\end{aligned}
$$

Upon cross multiplying, we get

$$
\begin{aligned}
& 8 x^{2}+8 y^{2}+16 x-16 y+16=x^{2}+y^{2}-2 x y+6 x-6 y+9 \\
& 7 x^{2}+7 y^{2}+2 x y+10 x-10 y+7=0
\end{aligned}
$$

\therefore The equation of the ellipse is $7 x^{2}+7 y^{2}+2 x y+10 x-10 y+7=0$
(iii) focus is $(-2,3)$, directrix is $2 x+3 y+4=0$ and $e=4 / 5$

Focus is $(-2,3)$
Directrix is $2 x+3 y+4=0$
$\mathrm{e}=4 / 5$
Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the ellipse.
We know that distance between the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is given as $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$

We also know that the perpendicular distance from the point $\left(x_{1}, y_{1}\right)$ to the line $a x+b y+$ $\mathrm{c}=0$ is given as $\frac{\| \mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{c} \mid}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}$
So,
$S P=e P M$
$S P P^{2}=\mathrm{e}^{2} \mathrm{PM}^{2}$

$$
\begin{aligned}
& (x-(-2))^{2}+(y-3)^{2}=\left(\frac{4}{5}\right)^{2}\left(\frac{|2 x+3 y+4|}{\sqrt{2^{2}+3^{2}}}\right)^{2} \\
& x^{2}+4 x+4+y^{2}-6 y+9=\frac{16}{25} \times \frac{(|2 x+3 y+4|)^{2}}{4+9} \\
& x^{2}+y^{2}+4 x-6 y+13=(16 / 325) \times\left(4 x^{2}+9 y^{2}+16+12 x y+16 x+24 y\right)
\end{aligned}
$$

Upon cross multiplying, we get
$325 x^{2}+325 y^{2}+1300 x-1950 y+4225=64 x^{2}+144 y^{2}+192 x y+256 x+384 y+256$
$261 x^{2}+181 y^{2}-192 x y+1044 x-2334 y+3969=0$
\therefore The equation of the ellipse is $261 \mathrm{x}^{2}+181 \mathrm{y}^{2}-192 \mathrm{xy}+1044 \mathrm{x}-2334 \mathrm{y}+3969=0$
(iv) focus is $(1,2)$, directrix is $3 x+4 y-7=0$ and $e=1 / 2$.

Given:
focus is $(1,2)$
directrix is $3 x+4 y-7=0$
$\mathrm{e}=1 / 2$.

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the ellipse.
We know that distance between the points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) is given as
$\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
We also know that the perpendicular distance from the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the line $\mathrm{ax}+\mathrm{by}+$ $\mathrm{c}=0$ is given as $\frac{\left|\mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{c}\right|}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}$
So,
SP = ePM
$\mathrm{SP}^{2}=\mathrm{e}^{2} \mathrm{PM}^{2}$
$(x-1)^{2}+(y-2)^{2}=\left(\frac{1}{2}\right)^{2}\left(\frac{|3 x+4 y-5|}{\sqrt{3^{2}+4^{2}}}\right)^{2}$
$x^{2}-2 x+1+y^{2}-4 y+4=\frac{1}{4} \times \frac{(|3 x+4 y-5|)^{2}}{9+16}$
$x^{2}+y^{2}-2 x-4 y+5=\frac{1}{100} \times\left(9 x^{2}+16 y^{2}+25+24 x y-30 x-40 y\right)$
Upon cross multiplying, we get
$100 x^{2}+100 y^{2}-200 x-400 y+500=9 x^{2}+16 y^{2}+24 x y-30 x-40 y+25$
$91 x^{2}+84 y^{2}-24 x y-170 x-360 y+475=0$
\therefore The equation of the ellipse is $91 \mathrm{x}^{2}+84 \mathrm{y}^{2}-24 \mathrm{xy}-170 \mathrm{x}-360 \mathrm{y}+475=0$
3. Find the eccentricity, coordinates of foci, length of the latus - rectum of the following ellipse:
(i) $4 x^{2}+9 y^{2}=1$
(ii) $5 x^{2}+4 y^{2}=1$
(iii) $4 x^{2}+3 y^{2}=1$
(iv) $25 \mathrm{x}^{2}+16 \mathrm{y}^{2}=1600$
(v) $9 x^{2}+25 y^{2}=225$

Solution:
(i) $4 x^{2}+9 y^{2}=1$

Given:
The equation of ellipse $=>4 x^{2}+9 y^{2}=1$
This equation can be expressed as
$\frac{x^{2}}{\frac{1}{4}}+\frac{y^{2}}{\frac{1}{9}}=1$
By using the formula,
Eccentricity:
$e=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$
Here, $a^{2}=1 / 4, b^{2}=1 / 9$

$$
\begin{aligned}
& =\sqrt{\frac{\frac{1}{4}-\frac{1}{9}}{\frac{1}{4}}} \\
& =\sqrt{\frac{\frac{5}{36}}{\frac{1}{4}}} \\
& =\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{3}
\end{aligned}
$$

Length of latus rectum $=2 b^{2} / a$

$$
\begin{aligned}
& =[2(1 / 9)] /(1 / 2) \\
& =4 / 9
\end{aligned}
$$

Coordinates of foci $(\pm a \mathrm{a}, 0)$

$$
\begin{aligned}
\text { foci } & =\left(\pm \frac{1}{2} \times \frac{\sqrt{5}}{3}, 0\right) \\
& =\left(\pm \frac{\sqrt{5}}{6}, 0\right)
\end{aligned}
$$

\therefore The eccentricity is $\frac{\sqrt{5}}{3}$, foci are $\left(\pm \frac{\sqrt{5}}{6}, 0\right)$ and length of the latus rectum is $\frac{4}{9}$.
(ii) $5 x^{2}+4 y^{2}=1$

Given:
The equation of ellipse $=>5 x^{2}+4 y^{2}=1$
This equation can be expressed as
$\frac{x^{2}}{\frac{1}{5}}+\frac{y^{2}}{\frac{1}{4}}=1$
Here, $\mathrm{a}^{2}=1 / 5$ and $\mathrm{b}^{2}=1 / 4$
i.e. $a=1 / \sqrt{ } 5, b=1 / 2$

Clearly $b>a$ or $b^{2}>a^{2}$
By using the formula,
$e=\sqrt{\frac{b^{2}-a^{2}}{a^{2}}}$

$$
\begin{aligned}
\mathrm{e} & =\sqrt{\frac{\frac{1}{4}-\frac{1}{5}}{\frac{1}{4}}} \\
& =\sqrt{\frac{\frac{1}{20}}{\frac{1}{4}}} \\
& =\sqrt{\frac{1}{5}}
\end{aligned}
$$

Length of latus rectum $=2 b^{2} / a$

$$
\begin{aligned}
& =[2(1 / 5)] /(1 / 2) \\
& =4 / 5
\end{aligned}
$$

Coordinates of foci $(\pm \mathrm{ae}, 0)$

$$
\begin{aligned}
\text { foci } & =\left(0, \pm \frac{1}{2} \times \sqrt{\frac{1}{5}}\right) \\
& =\left(0, \pm \frac{1}{2 \sqrt{5}}\right)
\end{aligned}
$$

\therefore The eccentricity is $\sqrt{\frac{1}{5}}$, foci are $\left(0, \pm \frac{1}{2 \sqrt{5}}\right)$ and length of the latus rectum is $\frac{4}{5}$.
(iii) $4 x^{2}+3 y^{2}=1$

Given:
The equation of ellipse $=>4 x^{2}+3 y^{2}=1$
This equation can be expressed as
$\frac{x^{2}}{\frac{1}{4}}+\frac{y^{2}}{\frac{1}{3}}=1$
By using the formula,
Eccentricity:
$e=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$
Here, $a^{2}=1 / 4$ and $b^{2}=1 / 3$
Clearly $\mathrm{b}^{2}>\mathrm{a}^{2}$
$e=\sqrt{ }\left(1-\left(a^{2} / b^{2}\right)\right)$
$e=\sqrt{1-\frac{1}{4}}$

$$
\begin{aligned}
& =\sqrt{\frac{\frac{1}{3}-\frac{1}{4}}{\frac{1}{3}}} \\
& =\sqrt{\frac{\frac{1}{12}}{\frac{1}{3}}} \\
& =\sqrt{\frac{1}{4}} \\
& =\frac{1}{2}
\end{aligned}
$$

Length of latus rectum $=2 b^{2} / a$

$$
\begin{aligned}
& =[2(1 / 4)] /(1 / \sqrt{ } 3) \\
& =\sqrt{3} / 2
\end{aligned}
$$

Coordinates of foci $(\pm \mathrm{ae}, 0)$

$$
\begin{aligned}
\text { foci } & =\left(0, \pm \frac{1}{\sqrt{3}} \times \frac{1}{2}\right) \\
& =\left(0, \pm \frac{1}{2 \sqrt{3}}\right)
\end{aligned}
$$

\therefore The eccentricity is $\frac{\sqrt{3}}{2}$, foci are $\left(0, \pm \frac{1}{2 \sqrt{3}}\right)$ and length of the latus rectum is $\frac{\sqrt{3}}{2}$.
(iv) $25 \mathrm{x}^{2}+16 \mathrm{y}^{2}=1600$

Given:
The equation of ellipse $=>25 x^{2}+16 y^{2}=1600$
This equation can be expressed as
$\frac{25 \mathrm{x}^{2}}{1600}+\frac{16 \mathrm{y}^{2}}{1600}=1$
$\frac{x^{2}}{64}+\frac{y^{2}}{100}=1$
By using the formula,
Eccentricity:

$$
e=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}
$$

Here, $a^{2}=64$ and $b^{2}=100$
Clearly $\mathrm{b}^{2}>\mathrm{a}^{2}$

$$
\begin{aligned}
e & =\sqrt{ }\left(1-\left(a^{2} / b^{2}\right)\right) \\
e & =\sqrt{1-\frac{64}{100}} \\
& =\sqrt{\frac{100-64}{100}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\frac{36}{100}} \\
& =\frac{6}{10} \\
& =\frac{3}{5}
\end{aligned}
$$

Length of latus rectum $=2 b^{2} / a$

$$
\begin{aligned}
& =[2(64)] /(100) \\
& =32 / 25
\end{aligned}
$$

Coordinates of foci $(\pm \mathrm{ae}, 0)$

$$
\begin{aligned}
\text { foci } & =\left(0, \pm 10 \times \frac{3}{5}\right) \\
& =(0, \pm 6)
\end{aligned}
$$

\therefore The eccentricity is $\frac{3}{5}$, foci are $(0, \pm 6)$ and length of the latus rectum is $\frac{32}{25}$.
(v) $9 x^{2}+25 y^{2}=225$

Given:
The equation of ellipse $=>9 x^{2}+25 y^{2}=225$
This equation can be expressed as

$$
\begin{aligned}
& \frac{9 x^{2}}{225}+\frac{25 y^{2}}{225}=1 \\
& \frac{x^{2}}{25}+\frac{y^{2}}{9}=1
\end{aligned}
$$

By using the formula,
Eccentricity:
$e=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$
Here, $\mathrm{a}^{2}=25$ and $\mathrm{b}^{2}=9$

$$
\begin{aligned}
\mathrm{e} & =\sqrt{\frac{25-9}{25}} \\
& =\sqrt{\frac{16}{25}} \\
& =\frac{4}{5}
\end{aligned}
$$

Length of latus rectum $=2 b^{2} / a$

$$
\begin{aligned}
& =[2(9)] /(5) \\
& =18 / 5
\end{aligned}
$$

Coordinates of foci $(\pm$ ae, 0$)$

$$
\begin{aligned}
\text { foci } & =\left(\pm 5 \times \frac{4}{5}, 0\right) \\
& =(\pm 4,0)
\end{aligned}
$$

\therefore The eccentricity is $\frac{4}{5}$, foci are $(\pm 4,0)$ and length of the latus rectum is $\frac{18}{5}$.
4. Find the equation to the ellipse (referred to its axes as the axes of x and y respectively) which passes through the point $(-3,1)$ and has eccentricity $\sqrt{ }(2 / 5)$.

Solution:

Given:
The point $(-3,1)$
Eccentricity $=\sqrt{ }(2 / 5)$
Now let us find the equation to the ellipse.
We know that the equation of the ellipse whose axes are x and y - axis is given as
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$....(1)
$e=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$
$\sqrt{\frac{2}{5}}=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$
$\frac{2}{5}=1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}$
$\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{3}{5}$
$b^{2}=\frac{3 a^{2}}{5}$.
Now let us substitute equation (2) in equation (1), we get

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{\frac{3 a^{2}}{5}}=1 \\
& \frac{x^{2}}{a^{2}}+\frac{5 y^{2}}{3 a^{2}}=1 \\
& 3 x^{2}+5 y^{2}=3 a^{2}
\end{aligned}
$$

It is given that the curve passes through the point $(-3,1)$.
So by substituting the point in the curve we get,
$3(-3)^{2}+5(1)^{2}=3 a^{2}$
$3(9)+5=3 \mathrm{a}^{2}$
$32=3 \mathrm{a}^{2}$
$\mathrm{a}^{2}=32 / 3$
From equation (2)
$b^{2}=3 \mathrm{a}^{2} / 5$
$=3(32 / 3) / 5$
$=32 / 5$
So now, the equation of the ellipse is given as:

$$
\begin{aligned}
& \frac{x^{2}}{\frac{32}{3}}+\frac{y^{2}}{\frac{32}{5}}=1 \\
& \frac{3 x^{2}}{32}+\frac{5 y^{2}}{32}=1 \\
& 3 x^{2}+5 y^{2}=32
\end{aligned}
$$

\therefore The equation of the ellipse is $3 \mathrm{x}^{2}+5 \mathrm{y}^{2}=32$.
5. Find the equation of the ellipse in the following cases:
(i) eccentricity $\mathrm{e}=1 / 2$ and foci $(\pm 2,0)$
(ii) eccentricity $e=2 / 3$ and length of latus - rectum $=5$
(iii) eccentricity $e=1 / 2$ and semi - major axis $=4$
(iv) eccentricity $\mathrm{e}=1 / 2$ and major axis $=12$
(v) The ellipse passes through $(1,4)$ and $(-6,1)$

Solution:

(i) Eccentricity e $=1 / 2$ and foci $(\pm 2,0)$

Given:
Eccentricity e = $1 / 2$
Foci $(\pm 2,0)$
Now let us find the equation to the ellipse.
We know that the equation of the ellipse whose axes are x and y - axis is given as
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
By using the formula,
Eccentricity:

$$
\begin{aligned}
& \mathrm{e}=\sqrt{\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}} \\
& \frac{1}{2}=\sqrt{\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}} \\
& \frac{1}{4}=1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}} \\
& \frac{\mathrm{~b}^{2}}{\mathrm{a}^{2}}=\frac{3}{4}
\end{aligned}
$$

$b^{2}=3 a^{2} / 4$
It is given that foci $(\pm 2,0)=>$ foci $=(\pm \mathrm{ae}, 0)$
Where, ae $=2$
$\mathrm{a}(1 / 2)=2$
$\mathrm{a}=4$
$a^{2}=16$
We know $\mathrm{b}^{2}=3 \mathrm{a}^{2} / 4$
$\mathrm{b}^{2}=3(16) / 4$
$=12$
So the equation of the ellipse can be given as
$\frac{x^{2}}{16}+\frac{y^{2}}{12}=1$
$\frac{3 x^{2}+4 y^{2}}{48}=1$
$3 x^{2}+4 y^{2}=48$
\therefore The equation of the ellipse is $3 x^{2}+4 y^{2}=48$
(ii) eccentricity $\mathrm{e}=2 / 3$ and length of latus rectum $=5$

Given:
Eccentricity e $=2 / 3$
Length of latus - rectum $=5$
Now let us find the equation to the ellipse.
We know that the equation of the ellipse whose axes are x and y - axis is given as
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
By using the formula,
Eccentricity:

$$
\begin{aligned}
& \mathrm{e}=\sqrt{\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}} \\
& \frac{2}{3}=\sqrt{\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}} \\
& \frac{4}{9}=1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}} \\
& \frac{\mathrm{~b}^{2}}{\mathrm{a}^{2}}=\frac{5}{9} \\
& \mathrm{~b}^{2}=\frac{5 \mathrm{a}^{2}}{9}
\end{aligned}
$$

By using the formula, length of the latus rectum is $2 b^{2} / a$

$$
\begin{aligned}
\frac{2 b^{2}}{a} & =5 \\
b^{2} & =\frac{5 a}{2}
\end{aligned}
$$

Since, $\mathrm{b}^{2}=5 \mathrm{a}^{2} / 9$
$\frac{5 a^{2}}{9}=\frac{5 a}{2}$
$\frac{\mathrm{a}}{9}=\frac{1}{2}$
$\mathrm{a}=\frac{9}{2}$
$\mathrm{a}^{2}=\frac{81}{4}$
Now, substituting the value of a^{2}, we get
$\mathrm{b}^{2}=\frac{5\left(\frac{81}{4}\right)}{9}$
$b^{2}=\frac{45}{4}$
So the equation of the ellipse can be given as
$\frac{x^{2}}{\frac{81}{4}}+\frac{y^{2}}{\frac{45}{4}}=1$
$\frac{4 x^{2}}{81}+\frac{4 y^{2}}{45}=1$
$\frac{\left(20 \mathrm{x}^{2}+36 \mathrm{y}^{2}\right)}{405}=1$
$20 x^{2}+36 y^{2}=405$
\therefore The equation of the ellipse is $20 \mathrm{x}^{2}+36 \mathrm{y}^{2}=405$.
(iii) eccentricity e $=1 / 2$ and semi - major axis $=4$

Given:
Eccentricity e = 1/2
Semi - major axis $=4$
Now let us find the equation to the ellipse.
We know that the equation of the ellipse whose axes are x and y - axis is given as $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
By using the formula,
Eccentricity:
$e=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$
$\frac{1}{2}=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$
$\frac{1}{4}=1-\frac{b^{2}}{a^{2}}$
$\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{3}{4}$
$\mathrm{b}^{2}=\frac{3 \mathrm{a}^{2}}{4}$
It is given that the length of the semi - major axis is a
$\mathrm{a}=4$
$a^{2}=16$
We know, $\mathrm{b}^{2}=3 \mathrm{a}^{2} / 4$
$b^{2}=3(16) / 4$

$$
=4
$$

So the equation of the ellipse can be given as
$\frac{x^{2}}{16}+\frac{y^{2}}{12}=1$
$\frac{3 \mathrm{x}^{2}+4 \mathrm{y}^{2}}{48}=1$
$3 x^{2}+4 y^{2}=48$
\therefore The equation of the ellipse is $3 \mathrm{x}^{2}+4 \mathrm{y}^{2}=48$.
(iv) eccentricity e $=1 / 2$ and major axis $=12$

Given:
Eccentricity e $=1 / 2$
Major axis $=12$
Now let us find the equation to the ellipse.
We know that the equation of the ellipse whose axes are x and $\mathrm{y}-\mathrm{axis}$ is given as
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
By using the formula,
Eccentricity:
$e=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$
$\frac{1}{2}=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$
$\frac{1}{4}=1-\frac{b^{2}}{a^{2}}$
$\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{3}{4}$
$b^{2}=3 a^{2} / 4$
It is given that length of major axis is 2 a .
$2 \mathrm{a}=12$
$\mathrm{a}=6$
$\mathrm{a}^{2}=36$
So, by substituting the value of a^{2}, we get

$$
\begin{aligned}
\mathrm{b}^{2} & =3(36) / 4 \\
& =27
\end{aligned}
$$

So the equation of the ellipse can be given as

$$
\begin{aligned}
& \frac{x^{2}}{36}+\frac{y^{2}}{27}=1 \\
& \frac{3 x^{2}+4 y^{2}}{108}=1 \\
& 3 x^{2}+4 y^{2}=108
\end{aligned}
$$

\therefore The equation of the ellipse is $3 \mathrm{x}^{2}+4 \mathrm{y}^{2}=108$.
(v) The ellipse passes through $(1,4)$ and $(-6,1)$

Given:
The points $(1,4)$ and $(-6,1)$
Now let us find the equation to the ellipse.
We know that the equation of the ellipse whose axes are x and y - axis is given as $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$....(1)

Let us substitute the point $(1,4)$ in equation (1), we get
$\frac{1^{2}}{a^{2}}+\frac{4^{2}}{b^{2}}=1$
$\frac{1}{a^{2}}+\frac{16}{b^{2}}=1$
$\frac{\mathrm{b}^{2}+16 \mathrm{a}^{2}}{\mathrm{a}^{2} \mathrm{~b}^{2}}=1$
$b^{2}+16 a^{2}=a^{2} b^{2}$
Let us substitute the point $(-6,1)$ in equation (1), we get
$\frac{(-6)^{2}}{a^{2}}+\frac{1^{2}}{b^{2}}=1$
$\frac{36}{a^{2}}+\frac{1}{b^{2}}=1$
$\frac{36 b^{2}+a^{2}}{a^{2} b^{2}}=1$
$a^{2}+36 b^{2}=a^{2} b^{2}$.

Let us multiply equation (3) by 16 and subtract with equation (2), we get
$\left(16 a^{2}+576 b^{2}\right)-\left(b^{2}+16 a^{2}\right)=\left(16 a^{2} b^{2}-a^{2} b^{2}\right)$
$575 \mathrm{~b}^{2}=15 \mathrm{a}^{2} \mathrm{~b}^{2}$
$15 \mathrm{a}^{2}=575$
$\mathrm{a}^{2}=575 / 15$
$=115 / 3$
So from equation (2),
$\mathrm{b}^{2}+16\left(\frac{115}{3}\right)=\mathrm{b}^{2}\left(\frac{115}{3}\right)$
$\mathrm{b}^{2}\left(\frac{112}{3}\right)=\frac{1840}{3}$
$\mathrm{b}^{2}=\frac{115}{7}$
So the equation of the ellipse can be given as

$$
\begin{aligned}
& \frac{x^{2}}{\frac{115}{3}}+\frac{y^{2}}{\frac{115}{7}}=1 \\
& \frac{3 x^{2}}{115}+\frac{7 y^{2}}{115}=1 \\
& 3 x^{2}+7 y^{2}=115
\end{aligned}
$$

\therefore The equation of the ellipse is $3 \mathrm{x}^{2}+7 \mathrm{y}^{2}=115$.
6. Find the equation of the ellipse whose foci are $(\mathbf{4}, 0)$ and $(-4,0)$, eccentricity $=1 / 3$. Solution:
Given:
Foci are $(4,0)(-4,0)$
Eccentricity = $1 / 3$.
Now let us find the equation to the ellipse.
We know that the equation of the ellipse whose axes are x and y - axis is given as
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
By using the formula,
Eccentricity:
$e=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$
$\frac{1}{3}=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$
$\frac{1}{9}=1-\frac{b^{2}}{a^{2}}$

$$
\begin{aligned}
& \frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{8}{9} \\
& \mathrm{~b}^{2}=\frac{8 \mathrm{a}^{2}}{9}
\end{aligned}
$$

It is given that foci $=(4,0)(-4,0)=>$ foci $=(\pm a e, 0)$
Where, ae $=4$
$\mathrm{a}(1 / 3)=4$
$\mathrm{a}=12$
$\mathrm{a}^{2}=144$
By substituting the value of a^{2}, we get
$\mathrm{b}^{2}=8 \mathrm{a}^{2} / 9$
$\mathrm{b}^{2}=8(144) / 9$
$=128$
So the equation of the ellipse can be given as

$$
\frac{x^{2}}{144}+\frac{y^{2}}{128}=1
$$

\therefore The equation of the ellipse is $\frac{\mathrm{x}^{2}}{144}+\frac{\mathrm{y}^{2}}{128}=1$
7. Find the equation of the ellipse in the standard form whose minor axis is equal to the distance between foci and whose latus - rectum is 10 .

Solution:

Given:
Minor axis is equal to the distance between foci and whose latus - rectum is 10 .
Now let us find the equation to the ellipse.
We know that the equation of the ellipse whose axes are x and y - axis is given as
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
We know that length of the minor axis is 2 b and distance between the foci is 2 ae .
By using the formula,
Eccentricity:

$$
\begin{aligned}
& e=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}} \\
& 2 b=2 a e \\
& b=a e \\
& b=a \sqrt{\frac{a^{2}-b^{2}}{a^{2}}} \\
& b^{2}=a^{2}-b^{2} \\
& a^{2}=2 b^{2} \ldots .(1)
\end{aligned}
$$

We know that the length of the latus rectum is $2 b^{2} / a$
It is given that length of the latus rectum $=10$
So by equating, we get
$2 b^{2} / a=10$
$\mathrm{a}^{2} / \mathrm{a}=10\left[\right.$ Since, $\left.\mathrm{a}^{2}=2 \mathrm{~b}^{2}\right]$
$\mathrm{a}=10$
$a^{2}=100$
Now, by substituting the value of a^{2} we get
$2 b^{2} / \mathrm{a}=10$
$2 b^{2} / 10=10$
$2 b^{2}=10(10)$
$b^{2}=100 / 2$

$$
=50
$$

So the equation of the ellipse can be given as
$\frac{x^{2}}{100}+\frac{y^{2}}{50}=1$
$\frac{x^{2}+2 y^{2}}{100}=1$
$x^{2}+2 y^{2}=100$
\therefore The equation of the ellipse is $\mathrm{x}^{2}+2 \mathrm{y}^{2}=100$.
8. Find the equation of the ellipse whose centre is $(-2,3)$ and whose semi - axis are 3 and 2 when the major axis is (i) parallel to x - axis (ii) parallel to the y -axis.

Solution:

Given:
Centre $=(-2,3)$
Semi - axis are 3 and 2
(i) When major axis is parallel to x -axis

Now let us find the equation to the ellipse.
We know that the equation of the ellipse with centre (p, q) is given
by $\frac{(x-p)^{2}}{a^{2}}+\frac{(y-q)^{2}}{b^{2}}=1$
Since major axis is parallel to x - axis
So, $\mathrm{a}=3$ and $\mathrm{b}=2$.
$\mathrm{a}^{2}=9$
$\mathrm{b}^{2}=4$
So the equation of the ellipse can be given as
$\frac{(x+2)^{2}}{9}+\frac{(y-3)^{2}}{4}=1$
$\frac{4(\mathrm{x}+2)^{2}+9(\mathrm{y}-3)^{2}}{36}=1$
$4\left(x^{2}+4 x+4\right)+9\left(y^{2}-6 y+9\right)=36$
$4 x^{2}+16 x+16+9 y^{2}-54 y+81=36$
$4 x^{2}+9 y^{2}+16 x-54 y+61=0$
\therefore The equation of the ellipse is $4 x^{2}+9 y^{2}+16 x-54 y+61=0$.
(ii) When major axis is parallel to y-axis

Now let us find the equation to the ellipse.
We know that the equation of the ellipse with centre (p, q) is given
by $\frac{(x-p)^{2}}{a^{2}}+\frac{(y-q)^{2}}{b^{2}}=1$
Since major axis is parallel to y - axis
So, $\mathrm{a}=2$ and $\mathrm{b}=3$.
$\mathrm{a}^{2}=4$
$b^{2}=9$
So the equation of the ellipse can be given as

$$
\begin{aligned}
& \frac{(x+2)^{2}}{4}+\frac{(y-3)^{2}}{9}=1 \\
& \frac{9(x+2)^{2}+4(y-3)^{2}}{36}=1 \\
& 9\left(x^{2}+4 x+4\right)+4\left(y^{2}-6 y+9\right)=36 \\
& 9 x^{2}+36 x+36+4 y^{2}-24 y+36=36 \\
& 9 x^{2}+4 y^{2}+36 x-24 y+36=0
\end{aligned}
$$

\therefore The equation of the ellipse is $9 x^{2}+4 y^{2}+36 x-24 y+36=0$.
9. Find the eccentricity of an ellipse whose latus - rectum is
(i) Half of its minor axis
(ii) Half of its major axis

Solution:

Given:
We need to find the eccentricity of an ellipse.
(i) If latus - rectum is half of its minor axis

We know that the length of the semi - minor axis is b and the length of the latus - rectum is $2 b^{2} / a$.
$2 b^{2} / a=b$
$\mathrm{a}=2 \mathrm{~b} \ldots$

By using the formula,
We know that eccentricity of an ellipse is given as

$$
e=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}
$$

From equation (1)

$$
\begin{aligned}
e & =\sqrt{\frac{a^{2}-b^{2}}{a^{2}}} \\
& =\sqrt{\frac{(2 b)^{2}-b^{2}}{(2 b)^{2}}} \\
& =\sqrt{\frac{4 b^{2}-b^{2}}{4 b^{2}}} \\
& =\sqrt{\frac{3}{4}} \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

(ii) If latus - rectum is half of its major axis

We know that the length of the semi - major axis is a and the length of the latus - rectum is $2 b^{2} / a$.
$2 b^{2} / a$
$\mathrm{a}^{2}=2 \mathrm{~b}^{2} \ldots$. (1)
By using the formula,
We know that eccentricity of an ellipse is given as

$$
e=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}
$$

From equation (1)

$$
\begin{aligned}
\mathrm{e} & =\sqrt{\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}} \\
& =\sqrt{\frac{2 \mathrm{~b}^{2}-\mathrm{b}^{2}}{2 \mathrm{~b}^{2}}} \\
& =\sqrt{\frac{\mathrm{b}^{2}}{2 \mathrm{~b}^{2}}} \\
& =\sqrt{\frac{1}{2}} \\
& =\frac{1}{\sqrt{2}}
\end{aligned}
$$

