

EXERCISE 3.1

PAGE NO: 3.7

1. Define a function as a set of ordered pairs. Solution:

Let A and B be two non-empty sets. A relation from A to B, i.e., a subset of $A \times B$, is called a function (or a mapping) from A to B, if

(i) for each $a \in A$ there exists $b \in B$ such that $(a, b) \in f$

(ii) (a, b) \in f and (a, c) \in f \Rightarrow b = c

2. Define a function as a correspondence between two sets. Solution:

Let A and B be two non-empty sets. Then a function 'f' from set A to B is a rule or method or correspondence which associates elements of set A to elements of set B such that:

(i) all elements of set A are associated to elements in set B.

(ii) an element of set A is associated to a unique element in set B.

3. What is the fundamental difference between a relation and a function? Is every relation a function?

Solution:

Let 'f' be a function and R be a relation defined from set X to set Y.

The domain of the relation R might be a subset of the set X, but the domain of the function f must be equal to X. This is because each element of the domain of a function must have an element associated with it, whereas this is not necessary for a relation.

In relation, one element of X might be associated with one or more elements of Y, while it must be associated with only one element of Y in a function.

Thus, not every relation is a function. However, every function is necessarily a relation.

4. Let $A = \{-2, -1, 0, 1, 2\}$ and f: $A \rightarrow Z$ be a function defined by $f(x) = x^2 - 2x - 3$. Find: (i) range of f i.e. f (A) (ii) pre-images of 6, -3 and 5 Solution: Given: $A = \{-2, -1, 0, 1, 2\}$ f : $A \rightarrow Z$ such that $f(x) = x^2 - 2x - 3$

(i) Range of f i.e. f (A) A is the domain of the function f. Hence, range is the set of elements f(x) for all $x \in A$. Substituting x = -2 in f(x), we get $f(-2) = (-2)^2 - 2(-2) - 3$ = 4 + 4 - 3= 5 Substituting x = -1 in f(x), we get $f(-1) = (-1)^2 - 2(-1) - 3$ = 1 + 2 - 3= 0Substituting x = 0 in f(x), we get $f(0) = (0)^2 - 2(0) - 3$ = 0 - 0 - 3= -3Substituting x = 1 in f(x), we get $f(1) = 1^2 - 2(1) - 3$ = 1 - 2 - 3= -4Substituting x = 2 in f(x), we get $f(2) = 2^2 - 2(2) - 3$ = 4 - 4 - 3= -3Thus, the range of f is $\{-4, -3, 0, 5\}$. (ii) pre-images of 6, -3 and 5Let x be the pre-image of $6 \Rightarrow f(x) = 6$ $x^2 - 2x - 3 = 6$ $x^2 - 2x - 9 = 0$ $\mathbf{x} = \left[-(-2) \pm \sqrt{((-2)^2 - 4(1)(-9))}\right] / 2(1)$ $= [2 \pm \sqrt{(4+36)}]/2$ $= [2 \pm \sqrt{40}] / 2$ $= 1 + \sqrt{10}$ However, $1 \pm \sqrt{10} \notin A$ Thus, there exists no pre-image of 6. Now, let x be the pre-image of $-3 \Rightarrow f(x) = -3$ $x^2 - 2x - 3 = -3$

x = 0 or 2 Clearly, both 0 and 2 are elements of A. Thus, 0 and 2 are the pre-images of -3.

Now, let x be the pre-image of $5 \Rightarrow f(x) = 5$ $x^2 - 2x - 3 = 5$ $x^2 - 2x - 8 = 0$ $x^2 - 4x + 2x - 8 = 0$ x(x - 4) + 2(x - 4) = 0 (x + 2)(x - 4) = 0 x = -2 or 4 However, $4 \notin A$ but $-2 \in A$ Thus, -2 is the pre-images of 5. $\therefore \emptyset$, $\{0, 2\}$, -2 are the pre-images of 6, -3, 5

5. If a function f: $\mathbf{R} \to \mathbf{R}$ be defined by

 $f(x) = \begin{cases} 3x-2, x < 0 \\ 1, x = 0 \\ 4x+1, x > 0 \end{cases}$

Find: f (1), f (-1), f (0), f (2). Solution:

Given:

Let us find f (1), f (-1), f (0) and f (2). When x > 0, f (x) = 4x + 1 Substituting x = 1 in the above equation, we get f (1) = 4(1) + 1 = 4 + 1 = 5

When x < 0, f(x) = 3x - 2Substituting x = -1 in the above equation, we get f(-1) = 3(-1) - 2= -3 - 2= -5

When x = 0, f(x) = 1Substituting x = 0 in the above equation, we get f(0) = 1

When x > 0, f(x) = 4x + 1Substituting x = 2 in the above equation, we get f(2) = 4(2) + 1= 8 + 1= 9 \therefore f (1) = 5, f (-1) = -5, f (0) = 1 and f (2) = 9.

6. A function f: $\mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2$. Determine (i) range of f (ii) {x: f(x) = 4} (iii) {y: f(y) = -1} Solution: Given: f : $\mathbb{R} \to \mathbb{R}$ and $f(x) = x^2$. (i) range of f Domain of $f = \mathbb{R}$ (set of real numbers) We know that the square of a real number is always positive or equal to zero. \therefore range of $f = \mathbb{R}^+ \cup \{0\}$

```
(ii) {x: f(x) = 4}

Given:

f(x) = 4

we know, x^2 = 4

x^2 - 4 = 0

(x - 2)(x + 2) = 0

\therefore x = \pm 2

\therefore {x: f(x) = 4} = {-2, 2}
```

(iii) {y: f(y) = -1} Given: f(y) = -1 $y^2 = -1$ However, the domain

However, the domain of f is R, and for every real number y, the value of y^2 is non-negative.

Hence, there exists no real y for which $y^2 = -1$. $\therefore \{y: f(y) = -1\} = \emptyset$

7. Let f: $R^+ \rightarrow R$, where R^+ is the set of all positive real numbers, be such that f(x) =

 \therefore {x: f(x) = -2} = {e^{-2}}

log_e x. Determine (i) the image set of the domain of f (ii) {x: f (x) = −2} (iii) whether f (xy) = f (x) + f (y) holds. Solution: Given f: $R^+ \rightarrow R$ and $f(x) = \log_e x$. (i) the image set of the domain of f Domain of $f = R^+$ (set of positive real numbers) We know the value of logarithm to the base e (natural logarithm) can take all possible real values. \therefore The image set of f = R(ii) {x: f(x) = −2} Given f(x) = −2 $\log_e x = -2$ $\therefore x = e^{-2}$ [since, $\log_b a = c \Rightarrow a = b^c$]

(iii) Whether f(xy) = f(x) + f(y) holds. We have $f(x) = \log_e x \Rightarrow f(y) = \log_e y$ Now, let us consider f(xy) $F(xy) = \log_e (xy)$ $f(xy) = \log_e (x \times y)$ [since, $\log_b (a \times c) = \log_b a + \log_b c$] $f(xy) = \log_e x + \log_e y$ f(xy) = f(x) + f(y) \therefore the equation f(xy) = f(x) + f(y) holds.

8. Write the following relations as sets of ordered pairs and find which of them are functions:

(i) $\{(x, y): y = 3x, x \in \{1, 2, 3\}, y \in \{3, 6, 9, 12\}\}$ (ii) $\{(x, y): y > x + 1, x = 1, 2 \text{ and } y = 2, 4, 6\}$ (iii) $\{(x, y): x + y = 3, x, y \in \{0, 1, 2, 3\}\}$ Solution: (i) $\{(x, y): y = 3x, x \in \{1, 2, 3\}, y \in \{3, 6, 9, 12\}\}$ When x = 1, y = 3(1) = 3When x = 2, y = 3(2) = 6When x = 3, y = 3(3) = 9 $\therefore R = \{(1, 3), (2, 6), (3, 9)\}$ Hence, the given relation R is a function.

(ii) {(x, y): y > x + 1, x = 1, 2 and y = 2, 4, 6} When x = 1, y > 1 + 1 or $y > 2 \Rightarrow y = \{4, 6\}$ When x = 2, y > 2 + 1 or $y > 3 \Rightarrow y = \{4, 6\}$ $\therefore R = \{(1, 4), (1, 6), (2, 4), (2, 6)\}$ Hence, the given relation R is not a function.

(iii) $\{(x, y): x + y = 3, x, y \in \{0, 1, 2, 3\}\}$ When $x = 0, 0 + y = 3 \Rightarrow y = 3$ When $x = 1, 1 + y = 3 \Rightarrow y = 2$ When $x = 2, 2 + y = 3 \Rightarrow y = 1$ When $x = 3, 3 + y = 3 \Rightarrow y = 0$ $\therefore R = \{(0, 3), (1, 2), (2, 1), (3, 0)\}$ Hence, the given relation R is a function.

9. Let f: $R \rightarrow R$ and g: $C \rightarrow C$ be two functions defined as $f(x) = x^2$ and $g(x) = x^2$. Are they equal functions?

Solution:

Given:

f: $R \rightarrow R \in f(x) = x^2$ and $g : R \rightarrow R \in g(x) = x^2$

f is defined from R to R, the domain of f = R.

g is defined from C to C, the domain of g = C.

Two functions are equal only when the domain and codomain of both the functions are equal.

In this case, the domain of $f \neq$ domain of g.

 \therefore f and g are not equal functions.

EXERCISE 3.2

PAGE NO: 3.11

1. If f (x) = $x^2 - 3x + 4$, then find the values of x satisfying the equation f (x) = f (2x + 1). Solution: Given: $f(x) = x^2 - 3x + 4$. Let us find x satisfying f(x) = f(2x + 1). We have, $f(2x + 1) = (2x + 1)^2 - 3(2x + 1) + 4$ $= (2x)^{2} + 2(2x)(1) + 1^{2} - 6x - 3 + 4$ $=4x^{2}+4x+1-6x+1$ $=4x^2-2x+2$ Now, f(x) = f(2x + 1) $x^2 - 3x + 4 = 4x^2 - 2x + 2$ $4x^2 - 2x + 2 - x^2 + 3x - 4 = 0$ $3x^2 + x - 2 = 0$ $3x^2 + 3x - 2x - 2 = 0$ 3x(x+1) - 2(x+1) = 0(x + 1)(3x - 2) = 0x + 1 = 0 or 3x - 2 = 0x = -1 or 3x = 2x = -1 or 2/3 \therefore The values of x are -1 and 2/3. 2. If $f(x) = (x - a)^2 (x - b)^2$, find f(a + b). Solution: Given: $F(x) = (x - a)^2(x - b)^2$ Let us find f(a + b). We have, $f(a + b) = (a + b - a)^2 (a + b - b)^2$ $f(a + b) = (b)^2 (a)^2$ \therefore f (a + b) = a²b² 3. If y = f(x) = (ax - b) / (bx - a), show that x = f(y). Solution: Given:

 $y = f(x) = (ax - b) / (bx - a) \Rightarrow f(y) = (ay - b) / (by - a)$ Let us prove that x = f(y). We have, y = (ax - b) / (bx - a)By cross-multiplying, y(bx - a) = ax - bbxy - ay = ax - bbxy - ax = ay - bx(by - a) = ay - bx = (ay - b) / (by - a) = f(y) $\therefore x = f(y)$ Hence proved.

4. If f (x) = 1 / (1 - x), show that f [f {f (x)}] = x. Solution: Given:

f (x) = 1 / (1 - x) Let us prove that f [f {f (x)}] = x. Firstly, let us solve for f {f (x)}. f {f (x)} = f {1/(1 - x)} = 1 / 1 - (1/(1 - x)) = 1 / [(1 - x - 1)/(1 - x)] = 1 / (-x/(1 - x)) = (1 - x) / -x = (x - 1) / x \therefore f {f (x)} = (x - 1) / x

Now, we shall solve for f [f {f (x)}] f [f {f (x)}] = f [(x-1)/x] = 1 / [1 - (x-1)/x] = 1 / [(x - (x-1))/x] = 1 / [(x - x + 1)/x] = 1 / (1/x) \therefore f [f {f (x)}] = x Hence proved.

5. If f (x) = (x + 1) / (x - 1), show that f [f (x)] = x. Solution: Given:

f(x) = (x + 1) / (x - 1)Let us prove that f[f(x)] = x. f[f(x)] = f[(x+1)/(x-1)] = [(x+1)/(x-1) + 1] / [(x+1)/(x-1) - 1] = [[(x+1) + (x-1)]/(x-1)] / [[(x+1) - (x-1)]/(x-1)] = [(x+1) + (x-1)] / [(x+1) - (x-1)] = (x+1+x-1)/(x+1-x+1) = 2x/2 = x $\therefore f[f(x)] = x$ Hence proved.

6. If

$$f(x) = \begin{cases} x^2, \text{when } x < 0\\ x, \text{when } 0 \le x < 1\\ \frac{1}{x}, \text{when } x \ge 1 \end{cases}$$

Find:

(i) f (1/2) (ii) f (-2) (iii) f (1) (iv) f ($\sqrt{3}$) (v) f ($\sqrt{-3}$) Solution: (i) f (1/2) When, $0 \le x \le 1$, f(x) = x \therefore f (1/2) = $\frac{1}{2}$

(ii) f (-2)

When, x < 0, $f(x) = x^2$ f $(-2) = (-2)^2$ = 4 \therefore f (-2) = 4

(iii) f (1)

```
When, x \ge 1, f(x) = 1/x
f(1) = 1/1
\therefore f(1) = 1
```


(iv) f ($\sqrt{3}$) We have $\sqrt{3} = 1.732 > 1$ When, $x \ge 1$, f (x) = 1/x \therefore f ($\sqrt{3}$) = 1/ $\sqrt{3}$

(v) f (√-3)

We know $\sqrt{-3}$ is not a real number and the function f(x) is defined only when $x \in \mathbb{R}$. \therefore f ($\sqrt{-3}$) does not exist.

EXERCISE 3.3

PAGE NO: 3.18

1. Find the domain of each of the following real valued functions of real variable: (i) f(x) = 1/x(ii) f(x) = 1/(x-7)(iii) f(x) = (3x-2)/(x+1)(iv) $f(x) = (2x+1)/(x^2-9)$ (v) $f(x) = (x^2+2x+1)/(x^2-8x+12)$ Solution: (i) f(x) = 1/xWe know, f(x) is defined for all real values of x, except for the case when x = 0. \therefore Domain of $f = R - \{0\}$ (ii) f(x) = 1/(x-7)We know, f (x) is defined for all real values of x, except for the case when x - 7 = 0 or x = 7. \therefore Domain of f = R - {7} (iii) f(x) = (3x-2)/(x+1)We know, f(x) is defined for all real values of x, except for the case when x + 1 = 0 or x =-1. \therefore Domain of f = R - {-1} (iv) $f(x) = (2x+1)/(x^2-9)$ We know, f (x) is defined for all real values of x, except for the case when $x^2 - 9 = 0$. $x^2 - 9 = 0$ $x^2 - 3^2 = 0$ (x+3)(x-3) = 0x + 3 = 0 or x - 3 = 0 $x = \pm 3$ \therefore Domain of f = R - {-3, 3} (v) f (x) = $(x^2+2x+1)/(x^2-8x+12)$ We know, f(x) is defined for all real values of x, except for the case when $x^2 - 8x + 12 =$ 0. $x^2 - 8x + 12 = 0$ $x^2 - 2x - 6x + 12 = 0$ x(x-2) - 6(x-2) = 0(x-2)(x-6) = 0

x - 2 = 0 or x - 6 = 0 x = 2 or 6 \therefore Domain of $f = R - \{2, 6\}$

2. Find the domain of each of the following real valued functions of real variable: (i) f (x) = $\sqrt{(x-2)}$ (ii) $f(x) = 1/(\sqrt{x^2-1})$ (iii) $f(x) = \sqrt{(9-x^2)}$ (iv) $f(x) = \sqrt{(x-2)/(3-x)}$ **Solution:** (i) f (x) = $\sqrt{(x-2)}$ We know the square of a real number is never negative. f (x) takes real values only when $x - 2 \ge 0$ $x \ge 2$ $\therefore x \in [2, \infty)$ \therefore Domain (f) = [2, ∞) (ii) f (x) = $1/(\sqrt{x^2-1})$ We know the square of a real number is never negative. f (x) takes real values only when $x^2 - 1 \ge 0$ $x^2 - 1^2 > 0$ $(x+1)(x-1) \ge 0$ $x \leq -1$ or $x \geq 1$ $\therefore x \in (-\infty, -1] \cup [1, \infty)$ In addition, f (x) is also undefined when $x^2 - 1 = 0$ because denominator will be zero and the result will be indeterminate. $x^2 - 1 = 0 \Rightarrow x = \pm 1$ So, $x \in (-\infty, -1] \cup [1, \infty) - \{-1, 1\}$ $x \in (-\infty, -1) \cup (1, \infty)$ \therefore Domain (f) = ($-\infty$, -1) U (1, ∞) (iii) f (x) = $\sqrt{(9-x^2)}$ We know the square of a real number is never negative. f (x) takes real values only when $9 - x^2 \ge 0$ $9 > x^2$ $x^2 < 9$ $x^2 - 9 < 0$ $x^2 - 3^2 \le 0$ $(x+3)(x-3) \le 0$

 $x \ge -3$ and $x \le 3$

RD Sharma Solutions for Class 11 Maths Chapter 3 – Functions

 $x \in [-3, 3]$: Domain (f) = [-3, 3](iv) $f(x) = \sqrt{(x-2)/(3-x)}$ We know the square root of a real number is never negative. f (x) takes real values only when x - 2 and 3 - x are both positive and negative. (a) Both x - 2 and 3 - x are positive $x-2 \ge 0$ x > 2 $3-x \ge 0$ $x \leq 3$ Hence, $x \ge 2$ and $x \le 3$ $\therefore x \in [2, 3]$ (b) Both x - 2 and 3 - x are negative $x-2 \leq 0$ $x \leq 2$ $3-x \leq 0$ $x \ge 3$ Hence, $x \le 2$ and $x \ge 3$ However, the intersection of these sets is null set. Thus, this case is not possible. Hence, $x \in [2, 3] - [3]$ $x \in [2, 3]$ \therefore Domain (f) = [2, 3]

3. Find the domain and range of each of the following real valued functions:

(i) f(x) = (ax+b)/(bx-a)(ii) f(x) = (ax-b)/(cx-d)(iii) $f(x) = \sqrt{(x-1)}$ (iv) f (x) = $\sqrt{(x-3)}$ (v) f(x) = (x-2)/(2-x)(vi) f (x) = |x-1|(vii) f(x) = -|x|(viii) $f(x) = \sqrt{(9-x^2)}$ Solution: (i) f(x) = (ax+b)/(bx-a)

f(x) is defined for all real values of x, except for the case when bx - a = 0 or x = a/b. Domain (f) = R - (a/b)Let f(x) = y(ax+b)/(bx-a) = yax + b = y(bx - a)ax + b = bxy - ayax - bxy = -ay - b $\mathbf{x}(\mathbf{a} - \mathbf{b}\mathbf{y}) = -(\mathbf{a}\mathbf{y} + \mathbf{b})$ \therefore x = - (ay+b)/(a-by) When a - by = 0 or y = a/bHence, f(x) cannot take the value a/b. \therefore Range (f) = R – (a/b) (ii) f(x) = (ax-b)/(cx-d)f(x) is defined for all real values of x, except for the case when cx - d = 0 or x = d/c. Domain (f) = R - (d/c)Let f(x) = y(ax-b)/(cx-d) = yax - b = y(cx - d)ax - b = cxy - dyax - cxy = b - dyx(a-cy) = b - dy \therefore x = (b-dy)/(a-cy) When a - cy = 0 or y = a/c, Hence, f(x) cannot take the value a/c. \therefore Range (f) = R – (a/c) (iii) $f(x) = \sqrt{(x-1)}$ We know the square of a real number is never negative. f(x) takes real values only when $x - 1 \ge 0$ $x \ge 1$ $\therefore x \in [1, \infty)$ Thus, domain (f) = $[1, \infty)$ When $x \ge 1$, we have $x - 1 \ge 0$ Hence, $\sqrt{(x-1)} \ge 0 \Rightarrow f(x) \ge 0$ $f(x) \in [0, \infty)$ \therefore Range (f) = [0, ∞) (iv) f (x) = $\sqrt{(x-3)}$

We know the square of a real number is never negative. f (x) takes real values only when $x - 3 \ge 0$ x > 3 $\therefore x \in [3, \infty)$ Domain (f) = $[3, \infty)$ When $x \ge 3$, we have $x - 3 \ge 0$ Hence, $\sqrt{(x-3)} \ge 0 \Rightarrow f(x) \ge 0$ $f(x) \in [0, \infty)$ \therefore Range (f) = [0, ∞) (v) f(x) = (x-2)/(2-x)f(x) is defined for all real values of x, except for the case when 2 - x = 0 or x = 2. Domain (f) = $R - \{2\}$ We have, f(x) = (x-2)/(2-x)f(x) = -(2-x)/(2-x)= -1When $x \neq 2$, f(x) = -1 \therefore Range (f) = {-1} **(vi)** f(x) = |x-1|we know $|x| = \begin{cases} -x, x < 0 \\ x, x \ge 0 \end{cases}$ Now we have, Now we have, $|x-1| = \begin{cases} -(x-1), x-1 < 0\\ x-1, x-1 \ge 0 \end{cases}$ $\therefore f(x) = |x-1| = \begin{cases} 1-x, x < 1\\ x-1, x \ge 1 \end{cases}$ Hence, f(x) is defined for all real numbers x. Domain (f) = RWhen, x < 1, we have x - 1 < 0 or 1 - x > 0. $|\mathbf{x} - 1| > 0 \Rightarrow \mathbf{f}(\mathbf{x}) > 0$ When, $x \ge 1$, we have $x - 1 \ge 0$. $|x-1| \ge 0 \Rightarrow f(x) \ge 0$ \therefore f(x) ≥ 0 or f(x) $\in [0, \infty)$ Range (f) = $[0, \infty)$ (vii) f(x) = -|x|

we know
$$|x| = \begin{cases} -x, x < 0 \\ x, x \ge 0 \end{cases}$$

Now we have,

$$-|x| = \begin{cases} -(-x), x < 0 \\ -x, x \ge 0 \end{cases}$$

$$\therefore f(x) = -|x| = \begin{cases} x, x < 0 \\ -x, x \ge 0 \end{cases}$$

Hence, f(x) is defined for all real numbers x. Domain (f) = R When, x < 0, we have -|x| < 0f (x) < 0

When, $x \ge 0$, we have $-x \le 0$. $-|x| \le 0 \Rightarrow f(x) \le 0$

```
\therefore f(x) \le 0 \text{ or } f(x) \in (-\infty, 0]
Range (f) = (-\infty, 0]
```

```
(viii) f(x) = \sqrt{(9-x^2)}
We know the square of a real number is never negative.
f(x) takes real values only when 9 - x^2 \ge 0
9 \ge x^2
x^2 \le 9
x^2 - 9 \le 0
x^2 - 3^2 \le 0
(x + 3)(x - 3) \le 0
x \ge -3 and x \le 3
\therefore x \in [-3, 3]
Domain (f) = [-3, 3]
When, x \in [-3, 3], we have 0 \le 9 - x^2 \le 9
0 \le \sqrt{(9-x^2)} \le 3 \Rightarrow 0 \le f(x) \le 3
\therefore f(x) \in [0, 3]
Range (f) = [0, 3]
```


EXERCISE 3.4

PAGE NO: 3.38

1. Find f + g, f - g, cf ($c \in R$, $c \neq 0$), fg, 1/f and f/g in each of the following: (i) $f(x) = x^3 + 1$ and g(x) = x + 1(ii) **f** (**x**) = $\sqrt{(x-1)}$ and **g** (**x**) = $\sqrt{(x+1)}$ Solution: (i) $f(x) = x^3 + 1$ and g(x) = x + 1We have $f(x): R \to R$ and $g(x): R \to R$ (a) f + gWe know, (f + g)(x) = f(x) + g(x) $(f + g)(x) = x^3 + 1 + x + 1$ $= x^{3} + x + 2$ So, (f + g)(x): $R \rightarrow R$ \therefore f + g: R \rightarrow R is given by (f + g) (x) = x³ + x + 2 (b) f - gWe know, (f - g)(x) = f(x) - g(x) $(f-g)(x) = x^3 + 1 - (x + 1)$ $= x^3 + 1 - x - 1$ $= x^3 - x$ So, (f - g)(x): $R \rightarrow R$ \therefore f – g: R \rightarrow R is given by (f – g) (x) = x³ – x (c) cf (c \in R, c \neq 0) We know, (cf) $(x) = c \times f(x)$ $(cf)(x) = c(x^3 + 1)$ $= cx^3 + c$ So, (cf) (x) : $R \rightarrow R$ \therefore cf: R \rightarrow R is given by (cf) (x) = cx³ + c (d) fgWe know, (fg)(x) = f(x) g(x)(fg) $(x) = (x^3 + 1) (x + 1)$ $= (x + 1) (x^{2} - x + 1) (x + 1)$ $= (x + 1)^2 (x^2 - x + 1)$ So, (fg) (x): $R \rightarrow R$ \therefore fg: R \rightarrow R is given by (fg) (x) = (x + 1)^2(x^2 - x + 1)

(e) 1/fWe know, (1/f)(x) = 1/f(x) $1/f(x) = 1 / (x^3 + 1)$ Observe that 1/f(x) is undefined when f(x) = 0 or when x = -1. So, $1/f: R - \{-1\} \rightarrow R$ is given by $1/f(x) = 1 / (x^3 + 1)$

(f) f/g We know, (f/g) (x) = f(x)/g(x) (f/g) (x) = $(x^3 + 1) / (x + 1)$ Observe that $(x^3 + 1) / (x + 1)$ is undefined when g(x) = 0 or when x = -1. Using $x^3 + 1 = (x + 1) (x^2 - x + 1)$, we have (f/g) (x) = $[(x+1) (x^2 - x + 1)/(x+1)]$ $= x^2 - x + 1$ \therefore f/g: R - {-1} \rightarrow R is given by (f/g) (x) = $x^2 - x + 1$

(ii) $f(x) = \sqrt{(x-1)}$ and $g(x) = \sqrt{(x+1)}$ We have $f(x): [1, \infty) \to R^+$ and $g(x): [-1, \infty) \to R^+$ as real square root is defined only for non-negative numbers.

(a) f + gWe know, (f + g)(x) = f(x) + g(x) $(f+g)(x) = \sqrt{(x-1)} + \sqrt{(x+1)}$ Domain of (f + g) = Domain of $f \cap$ Domain of gDomain of $(f + g) = [1, \infty) \cap [-1, \infty)$ Domain of $(f + g) = [1, \infty)$ $\therefore f + g: [1, \infty) \rightarrow R$ is given by $(f+g)(x) = \sqrt{(x-1)} + \sqrt{(x+1)}$

(b) f - gWe know, (f - g)(x) = f(x) - g(x) $(f-g)(x) = \sqrt{(x-1)} - \sqrt{(x+1)}$ Domain of (f - g) = Domain of $f \cap$ Domain of gDomain of $(f - g) = [1, \infty) \cap [-1, \infty)$ Domain of $(f - g) = [1, \infty)$ $\therefore f - g: [1, \infty) \rightarrow R$ is given by $(f-g)(x) = \sqrt{(x-1)} - \sqrt{(x+1)}$

(c) cf (c \in R, c \neq 0) We know, (cf) (x) = c \times f(x) (cf) (x) = c $\sqrt{(x-1)}$ Domain of (cf) = Domain of f

Domain of $(cf) = [1, \infty)$ \therefore cf: $[1, \infty) \rightarrow R$ is given by $(cf)(x) = c\sqrt{(x-1)}$

(d) fg We know, (fg) (x) = f(x) g(x) (fg) (x) = $\sqrt{(x-1)} \sqrt{(x+1)}$ $= \sqrt{(x^2 - 1)}$ Domain of (fg) = Domain of f \cap Domain of g Domain of (fg) = [1, ∞) \cap [-1, ∞) Domain of (fg) = [1, ∞) \therefore fg: [1, ∞) \rightarrow R is given by (fg) (x) = $\sqrt{(x^2 - 1)}$

(e) 1/f We know, (1/f) (x) = 1/f(x) (1/f) (x) = $1/\sqrt{(x-1)}$ Domain of (1/f) = Domain of f Domain of (1/f) = [1, ∞) Observe that $1/\sqrt{(x-1)}$ is also undefined when x - 1 = 0 or x = 1.

 $\therefore 1/f: (1, \infty) \to R \text{ is given by } (1/f) (x) = 1/\sqrt{(x-1)}$

(f) f/g We know, (f/g) (x) = f(x)/g(x) (f/g) (x) = $\sqrt{(x-1)}/\sqrt{(x+1)}$ (f/g) (x) = $\sqrt{[(x-1)/(x+1)]}$ Domain of (f/g) = Domain of f \cap Domain of g Domain of (f/g) = [1, ∞) \cap [-1, ∞) Domain of (f/g) = [1, ∞) \therefore f/g: [1, ∞) \rightarrow R is given by (f/g) (x) = $\sqrt{[(x-1)/(x+1)]}$

2. Let f(x) = 2x + 5 and $g(x) = x^2 + x$. Describe (i) f + g(ii) f - g(iii) fg(iv) f/gFind the domain in each case. Solution: Given: f(x) = 2x + 5 and $g(x) = x^2 + x$ Both f(x) and g(x) are defined for all $x \in \mathbb{R}$.

So, domain of f = domain of g = R(i) f + gWe know, (f + g)(x) = f(x) + g(x) $(f + g)(x) = 2x + 5 + x^2 + x$ $= x^2 + 3x + 5$ (f + g)(x) Is defined for all real numbers x. \therefore The domain of (f + g) is R

(ii) f - gWe know, (f - g)(x) = f(x) - g(x) $(f - g)(x) = 2x + 5 - (x^2 + x)$ $= 2x + 5 - x^2 - x$ $= 5 + x - x^2$ (f - g)(x) is defined for all real numbers x.

 \therefore The domain of (f - g) is R

(iii) fg We know, (fg)(x) = f(x)g(x) $(fg)(x) = (2x + 5)(x^2 + x)$ $= 2x(x^2 + x) + 5(x^2 + x)$ $= 2x^3 + 2x^2 + 5x^2 + 5x$ $= 2x^3 + 7x^2 + 5x$ (fg)(x) is defined for all real numbers x.

 \therefore The domain of fg is R

(iv) f/g

We know, (f/g)(x) = f(x)/g(x) $(f/g)(x) = (2x+5)/(x^2+x)$ (f/g)(x) is defined for all real values of x, except for the case when $x^2 + x = 0$. $x^2 + x = 0$ x(x + 1) = 0 x = 0 or x + 1 = 0 x = 0 or x + 1 = 0When x = 0 or -1, (f/g)(x) will be undefined as the division result will be indeterminate. \therefore The domain of $f/g = R - \{-1, 0\}$

3. If f(x) be defined on [-2, 2] and is given by $f(x) = \begin{cases} -1, -2 \le x \le 0 \\ x - 1, 0 < x \le 2 \end{cases}$ and g(x) = f(|x|) + |f(x)|. Find g(x).

Solution:

Given:

$$f(x) = \begin{cases} -1, -2 \le x \le 0\\ x - 1, 0 < x \le 2 \end{cases} \text{and}$$

g(x) = f(|x|) + |f(x)|
Now we have,
$$f(|x|) = \begin{cases} -1, -2 \le |x| \le 0\\ |x| - 1, 0 < |x| \le 2 \end{cases}$$

However, $|x| \ge 0 \Rightarrow f(|x|) = |x| - 1$ when $0 \le |x| \le 2$

We also have,

$$|f(x)| = \begin{cases} |-1|, -2 \le x \le 0\\ |x-1|, 0 < x \le 2 \end{cases}$$
$$= \begin{cases} 1, -2 \le x \le 0\\ |x-1|, 0 < x \le 2 \end{cases}$$

We also know,

$$|x-1| = \begin{cases} -(x-1), x-1 < 0\\ x-1, x-1 \ge 0\\ -(x-1), x < 1\\ x-1, x \ge 1 \end{cases}$$

Here, we shall only the range between [0, 2].

$$|x-1| = \begin{cases} -(x-1), & 0 < x < 1\\ x-1, & 1 \le x \le 2 \end{cases}$$

Substituting this value of |x - 1| in |f(x)|, we get

$$\begin{aligned} |f(x)| &= \begin{cases} 1, -2 \le x \le 0\\ -(x-1), 0 < x < 1\\ x - 1, 1 \le x \le 2\\ 1, -2 \le x \le 0\\ 1 - x, 0 < x < 1\\ x - 1, 1 \le x \le 2 \end{aligned} \\ \end{aligned}$$

Now, we need to find g(x)
g(x) &= f(|x|) + |f(x)|
$$&= |x| - 1 \text{ when } 0 \le |x| \le 2 + \begin{cases} 1, -2 \le x \le 0\\ 1 - x, 0 < x < 1\\ x - 1, 1 \le x \le 2 \end{cases}$$

 $\frac{1}{2}$

$$g(x) = \begin{cases} -x - 1, -2 \le x \le 0\\ x - 1, 0 < x < 1 \\ x - 1, 1 \le x \le 2 \end{cases} + \begin{cases} 1, -2 \le x \le 0\\ 1 - x, 0 < x < 1\\ x - 1, 1 \le x \le 2 \end{cases}$$
$$= \begin{cases} -x - 1 + 1, -2 \le x \le 0\\ x - 1 + 1 - x, 0 < x < 1\\ x - 1 + x - 1, 1 \le x \le 2 \end{cases}$$
$$= \begin{cases} -x, -2 \le x \le 0\\ 0, 0 < x < 1\\ 2(x - 1), 1 \le x \le 2 \end{cases}$$

$$\begin{aligned} &\therefore \mathbf{g}(\mathbf{x}) = \mathbf{f}(|\mathbf{x}|) + |\mathbf{f}(\mathbf{x})| \, \big| \\ &= \begin{cases} -x, \, -2 \leq x \leq 0 \\ 0, \, 0 < x < 1 \\ 2(x-1), \, 1 \leq x \leq 2 \end{cases} \end{aligned}$$

4. Let f, g be two real functions defined by $f(x) = \sqrt{(x+1)}$ and $g(x) = \sqrt{(9-x^2)}$. Then, describe each of the following functions.

- (i) **f** + **g**
- (ii) g f (iii) fg
- (in) ig (iv) f/g
- $(\mathbf{v}) \mathbf{g}/\mathbf{f}$
- (vi) $2\mathbf{f} \sqrt{5\mathbf{g}}$
- $(vii) f^2 + 7f$

(viii) 5/g

Solution:

Given: $f(x) = \sqrt{(x+1)}$ and $g(x) = \sqrt{(9-x^2)}$ We know the square of a real nu

We know the square of a real number is never negative.

So, f(x) takes real values only when $x + 1 \ge 0$

 $x \ge -1, x \in [-1, \infty)$ Domain of $f = [-1, \infty)$

Similarly, g(x) takes real values only when $9 - x^2 \ge 0$ $9 \ge x^2$ $x^2 \le 9$ $x^2 - 9 \le 0$ $x^2 - 3^2 \le 0$ $(x + 3)(x - 3) \le 0$

 $x \ge -3$ and $x \le 3$ $\therefore x \in [-3, 3]$ Domain of g = [-3, 3](i) f + g We know, (f + g)(x) = f(x) + g(x) $(f + g)(x) = \sqrt{(x+1)} + \sqrt{(9-x^2)}$ Domain of $f + g = Domain of f \cap Domain of g$ $= [-1, \infty) \cap [-3, 3]$ = [-1, 3]: $f + g: [-1, 3] \rightarrow R$ is given by $(f + g)(x) = f(x) + g(x) = \sqrt{(x+1)} + \sqrt{(9-x^2)}$ (ii) g – f We know, (g - f)(x) = g(x) - f(x) $(g-f)(x) = \sqrt{(9-x^2)} - \sqrt{(x+1)}$ Domain of g - f = Domain of $g \cap$ Domain of f $= [-3, 3] \cap [-1, \infty)$ = [-1, 3] \therefore g – f: [-1, 3] \rightarrow R is given by (g – f) (x) = g(x) – f(x) = $\sqrt{(9-x^2)} - \sqrt{(x+1)}$ (iii) fg We know, (fg)(x) = f(x)g(x)(fg) (x) = $\sqrt{(x+1)} \sqrt{(9-x^2)}$ $=\sqrt{[(x+1)(9-x^2)]}$ $=\sqrt{[x(9-x^2)+(9-x^2)]}$ $=\sqrt{(9x-x^3+9-x^2)}$ $=\sqrt{(9+9x-x^2-x^3)}$ Domain of $fg = Domain of f \cap Domain of g$ $= [-1, \infty) \cap [-3, 3]$ = [-1, 3]: fg: [-1, 3] \rightarrow R is given by (fg) (x) = f(x) g(x) = $\sqrt{(x+1)} \sqrt{(9-x^2)} = \sqrt{(9+9x-x^2-x^3)}$ (iv) f/g We know, (f/g)(x) = f(x)/g(x) $(f/g)(x) = \sqrt{(x+1)} / \sqrt{(9-x^2)}$ $= \sqrt{[(x+1)/(9-x^2)]}$ Domain of f/g = Domain of $f \cap$ Domain of g $= [-1, \infty) \cap [-3, 3]$ = [-1, 3]

However, (f/g)(x) is defined for all real values of $x \in [-1, 3]$, except for the case when 9 $-x^2 = 0$ or $x = \pm 3$ When $x = \pm 3$, (f/g) (x) will be undefined as the division result will be indeterminate. Domain of $f/g = [-1, 3] - \{-3, 3\}$ Domain of f/g = [-1, 3) \therefore f/g: [-1, 3) \rightarrow R is given by (f/g) (x) = f(x)/g(x) = $\sqrt{(x+1)} / \sqrt{(9-x^2)}$ (v) g/f We know, (g/f)(x) = g(x)/f(x) $(g/f)(x) = \sqrt{(9-x^2)} / \sqrt{(x+1)}$ $=\sqrt{[(9-x^2)/(x+1)]}$ Domain of g/f = Domain of $f \cap$ Domain of g $= [-1, \infty) \cap [-3, 3]$ = [-1, 3]However, (g/f)(x) is defined for all real values of $x \in [-1, 3]$, except for the case when x +1 = 0 or x = -1When x = -1, (g/f)(x) will be undefined as the division result will be indeterminate. Domain of $g/f = [-1, 3] - \{-1\}$ Domain of g/f = (-1, 3] \therefore g/f: (-1, 3] \rightarrow R is given by (g/f) (x) = g(x)/f(x) = $\sqrt{(9-x^2)} / \sqrt{(x+1)}$ (vi) 2f - $\sqrt{5g}$ We know, $(2f - \sqrt{5g})(x) = 2f(x) - \sqrt{5g(x)}$ $(2f - \sqrt{5g})(x) = 2f(x) - \sqrt{5g(x)}$ $=2\sqrt{(x+1)}-\sqrt{5}\sqrt{(9-x^2)}$ $=2\sqrt{(x+1)}-\sqrt{(45-5x^2)}$ Domain of 2f - $\sqrt{5g}$ = Domain of f \cap Domain of g $= [-1, \infty) \cap [-3, 3]$ = [-1, 3]: 2f - $\sqrt{5g}$: [-1, 3] \rightarrow R is given by (2f - $\sqrt{5g}$) (x) = 2f (x) - $\sqrt{5g}$ (x) = $2\sqrt{(x+1)} - \sqrt{(45-5x^2)}$ (vii) $f^2 + 7f$ We know, $(f^2 + 7f)(x) = f^2(x) + (7f)(x)$ $(f^2 + 7f)(x) = f(x) f(x) + 7f(x)$ $= \sqrt{(x+1)} \sqrt{(x+1)} + 7\sqrt{(x+1)}$ $= x + 1 + 7\sqrt{(x+1)}$ Domain of $f^2 + 7f$ is same as domain of f. Domain of $f^2 + 7f = [-1, \infty)$: $f^2 + 7f$: $[-1, \infty) \to R$ is given by $(f^2 + 7f)(x) = f(x)f(x) + 7f(x) = x + 1 + 7\sqrt{(x+1)}$

(viii) 5/g We know, (5/g)(x) = 5/g(x) $(5/g)(x) = 5/\sqrt{(9-x^2)}$ Domain of 5/g = Domain of g = [-3, 3]However, (5/g)(x) is defined for all real values of $x \in [-3, 3]$, except for the case when 9 $-x^2 = 0$ or $x = \pm 3$ When $x = \pm 3$, (5/g) (x) will be undefined as the division result will be indeterminate. Domain of $5/g = [-3, 3] - \{-3, 3\}$ =(-3, 3): $5/g: (-3, 3) \rightarrow R$ is given by $(5/g)(x) = 5/g(x) = 5/\sqrt{(9-x^2)}$ 5. If $f(x) = \log_e(1 - x)$ and g(x) = [x], then determine each of the following functions: (i) f + g(ii) fg (iii) f/g (iv) g/fAlso, find (f + g)(-1), (fg)(0), (f/g)(1/2) and (g/f)(1/2). Solution: Given: $f(x) = \log_e (1 - x)$ and g(x) = [x]We know, f(x) takes real values only when 1 - x > 01 > x $x < 1, \therefore x \in (-\infty, 1)$ Domain of $f = (-\infty, 1)$ Similarly, g(x) is defined for all real numbers x. Domain of $g = [x], x \in R$ $= \mathbf{R}$ (i) f + gWe know, (f + g)(x) = f(x) + g(x) $(f + g)(x) = \log_e(1 - x) + [x]$ Domain of f + g = Domain of $f \cap$ Domain of g Domain of $f + g = (-\infty, 1) \cap R$ $=(-\infty, 1)$ \therefore f + g: (- ∞ , 1) \rightarrow R is given by (f + g) (x) = log_e(1 - x) + [x] (ii) fg

We know, (fg) (x) = f(x) g(x) $(fg)(x) = \log_{e}(1-x) \times [x]$ $= [x] \log_{e}(1-x)$ Domain of $fg = Domain of f \cap Domain of g$ $=(-\infty, 1) \cap \mathbf{R}$ $=(-\infty, 1)$ \therefore fg: $(-\infty, 1) \rightarrow R$ is given by (fg) $(x) = [x] \log_e(1-x)$ (iii) f/g We know, (f/g)(x) = f(x)/g(x) $(f/g)(x) = \log_e(1-x) / [x]$ Domain of f/g = Domain of $f \cap$ Domain of g $=(-\infty, 1) \cap \mathbf{R}$ $=(-\infty, 1)$ However, (f/g)(x) is defined for all real values of $x \in (-\infty, 1)$, except for the case when [x] = 0.We have, [x] = 0 when $0 \le x \le 1$ or $x \in [0, 1)$ When $0 \le x \le 1$, (f/g) (x) will be undefined as the division result will be indeterminate. Domain of $f/g = (-\infty, 1) - [0, 1)$ $=(-\infty, 0)$ \therefore f/g: (- ∞ , 0) \rightarrow R is given by (f/g) (x) = log_e(1 - x) / [x] (iv) g/f We know, (g/f)(x) = g(x)/f(x) $(g/f)(x) = [x] / \log_e (1 - x)$ However, (g/f)(x) is defined for all real values of $x \in (-\infty, 1)$, except for the case when $\log_{e}(1-x) = 0.$ $\log_e(1-x) = 0 \Rightarrow 1-x = 1 \text{ or } x = 0$ When x = 0, (g/f) (x) will be undefined as the division result will be indeterminate. Domain of $g/f = (-\infty, 1) - \{0\}$ $=(-\infty, 0) \cup (0, 1)$ \therefore g/f: (- ∞ , 0) \cup (0, 1) \rightarrow R is given by (g/f) (x) = [x] / log_e(1-x) (a) We need to find (f + g)(-1). We have, $(f + g)(x) = \log_e (1 - x) + [x], x \in (-\infty, 1)$ Substituting x = -1 in the above equation, we get $(f + g)(-1) = \log_e (1 - (-1)) + [-1]$ $= \log_{e} (1 + 1) + (-1)$ $= \log_{e} 2 - 1$

BYJU'S

RD Sharma Solutions for Class 11 Maths Chapter 3 – Functions

 $:: (f+g)(-1) = log_e 2 - 1$

(b) We need to find (fg) (0). We have, (fg) $(x) = [x] \log_e (1 - x), x \in (-\infty, 1)$ Substituting x = 0 in the above equation, we get (fg) $(0) = [0] \log_e (1 - 0)$ $= 0 \times \log_e 1$ \therefore (fg) (0) = 0

(c) We need to find (f/g) (1/2)We have, $(f/g) (x) = \log_e (1 - x) / [x], x \in (-\infty, 0)$ However, 1/2 is not in the domain of f/g. \therefore (f/g) (1/2) does not exist.

(d) We need to find (g/f) (1/2) We have, (g/f) (x) = [x] / log_e (1 - x), x $\in (-\infty, 0) \cup (0, \infty)$ Substituting x=1/2 in the above equation, we get (g/f) (1/2) = [x] / log_e (1 - x) = (1/2)/ log_e (1 - 1/2) = 0.5/ log_e (1/2) = 0 / log_e (1/2) = 0 \therefore (g/f) (1/2) = 0