EXERCISE 27.1

PAGE NO: 27.13

1. The equation of the directrix of a hyperbola is $x-y+3=0$. Its focus is $(-1,1)$ and eccentricity 3 . Find the equation of the hyperbola.

Solution:

Given:
The equation of the directrix of a hyperbola $\Rightarrow>x-y+3=0$.
Focus $=(-1,1)$ and
Eccentricity $=3$
Now, let us find the equation of the hyperbola
Let ' M ' be the point on directrix and $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point of the hyperbola.
By using the formula,
e $=$ PF/PM
$\mathrm{PF}=\mathrm{ePM}$ [where, e is eccentricity, PM is perpendicular from any point P on hyperbola to the directrix]
So,

$$
\begin{aligned}
& \sqrt{(x+1)^{2}+(y-1)^{2}}=3\left|\frac{(x-y+3)}{\sqrt{1^{2}+(-1)^{2}}}\right| \\
& \sqrt{(x+1)^{2}+(y-1)^{2}}=3\left|\frac{(x-y+3)}{\sqrt{1+1}}\right|
\end{aligned}
$$

By squaring on both sides we get

$$
\begin{aligned}
& \left(\sqrt{(x+1)^{2}+(y-1)^{2}}\right)^{2}=\left(3\left|\frac{(x-y+3)}{\sqrt{1+1}}\right|\right)^{2} \\
& (x+1)^{2}+(y-1)^{2}=\frac{3^{2}(x-y+3)^{2}}{2}
\end{aligned}
$$

[We know that $\left.(a-b)^{2}=a^{2}+b^{2}+2 a b \&(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 a c\right]$
So, $2\left\{\mathrm{x}^{2}+1+2 \mathrm{x}+\mathrm{y}^{2}+1-2 \mathrm{y}\right\}=9\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+9+6 \mathrm{x}-6 \mathrm{y}-2 \mathrm{xy}\right\}$
$2 x^{2}+2+4 x+2 y^{2}+2-4 y=9 x^{2}+9 y^{2}+81+54 x-54 y-18 x y$
$2 x^{2}+4+4 \mathrm{x}+2 \mathrm{y}^{2}-4 \mathrm{y}-9 \mathrm{x}^{2}-9 \mathrm{y}^{2}-81-54 \mathrm{x}+54 \mathrm{y}+18 \mathrm{xy}=0$
$-7 x^{2}-7 y^{2}-50 x+50 y+18 x y-77=0$
$7\left(x^{2}+y^{2}\right)-18 x y+50 x-50 y+77=0$
\therefore The equation of hyperbola is $7\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-18 \mathrm{xy}+50 \mathrm{x}-50 \mathrm{y}+77=0$
2. Find the equation of the hyperbola whose
(i) focus is $(\mathbf{0}, 3)$, directrix is $\mathbf{x}+\mathbf{y}-\mathbf{1}=\mathbf{0}$ and eccentricity $=\mathbf{2}$
(ii) focus is $(1,1)$, directrix is $3 x+4 y+8=0$ and eccentricity $=2$
(iii) focus is $(1,1)$ directrix is $2 x+y=1$ and eccentricity $=\sqrt{ } 3$
(iv) focus is $(2,-1)$, directrix is $2 x+3 y=1$ and eccentricity $=2$
(v) focus is ($a, 0$), directrix is $2 x-y+a=0$ and eccentricity $=4 / 3$
(vi) focus is $(2,2)$, directrix is $x+y=9$ and eccentricity $=2$

Solution:

(i) focus is $(0,3)$, directrix is $x+y-1=0$ and eccentricity $=2$

Given:
Focus $=(0,3)$
Directrix => $x+y-1=0$
Eccentricity $=2$
Now, let us find the equation of the hyperbola
Let ' M ' be the point on directrix and $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point of the hyperbola.
By using the formula,
e $=$ PF/PM
$\mathrm{PF}=\mathrm{ePM}$ [where, e is eccentricity, PM is perpendicular from any point P on hyperbola to the directrix]
So,

$$
\begin{aligned}
& \sqrt{(x-0)^{2}+(y-3)^{2}}=2\left|\frac{(x+y-1)}{\sqrt{1^{2}+1^{2}}}\right| \\
& \sqrt{(x-0)^{2}+(y-3)^{2}}=2\left|\frac{(x+y-1)}{\sqrt{1+1}}\right|
\end{aligned}
$$

By squaring on both sides we get

$$
\begin{aligned}
& \left(\sqrt{(x-0)^{2}+(y-3)^{2}}\right)^{2}=\left(2\left|\frac{(x+y-1)}{\sqrt{1+1}}\right|\right)^{2} \\
& (x-0)^{2}+(y-3)^{2}=\frac{2^{2}(x+y-1)^{2}}{2}
\end{aligned}
$$

[We know that $\left.(a-b)^{2}=a^{2}+b^{2}+2 a b \&(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 a c\right]$
So, $2\left\{x^{2}+y^{2}+9-6 y\right\}=4\left\{x^{2}+y^{2}+1-2 x-2 y+2 x y\right\}$
$2 x^{2}+2 y^{2}+18-12 y=4 x^{2}+4 y^{2}+4-8 x-8 y+8 x y$
$2 x^{2}+2 y^{2}+18-12 y-4 x^{2}-4 y^{2}-4-8 x+8 y-8 x y=0$
$-2 x^{2}-2 y^{2}-8 x-4 y-8 x y+14=0$
$-2\left(x^{2}+y^{2}-4 x+2 y+4 x y-7\right)=0$
$x^{2}+y^{2}-4 x+2 y+4 x y-7=0$
\therefore The equation of hyperbola is $\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}+2 \mathrm{y}+4 \mathrm{xy}-7=0$
(ii) focus is $(1,1)$, directrix is $3 x+4 y+8=0$ and eccentricity $=2$

Focus $=(1,1)$
Directrix $\Rightarrow 3 x+4 y+8=0$

Eccentricity $=2$
Now, let us find the equation of the hyperbola
Let ' M ' be the point on directrix and $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point of the hyperbola.
By using the formula,
e $=$ PF/PM
$\mathrm{PF}=\mathrm{ePM}$ [where, e is eccentricity, PM is perpendicular from any point P on hyperbola to the directrix]
So,

$$
\begin{aligned}
& \sqrt{(x-1)^{2}+(y-1)^{2}}=2\left|\frac{(3 x+4 y+8}{\sqrt{3^{2}+4^{2}}}\right| \\
& \sqrt{(x-1)^{2}+(y-1)^{2}}=2\left|\frac{(3 x+4 y+8)}{\sqrt{9+16}}\right|
\end{aligned}
$$

By squaring on both sides we get

$$
\begin{aligned}
& \left(\sqrt{(x-1)^{2}+(y-1)^{2}}\right)^{2}=\left(2\left|\frac{(3 x+4 y+8)}{\sqrt{25}}\right|\right)^{2} \\
& (x-1)^{2}+(y-1)^{2}=\frac{2^{2}(3 x+4 y+8)^{2}}{25}
\end{aligned}
$$

[We know that $\left.(a-b)^{2}=a^{2}+b^{2}+2 a b \&(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 a c\right]$ $25\left\{\mathrm{x}^{2}+1-2 \mathrm{x}+\mathrm{y}^{2}+1-2 \mathrm{y}\right\}=4\left\{9 \mathrm{x}^{2}+16 \mathrm{y}^{2}+64+24 \mathrm{xy}+64 \mathrm{y}+48 \mathrm{x}\right\}$ $25 \mathrm{x}^{2}+25-50 \mathrm{x}+25 \mathrm{y}^{2}+25-50 \mathrm{y}=36 \mathrm{x}^{2}+64 \mathrm{y}^{2}+256+96 \mathrm{xy}+256 \mathrm{y}+192 \mathrm{x}$ $25 x^{2}+25-50 \mathrm{x}+25 \mathrm{y}^{2}+25-50 \mathrm{y}-36 \mathrm{x}^{2}-64 \mathrm{y}^{2}-256-96 \mathrm{xy}-256 \mathrm{y}-192 \mathrm{x}=0$
$-11 x^{2}-39 y^{2}-242 x-306 y-96 x y-206=0$
$11 x^{2}+96 x y+39 y^{2}+242 x+306 y+206=0$
\therefore The equation of hyperbola is $11 \mathrm{x}^{2}+96 \mathrm{xy}+39 \mathrm{y}^{2}+242 \mathrm{x}+306 \mathrm{y}+206=0$
(iii) focus is $(1,1)$ directrix is $2 x+y=1$ and eccentricity $=\sqrt{ } 3$

Given:
Focus $=(1,1)$
Directrix $\Rightarrow 2 x+y=1$
Eccentricity $=\sqrt{3}$
Now, let us find the equation of the hyperbola
Let ' M ' be the point on directrix and $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point of the hyperbola.
By using the formula,
e $=$ PF/PM
$\mathrm{PF}=\mathrm{ePM}$ [where, e is eccentricity, PM is perpendicular from any point P on hyperbola to the directrix]
So,

$$
\begin{aligned}
& \sqrt{(x-1)^{2}+(y-1)^{2}}=\sqrt{3}\left|\frac{(2 x+y-1)}{\sqrt{2^{2}+1^{2}}}\right| \\
& \sqrt{(x-1)^{2}+(y-1)^{2}}=\sqrt{3}\left|\frac{(2 x+y-1)}{\sqrt{4+1}}\right|
\end{aligned}
$$

By squaring on both sides we get

$$
\begin{aligned}
& \left(\sqrt{(x-1)^{2}+(y-1)^{2}}\right)^{2}=\left(\sqrt{3}\left|\frac{(2 x+y-1)}{\sqrt{5}}\right|\right)^{2} \\
& (x-1)^{2}+(y-1)^{2}=\frac{3(2 x+y-1)^{2}}{5}
\end{aligned}
$$

[We know that $\left.(a-b)^{2}=a^{2}+b^{2}+2 a b \&(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 a c\right]$
$5\left\{x^{2}+1-2 x+y^{2}+1-2 y\right\}=3\left\{4 x^{2}+y^{2}+1+4 x y-2 y-4 x\right\}$
$5 x^{2}+5-10 x+5 y^{2}+5-10 y=12 x^{2}+3 y^{2}+3+12 x y-6 y-12 x$
$5 x^{2}+5-10 x+5 y^{2}+5-10 y-12 x^{2}-3 y^{2}-3-12 x y+6 y+12 x=0$
$-7 \mathrm{x}^{2}+2 \mathrm{y}^{2}+2 \mathrm{x}-4 \mathrm{y}-12 \mathrm{xy}+7=0$
$7 x^{2}+12 x y-2 y^{2}-2 x+4 y-7=0$
\therefore The equation of hyperbola is $7 \mathrm{x}^{2}+12 \mathrm{xy}-2 \mathrm{y}^{2}-2 \mathrm{x}+4 \mathrm{y}-7=0$
(iv) focus is $(2,-1)$, directrix is $2 \mathrm{x}+3 \mathrm{y}=1$ and eccentricity $=2$

Given:
Focus $=(2,-1)$
Directrix $=>2 x+3 y=1$
Eccentricity $=2$
Now, let us find the equation of the hyperbola
Let ' M ' be the point on directrix and $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point of the hyperbola.
By using the formula,

$\mathrm{e}=\mathrm{PF} / \mathrm{PM}$

$\mathrm{PF}=\mathrm{ePM}$ [where, e is eccentricity, PM is perpendicular from any point P on hyperbola to the directrix]
So,

$$
\begin{aligned}
& \sqrt{(x-2)^{2}+(y+1)^{2}}=2\left|\frac{(2 x+3 y-1)}{\sqrt{2^{2}+3^{2}}}\right| \\
& \sqrt{(x-2)^{2}+(y+1)^{2}}=2\left|\frac{(2 x+3 y-1)}{\sqrt{4+9}}\right|
\end{aligned}
$$

By squaring on both sides we get

$$
\left(\sqrt{(x-2)^{2}+(y+1)^{2}}\right)^{2}=\left(2\left|\frac{(2 x+3 y-1)}{\sqrt{13}}\right|\right)^{2}
$$

$(x-2)^{2}+(y+1)^{2}=\frac{4(2 x+3 y-1)^{2}}{13}$
[We know that $\left.(a-b)^{2}=a^{2}+b^{2}+2 a b \&(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 a c\right]$
$13\left\{x^{2}+4-4 x+y^{2}+1+2 y\right\}=4\left\{4 x^{2}+9 y^{2}+1+12 x y-6 y-4 x\right\}$ $13 x^{2}+52-52 x+13 y^{2}+13+26 y=16 x^{2}+36 y^{2}+4+48 x y-24 y-16 x$
$13 x^{2}+52-52 x+13 y^{2}+13+26 y-16 x^{2}-36 y^{2}-4-48 x y+24 y+16 x=0$
$-3 x^{2}-23 y^{2}-36 x+50 y-48 x y+61=0$
$3 x^{2}+23 y^{2}+48 x y+36 x-50 y-61=0$
\therefore The equation of hyperbola is $3 x^{2}+23 y^{2}+48 x y+36 x-50 y-61=0$
(v) focus is (a, 0), directrix is $2 x-y+a=0$ and eccentricity $=4 / 3$

Given:
Focus $=(\mathrm{a}, 0)$
Directrix => $2 \mathrm{x}-\mathrm{y}+\mathrm{a}=0$
Eccentricity $=4 / 3$
Now, let us find the equation of the hyperbola
Let ' M ' be the point on directrix and $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point of the hyperbola.
By using the formula,

e $=$ PF/PM

$\mathrm{PF}=\mathrm{ePM}$ [where, e is eccentricity, PM is perpendicular from any point P on hyperbola to the directrix]
So,

$$
\begin{aligned}
& \sqrt{(x-a)^{2}+(y-0)^{2}}=\frac{4}{3}\left|\frac{(2 x-y+a)}{\sqrt{2^{2}+(-1)^{2}}}\right| \\
& \sqrt{(x-a)^{2}+(y)^{2}}=\frac{4}{3}\left|\frac{(2 x-y+a)}{\sqrt{4+1}}\right|
\end{aligned}
$$

By squaring on both sides we get

$$
\begin{aligned}
& \left(\sqrt{(x-a)^{2}+(y)^{2}}\right)^{2}=\left(\frac{4}{3}\left|\frac{(2 x-y+a)}{\sqrt{5}}\right|\right)^{2} \\
& (x-a)^{2}+(y)^{2}=\frac{16(2 x-y+a)^{2}}{9 \times 5}
\end{aligned}
$$

[We know that $\left.(a-b)^{2}=a^{2}+b^{2}+2 a b \&(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 a c\right]$
$45\left\{x^{2}+a^{2}-2 a x+y^{2}\right\}=16\left\{4 x^{2}+y^{2}+a^{2}-4 x y-2 a y+4 a x\right\}$
$45 x^{2}+45 a^{2}-90 a x+45 y^{2}=64 x^{2}+16 y^{2}+16 a^{2}-64 x y-32 a y+64 a x$
$45 x^{2}+45 \mathrm{a}^{2}-90 \mathrm{ax}+45 \mathrm{y}^{2}-64 \mathrm{x}^{2}-16 \mathrm{y}^{2}-16 \mathrm{a}^{2}+64 \mathrm{xy}+32 \mathrm{ay}-64 \mathrm{ax}=0$
$19 x^{2}-29 y^{2}+154 a x-32 a y-64 x y-29 a^{2}=0$
\therefore The equation of hyperbola is $19 \mathrm{x}^{2}-29 \mathrm{y}^{2}+154 \mathrm{ax}-32 \mathrm{ay}-64 \mathrm{xy}-29 \mathrm{a}^{2}=0$
(vi) focus is $(2,2)$, directrix is $x+y=9$ and eccentricity $=2$

Given:
Focus $=(2,2)$
Directrix $\Rightarrow \mathrm{x}+\mathrm{y}=9$
Eccentricity $=2$
Now, let us find the equation of the hyperbola
Let ' M ' be the point on directrix and $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point of the hyperbola.
By using the formula,
e = PF/PM
$P F=e P M$ [where, e is eccentricity, $P M$ is perpendicular from any point P on hyperbola to the directrix]
So,

$$
\begin{aligned}
& \sqrt{(x-2)^{2}+(y-2)^{2}}=2\left|\frac{(x+y-9)}{\sqrt{1^{2}+1^{2}}}\right| \\
& \sqrt{(x-2)^{2}+(y-2)^{2}}=2\left|\frac{(x+y-9)}{\sqrt{1+1}}\right|
\end{aligned}
$$

By squaring on both sides we get

$$
\begin{aligned}
& \left(\sqrt{(x-2)^{2}+(y-2)^{2}}\right)^{2}=\left(2\left|\frac{(x+y-9)}{\sqrt{2}}\right|\right)^{2} \\
& (x-2)^{2}+(y-2)^{2}=\frac{4(x+y-9)^{2}}{2}
\end{aligned}
$$

[We know that $\left.(a-b)^{2}=a^{2}+b^{2}+2 a b \&(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 a c\right]$
$x^{2}+4-4 x+y^{2}+4-4 y=2\left\{x^{2}+y^{2}+81+2 x y-18 y-18 x\right\}$
$x^{2}-4 x+y^{2}+8-4 y=2 x^{2}+2 y^{2}+162+4 x y-36 y-36 x$
$x^{2}-4 x+y^{2}+8-4 y-2 x^{2}-2 y^{2}-162-4 x y+36 y+36 x=0$
$-x^{2}-y^{2}+32 x+32 y+4 x y-154=0$
$x^{2}+4 x y+y^{2}-32 x-32 y+154=0$
\therefore The equation of hyperbola is $x^{2}+4 x y+y^{2}-32 x-32 y+154=0$
3. Find the eccentricity, coordinates of the foci, equations of directrices and length of the latus-rectum of the hyperbola.
(i) $9 x^{2}-16 y^{2}=144$
(ii) $16 x^{2}-9 y^{2}=-144$
(iii) $4 x^{2}-3 y^{2}=36$
(iv) $3 x^{2}-y^{2}=4$
(v) $2 x^{2}-3 y^{2}=5$

Solution:

(i) $9 x^{2}-16 y^{2}=144$

Given:
The equation $=>9 x^{2}-16 y^{2}=144$
The equation can be expressed as:

$$
\begin{aligned}
& \frac{9 x^{2}}{144}-\frac{16 y^{2}}{144}=1 \\
& \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 \\
& \frac{x^{2}}{4^{2}}-\frac{y^{2}}{3^{2}}=1
\end{aligned}
$$

The obtained equation is of the form
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Where, $a^{2}=9, b^{2}=16$ i.e., $a=3$ and $b=4$
Eccentricity is given by:

$$
\begin{aligned}
e & =\sqrt{1+\frac{a^{2}}{b^{2}}} \\
& =\sqrt{1+\frac{9}{16}} \\
& =\sqrt{\frac{25}{16}} \\
& =\frac{5}{4}
\end{aligned}
$$

Foci: The coordinates of the foci are $(0, \pm b e)$

$$
\begin{aligned}
(0, \pm \text { be }) & =(0, \pm 4(5 / 4)) \\
& =(0, \pm 5)
\end{aligned}
$$

The equation of directrices is given as:

$$
\begin{aligned}
& x= \pm \frac{a}{e} \\
& \Rightarrow x= \pm \frac{4}{\frac{5}{4}} \\
& \Rightarrow x= \pm \frac{16}{5} \\
& \Rightarrow 5 x= \pm 16
\end{aligned}
$$

$5 \mathrm{x} \mp 16=0$
The length of latus-rectum is given as:
$2 b^{2} / a$
$=2(9) / 4$
$=9 / 2$
(ii) $16 x^{2}-9 y^{2}=-144$

Given:
The equation $=>16 x^{2}-9 y^{2}=-144$
The equation can be expressed as:

$$
\begin{aligned}
& \frac{9 y^{2}}{144}-\frac{16 x^{2}}{144}=1 \\
& \frac{y^{2}}{16}-\frac{x^{2}}{9}=1 \\
& \frac{x^{2}}{3^{2}}-\frac{y^{2}}{4^{2}}=-1
\end{aligned}
$$

The obtained equation is of the form
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Where, $a^{2}=9, b^{2}=16$ i.e., $a=3$ and $b=4$
Eccentricity is given by:

$$
\begin{aligned}
e & =\sqrt{1+\frac{a^{2}}{b^{2}}} \\
& =\sqrt{1+\frac{9}{16}} \\
& =\sqrt{\frac{25}{16}} \\
& =\frac{5}{4}
\end{aligned}
$$

Foci: The coordinates of the foci are ($0, \pm$ be)

$$
\begin{aligned}
(0, \pm \text { be }) & =(0, \pm 4(5 / 4)) \\
& =(0, \pm 5)
\end{aligned}
$$

The equation of directrices is given as:

$$
\begin{aligned}
& y= \pm \frac{b}{e} \\
& \Rightarrow y= \pm \frac{4}{\frac{5}{4}} \\
& \Rightarrow y= \pm \frac{16}{5} \\
& \Rightarrow 5 y= \pm 16 \\
& 5 y \mp 16=0
\end{aligned}
$$

The length of latus-rectum is given as:
$2 \mathrm{a}^{2} / \mathrm{b}$
$=2(9) / 4$
$=9 / 2$
(iii) $4 x^{2}-3 y^{2}=36$

Given:
The equation $=>4 x^{2}-3 y^{2}=36$
The equation can be expressed as:

$$
\begin{aligned}
& \frac{4 x^{2}}{36}-\frac{3 y^{2}}{36}=1 \\
& \frac{x^{2}}{9}-\frac{y^{2}}{12}=1 \\
& \frac{x^{2}}{3^{2}}-\frac{y^{2}}{(\sqrt{12})^{2}}=1
\end{aligned}
$$

The obtained equation is of the form

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

Where, $a^{2}=9, b^{2}=12$ i.e., $a=3$ and $b=\sqrt{ } 12$
Eccentricity is given by:

$$
\begin{aligned}
e & =\sqrt{1+\frac{b^{2}}{a^{2}}} \\
& =\sqrt{1+\frac{12}{9}} \\
& =\sqrt{\frac{21}{9}}
\end{aligned}
$$

$$
=\sqrt{\frac{7}{3}}
$$

Foci: The coordinates of the foci are ($\pm \mathrm{ae}, 0$)

$$
\begin{aligned}
\pm z e & = \pm 3 \times \sqrt{\frac{7}{3}} \\
& = \pm 3 \times \frac{\sqrt{7}}{\sqrt{3}} \\
& = \pm \sqrt{3} \times \sqrt{7} \\
& = \pm \sqrt{21}
\end{aligned}
$$

$(\pm \mathrm{ae}, 0)=(\pm \sqrt{ } 21,0)$
The equation of directrices is given as:

$$
\begin{aligned}
& x=\frac{ \pm a}{e} \\
& x= \pm 3 \times \frac{1}{\frac{\sqrt{7}}{\sqrt{3}}} \\
&= \pm \frac{3 \sqrt{3}}{\sqrt{7}} \\
& \sqrt{7} x \mp 3 \sqrt{3}=0
\end{aligned}
$$

The length of latus-rectum is given as:
$2 b^{2} / \mathrm{a}$
$=2(12) / 3$
$=24 / 3$
$=8$
(iv) $3 x^{2}-y^{2}=4$

Given:
The equation $=>3 x^{2}-y^{2}=4$
The equation can be expressed as:

$$
\begin{aligned}
& \frac{3 x^{2}}{4}-\frac{y^{2}}{4}=1 \\
& \frac{x^{2}}{\frac{4}{3}}-\frac{y^{2}}{4}=1 \\
& \frac{x^{2}}{\left(\frac{2}{\sqrt{3}}\right)^{2}}-\frac{y^{2}}{(2)^{2}}=1
\end{aligned}
$$

The obtained equation is of the form
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Where, $a=2 / \sqrt{ } 3$ and $b=2$
Eccentricity is given by:

$$
\begin{aligned}
e & =\sqrt{1+\frac{b^{2}}{a^{2}}} \\
& =\sqrt{1+\frac{4}{\frac{4}{3}}} \\
& =\sqrt{1+3} \\
& =\sqrt{4} \\
& =2
\end{aligned}
$$

Foci: The coordinates of the foci are ($\pm \mathrm{ae}, 0$)
$(\pm \mathrm{ae}, 0)= \pm(2 / \sqrt{3})(2)= \pm 4 / \sqrt{3}$
$(\pm \mathrm{ae}, 0)=(\pm 4 / \sqrt{ } 3,0)$
The equation of directrices is given as:
$x= \pm \frac{\mathrm{a}}{\mathrm{e}}$
$\Rightarrow \mathrm{x}= \pm \frac{\frac{2}{\sqrt{3}}}{2}$
$\Rightarrow \mathrm{x}= \pm \frac{1}{\sqrt{3}}$
$\Rightarrow \sqrt{3} \mathrm{x}= \pm 1$
$\sqrt{3} \mathrm{x} \mp 1=0$
The length of latus-rectum is given as:
$2 b^{2} / \mathrm{a}$
$=2(4) /[2 / \sqrt{ } 3]$
$=4 \sqrt{ } 3$
(v) $2 x^{2}-3 y^{2}=5$

Given:
The equation $=>2 x^{2}-3 y^{2}=5$
The equation can be expressed as:

$$
\begin{aligned}
& \frac{2 x^{2}}{5}-\frac{3 y^{2}}{5}=1 \\
& \frac{x^{2}}{\frac{5}{2}}-\frac{y^{2}}{\frac{5}{3}}=1 \\
& \frac{x^{2}}{\left(\frac{\sqrt{5}}{\sqrt{2}}\right)^{2}}-\frac{y^{2}}{\left(\frac{\sqrt{5}}{\sqrt{3}}\right)^{2}}=1
\end{aligned}
$$

The obtained equation is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Where, $a=\sqrt{5} / \sqrt{ } 2$ and $b=\sqrt{5} / \sqrt{ } 3$
Eccentricity is given by:

$$
\begin{aligned}
e & =\sqrt{1+\frac{b^{2}}{a^{2}}} \\
& =\sqrt{1+\frac{\frac{5}{3}}{\frac{5}{2}}} \\
& =\sqrt{1+\frac{5}{3} \times \frac{2}{5}} \\
& =\sqrt{1+\frac{2}{3}} \\
& =\sqrt{\frac{5}{3}}
\end{aligned}
$$

Foci: The coordinates of the foci are ($\pm \mathrm{ae}, 0$)

$$
\begin{aligned}
& \pm z e= \pm \sqrt{\frac{5}{2}} \times \sqrt{\frac{5}{3}} \\
&= \pm \frac{5}{\sqrt{6}} \\
&(\pm \mathrm{ae}, 0)=(\pm 5 / \sqrt{ } 6,0)
\end{aligned}
$$

The equation of directrices is given as:
$x= \pm \frac{\mathrm{a}}{\mathrm{e}}$
$\Rightarrow \mathrm{x}= \pm \frac{\frac{\sqrt{5}}{\sqrt{2}}}{\frac{\sqrt{5}}{\sqrt{3}}}$
$\Rightarrow \mathrm{x}= \pm \frac{1}{\sqrt{6}}$
$\Rightarrow \sqrt{6} x= \pm 1$
$\sqrt{ } 6 x \mp 1=0$
The length of latus-rectum is given as:
$2 b^{2} / a$
$=\frac{2\left(\frac{\sqrt{5}}{\sqrt{3}}\right)^{2}}{\frac{\sqrt{5}}{\sqrt{2}}}$
$=\frac{2 \times \frac{5}{3}}{\frac{\sqrt{5}}{\sqrt{2}}}$
$=\frac{2 \sqrt{10}}{3}$
4. Find the axes, eccentricity, latus-rectum and the coordinates of the foci of the hyperbola $25 x^{2}-36 y^{2}=225$.

Solution:

Given:
The equation=> $25 x^{2}-36 y^{2}=225$
The equation can be expressed as:
$\frac{25 x^{2}}{225}-\frac{36 y^{2}}{225}=1$
$\frac{x^{2}}{\left(\frac{15}{5}\right)^{2}}-\frac{y^{2}}{\left(\frac{15}{6}\right)^{2}}=1$
$\frac{x^{2}}{3^{2}}-\frac{y^{2}}{\left(\frac{5}{2}\right)^{2}}=1$
The obtained equation is of the form
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Where, $\mathrm{a}=3$ and $\mathrm{b}=5 / 2$
Eccentricity is given by:

$$
\begin{aligned}
e & =\sqrt{1+\frac{b^{2}}{a^{2}}} \\
& =\sqrt{1+\frac{\frac{25}{4}}{9}} \\
& =\sqrt{1+\frac{25}{36}} \\
& =\sqrt{\frac{61}{36}} \\
& =\frac{\sqrt{61}}{6}
\end{aligned}
$$

Foci: The coordinates of the foci are $(\pm \mathrm{ae}, 0)$
$(\pm \mathrm{ae}, 0)= \pm 3(\sqrt{6} 1 / 6)= \pm \sqrt{ } 61 / 2$
$(\pm \mathrm{ae}, 0)=(\pm \sqrt{ } 61 / 2,0)$
The equation of directrices is given as:
$x= \pm \frac{\mathrm{a}}{\mathrm{e}}$
$\Rightarrow x= \pm \frac{3}{\frac{\sqrt{61}}{6}}$
$\Rightarrow x= \pm \frac{18}{\sqrt{61}}$
$\Rightarrow \sqrt{61} \mathrm{x}= \pm 18$
$\sqrt{6} 1 \mathrm{x} \mp 18=0$
The length of latus-rectum is given as:
$2 b^{2} / a$

$$
\begin{aligned}
& =\frac{2\left(\frac{5}{2}\right)^{2}}{3} \\
& =\frac{2 \times \frac{25}{4}}{3} \\
& =\frac{25}{6}
\end{aligned}
$$

\therefore Transverse axis $=6$, conjugate axis $=5, \mathrm{e}=\sqrt{ } 61 / 6, \mathrm{LR}=25 / 6$, foci $=(\pm \sqrt{ } 61 / 2,0)$

5. Find the centre, eccentricity, foci and directions of the hyperbola

(i) $16 x^{2}-9 y^{2}+32 x+36 y-164=0$
(ii) $x^{2}-y^{2}+4 x=0$
(iii) $x^{2}-3 y^{2}-2 x=8$

Solution:

(i) $16 x^{2}-9 y^{2}+32 x+36 y-164=0$

Given:

The equation $=>16 x^{2}-9 y^{2}+32 x+36 y-164=0$
Let us find the centre, eccentricity, foci and directions of the hyperbola
By using the given equation
$16 x^{2}-9 y^{2}+32 x+36 y-164=0$
$16 x^{2}+32 x+16-9 y^{2}+36 y-36-16+36-164=0$
$16\left(x^{2}+2 x+1\right)-9\left(y^{2}-4 y+4\right)-16+36-164=0$
$16\left(x^{2}+2 x+1\right)-9\left(y^{2}-4 y+4\right)-144=0$
$16(x+1)^{2}-9(y-2)^{2}=144$
$\frac{16(x+1)^{2}}{144}-\frac{9(y-2)^{2}}{144}=1$
$\frac{(x+1)^{2}}{9}-\frac{(y-2)^{2}}{16}=1$
$\frac{(x+1)^{2}}{3^{2}}-\frac{(y-2)^{2}}{4^{2}}=1$
Here, center of the hyperbola is $(-1,2)$
So, let $\mathrm{x}+1=\mathrm{X}$ and $\mathrm{y}-2=\mathrm{Y}$
The obtained equation is of the form
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Where, $\mathrm{a}=3$ and $\mathrm{b}=4$
Eccentricity is given by:

$$
\begin{aligned}
e & =\sqrt{1+\frac{b^{2}}{a^{2}}} \\
& =\sqrt{1+\frac{16}{9}} \\
& =\sqrt{\frac{25}{9}} \\
& =\frac{5}{3}
\end{aligned}
$$

Foci: The coordinates of the foci are ($\pm \mathrm{ae}, 0$)
$\mathrm{X}= \pm 5$ and $\mathrm{Y}=0$
$\mathrm{x}+1= \pm 5$ and $\mathrm{y}-2=0$
$x= \pm 5-1$ and $y=2$
$x=4,-6$ and $y=2$
So, Foci: $(4,2)(-6,2)$
Equation of directrix are:
$X= \pm \frac{\mathrm{a}}{\mathrm{e}}$
$\Rightarrow \mathrm{X}= \pm \frac{3}{\frac{5}{3}}$
$\Rightarrow \mathrm{X}= \pm \frac{9}{5}$
$\Rightarrow 5 \mathrm{X}= \pm 9$
$\Rightarrow 5 \mathrm{X} \mp 9=0$
$\Rightarrow 5(\mathrm{x}+1) \mp 9=0$
$\Rightarrow 5 \mathrm{x}+5 \mp 9=0$
$\Rightarrow 5 x+5-9=0$ and $5 x+5+9=0$
$5 \mathrm{x}-4=0$ and $5 \mathrm{x}+14=0$
\therefore The center is $(-1,2)$, eccentricity $(e)=5 / 3$, Foci $=(4,2)(-6,2)$, Equation of directrix $=$ $5 \mathrm{x}-4=0$ and $5 \mathrm{x}+14=0$
(ii) $x^{2}-y^{2}+4 x=0$

Given:
The equation $=>x^{2}-y^{2}+4 x=0$
Let us find the centre, eccentricity, foci and directions of the hyperbola
By using the given equation
$\mathrm{x}^{2}-\mathrm{y}^{2}+4 \mathrm{x}=0$

$$
\begin{aligned}
& x^{2}+4 x+4-y^{2}-4=0 \\
& (x+2)^{2}-y^{2}=4 \\
& \frac{(x+2)^{2}}{4}-\frac{y^{2}}{4}=1 \\
& \frac{(x+2)^{2}}{2^{2}}-\frac{y^{2}}{2^{2}}=1
\end{aligned}
$$

Here, center of the hyperbola is $(2,0)$
So, let $x+2=X$
The obtained equation is of the form
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Where, $\mathrm{a}=2$ and $\mathrm{b}=2$
Eccentricity is given by:

$$
\begin{aligned}
e & =\sqrt{1+\frac{b^{2}}{a^{2}}} \\
& =\sqrt{1+\frac{4}{4}} \\
& =\sqrt{1+1} \\
& =\sqrt{2}
\end{aligned}
$$

Foci: The coordinates of the foci are $(\pm \mathrm{ae}, 0)$
$X= \pm 2 \sqrt{ } 2$ and $Y=0$
$X+2= \pm 2 \sqrt{ } 2$ and $Y=0$
$X= \pm 2 \sqrt{ } 2-2$ and $Y=0$
So, Foci $=(\pm 2 \sqrt{ } 2-2,0)$
Equation of directrix are:

$$
\begin{aligned}
& X= \pm \frac{\mathrm{a}}{\mathrm{e}} \\
& \Rightarrow \mathrm{X}= \pm \frac{2}{\sqrt{2}} \\
& \Rightarrow \mathrm{X}= \pm \frac{2}{\sqrt{2}} \\
& \Rightarrow \mathrm{X}= \pm \sqrt{2} \\
& \Rightarrow \mathrm{X} \mp \sqrt{2}=0 \\
& \Rightarrow \mathrm{X}+2 \mp \sqrt{2}=0 \\
& \mathrm{x}+2-\sqrt{2}=0 \text { and } \mathrm{X}+2+\sqrt{2}=0
\end{aligned}
$$

\therefore The center is $(-2,0)$, eccentricity $(e)=\sqrt{ } 2$, Foci $=(-2 \pm 2 \sqrt{ } 2,0)$, Equation of directrix $=$ $x+2= \pm \sqrt{ } 2$
(iii) $x^{2}-3 y^{2}-2 x=8$

Given:
The equation $\Rightarrow x^{2}-3 y^{2}-2 x=8$
Let us find the centre, eccentricity, foci and directions of the hyperbola
By using the given equation
$x^{2}-3 y^{2}-2 x=8$
$x^{2}-2 x+1-3 y^{2}-1=8$
$(x-1)^{2}-3 y^{2}=9$
$\frac{(x-1)^{2}}{9}-\frac{3 y^{2}}{9}=1$
$\frac{(x-1)^{2}}{3^{2}}-\frac{y^{2}}{(\sqrt{3})^{2}}=1$
Here, center of the hyperbola is $(1,0)$
So, let $\mathrm{x}-1=\mathrm{X}$
The obtained equation is of the form
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Where, $\mathrm{a}=3$ and $\mathrm{b}=\sqrt{ } 3$
Eccentricity is given by:

$$
\begin{aligned}
e & =\sqrt{1+\frac{b^{2}}{a^{2}}} \\
& =\sqrt{1+\frac{3}{9}} \\
& =\sqrt{1+\frac{1}{3}} \\
& =\sqrt{\frac{4}{3}} \\
& =\frac{2}{\sqrt{3}} \\
& =\frac{2 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} \\
& =\frac{2 \sqrt{3}}{3}
\end{aligned}
$$

Foci: The coordinates of the foci are $(\pm \mathrm{ae}, 0)$
$\mathrm{X}= \pm 2 \sqrt{ } 3$ and $\mathrm{Y}=0$
$\mathrm{X}-1= \pm 2 \sqrt{ } 3$ and $\mathrm{Y}=0$
$X= \pm 2 \sqrt{3}+1$ and $Y=0$
So, Foci $=(1 \pm 2 \sqrt{ } 3,0)$
Equation of directrix are:
$X= \pm \frac{\mathrm{a}}{\mathrm{e}}$
$\Rightarrow X= \pm \frac{3}{\frac{2 \sqrt{3}}{3}}$
$\Rightarrow X= \pm \frac{9}{2 \sqrt{3}}$
$x= \pm \frac{9}{2 \sqrt{3}}+1$
$x= \pm \frac{9}{2 \sqrt{3}}$
\therefore The center is $(1,0)$, eccentricity (e) $=2 \sqrt{ } 3 / 3$, Foci $=(1 \pm 2 \sqrt{ } 3,0)$, Equation of directrix
=
$\mathrm{X}=1 \pm 9 / 2 \sqrt{ } 3$
6. Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the following cases:
(i) the distance between the foci $=16$ and eccentricity $=\sqrt{ } 2$
(ii) conjugate axis is 5 and the distance between foci $=13$
(iii) conjugate axis is 7 and passes through the point (3, -2)

Solution:

(i) the distance between the foci $=16$ and eccentricity $=\sqrt{ } 2$

Given:
Distance between the foci $=16$
Eccentricity $=\sqrt{ } 2$
Let us compare with the equation of the form
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Distance between the foci is 2 ae and $\mathrm{b}^{2}=\mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right)$
So,
$2 \mathrm{ae}=16$
ae $=16 / 2$
$\mathrm{a} \sqrt{2}=8$
$a=8 / \sqrt{ } 2$
$a^{2}=64 / 2$

$$
=32
$$

We know that, $\mathrm{b}^{2}=\mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right)$
So, $b^{2}=32\left[(\sqrt{ } 2)^{2}-1\right]$

$$
\begin{aligned}
& =32(2-1) \\
& =32
\end{aligned}
$$

The Equation of hyperbola is given as
$\frac{x^{2}}{32}-\frac{y^{2}}{32}=1$
$x^{2}-y^{2}=32$
\therefore The Equation of hyperbola is $\mathrm{x}^{2}-\mathrm{y}^{2}=32$
(ii) conjugate axis is 5 and the distance between foci $=13$

Given:
Conjugate axis $=5$
Distance between foci $=13$
Let us compare with the equation of the form
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Distance between the foci is 2 ae and $\mathrm{b}^{2}=\mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right)$
Length of conjugate axis is 2 b
So,
$2 \mathrm{~b}=5$
$\mathrm{b}=5 / 2$
$\mathrm{b}^{2}=25 / 4$
We know that, $2 \mathrm{ae}=13$

$$
\begin{aligned}
\mathrm{ae} & =13 / 2 \\
\mathrm{a}^{2} \mathrm{e}^{2} & =169 / 4 \\
\mathrm{~b}^{2} & =\mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right) \\
\mathrm{b}^{2} & =\mathrm{a}^{2} \mathrm{e}^{2}-\mathrm{a}^{2} \\
25 / 4 & =169 / 4-\mathrm{a}^{2} \\
\mathrm{a}^{2} & =169 / 4-25 / 4 \\
& =144 / 4 \\
& =36
\end{aligned}
$$

The Equation of hyperbola is given as
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

$$
\begin{aligned}
& \Rightarrow \frac{x^{2}}{36}-\frac{y^{2}}{\frac{25}{4}}=1 \\
& \Rightarrow \frac{x^{2}}{36}-\frac{4 y^{2}}{25}=1 \\
& \Rightarrow \frac{25 x^{2}-144 y^{2}}{900}=1 \\
& \Rightarrow 25 x^{2}-144 y^{2}=900
\end{aligned}
$$

\therefore The Equation of hyperbola is $25 \mathrm{x}^{2}-144 \mathrm{y}^{2}=900$
(iii) conjugate axis is 7 and passes through the point $(3,-2)$

Given:
Conjugate axis $=7$
Passes through the point (3, -2)
Conjugate axis is 2 b
So,
$2 \mathrm{~b}=7$
$\mathrm{b}=7 / 2$
$b^{2}=49 / 4$
The Equation of hyperbola is given as
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Since it passes through points (3,-2)
$\Rightarrow \frac{(3)^{2}}{a^{2}}-\frac{(-2)^{2}}{\frac{49}{4}}=1$
$\Rightarrow \frac{9}{\mathrm{a}^{2}}-\frac{4(4)}{49}=1$
$\Rightarrow \frac{9}{a^{2}}-\frac{16}{49}=1$
$\Rightarrow \frac{9}{\mathrm{a}^{2}}=1+\frac{16}{49}$
$\Rightarrow \frac{9}{a^{2}}=\frac{49+16}{49}$
$\Rightarrow \frac{9}{a^{2}}=\frac{65}{49}$
$\Rightarrow \mathrm{a}^{2}=\frac{49}{65} \times 9$
$a^{2}=441 / 65$

The equation of hyperbola is given as:

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& a^{2}=441 / 65 \text { and } b^{2}=49 / 4 \\
& \Rightarrow \frac{x^{2}}{\frac{441}{65}}-\frac{y^{2}}{\frac{49}{4}}=1 \\
& \Rightarrow \frac{65 x^{2}}{441}-\frac{4 y^{2}}{49}=1 \\
& \Rightarrow \frac{65 x^{2}-36 y^{2}}{441}=1 \\
& \Rightarrow 65 x^{2}-36 y^{2}=441
\end{aligned}
$$

\therefore The Equation of hyperbola is $65 \mathrm{x}^{2}-36 \mathrm{y}^{2}=441$

