EXERCISE 3.1

1. Define a function as a set of ordered pairs.

Solution:

Let A and B be two non-empty sets. A relation from A to B, i.e., a subset of $A \times B$, is called a function (or a mapping) from A to B , if
(i) for each $a \in A$ there exists $b \in B$ such that ($a, b) \in f$
(ii) $(\mathrm{a}, \mathrm{b}) \in \mathrm{f}$ and $(\mathrm{a}, \mathrm{c}) \in \mathrm{f} \Rightarrow \mathrm{b}=\mathrm{c}$

2. Define a function as a correspondence between two sets. Solution:

Let A and B be two non-empty sets. Then a function ' f ' from set A to B is a rule or method or correspondence which associates elements of set A to elements of set B such that:
(i) all elements of set A are associated to elements in set B.
(ii) an element of set A is associated to a unique element in set B .
3. What is the fundamental difference between a relation and a function? Is every relation a function?

Solution:

Let ' f ' be a function and R be a relation defined from set X to set Y .
The domain of the relation R might be a subset of the set X , but the domain of the function f must be equal to X. This is because each element of the domain of a function must have an element associated with it, whereas this is not necessary for a relation.

In relation, one element of X might be associated with one or more elements of Y , while it must be associated with only one element of Y in a function.

Thus, not every relation is a function. However, every function is necessarily a relation.
4. Let $A=\{-2,-1,0,1,2\}$ and $f: A \rightarrow Z$ be a function defined by $f(x)=x^{2}-2 x-3$. Find:
(i) range of f i.e. $f(A)$
(ii) pre-images of $6,-3$ and 5

Solution:

Given:
$\mathrm{A}=\{-2,-1,0,1,2\}$
$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{Z}$ such that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}-3$
(i) Range of fi.e. $f(A)$

A is the domain of the function f. Hence, range is the set of elements $f(x)$ for all $x \in A$.
Substituting $\mathrm{x}=-2$ in $\mathrm{f}(\mathrm{x})$, we get

$$
\begin{aligned}
f(-2) & =(-2)^{2}-2(-2)-3 \\
& =4+4-3 \\
& =5
\end{aligned}
$$

Substituting $\mathrm{x}=-1$ in $\mathrm{f}(\mathrm{x})$, we get

$$
\begin{aligned}
\mathrm{f}(-1) & =(-1)^{2}-2(-1)-3 \\
& =1+2-3 \\
& =0
\end{aligned}
$$

Substituting $\mathrm{x}=0$ in $\mathrm{f}(\mathrm{x})$, we get

$$
\begin{aligned}
f(0) & =(0)^{2}-2(0)-3 \\
& =0-0-3 \\
& =-3
\end{aligned}
$$

Substituting $\mathrm{x}=1$ in $\mathrm{f}(\mathrm{x})$, we get

$$
\begin{aligned}
\mathrm{f}(1) & =1^{2}-2(1)-3 \\
& =1-2-3 \\
& =-4
\end{aligned}
$$

Substituting $\mathrm{x}=2$ in $\mathrm{f}(\mathrm{x})$, we get

$$
\begin{aligned}
\mathrm{f}(2) & =2^{2}-2(2)-3 \\
& =4-4-3 \\
& =-3
\end{aligned}
$$

Thus, the range of f is $\{-4,-3,0,5\}$.
(ii) pre-images of $6,-3$ and 5

Let x be the pre-image of $6 \Rightarrow f(x)=6$

$$
\begin{aligned}
& x^{2}-2 x-3=6 \\
& \mathrm{x}^{2}-2 \mathrm{x}-9=0 \\
& \mathrm{x}=\left[-(-2) \pm \sqrt{ }\left((-2)^{2}-4(1)(-9)\right)\right] / 2(1) \\
& \quad=[2 \pm \sqrt{ }(4+36)] / 2 \\
& \quad=[2 \pm \sqrt{ } 40] / 2 \\
& =1 \pm \sqrt{ } 10
\end{aligned}
$$

However, $1 \pm \sqrt{ } 10 \notin \mathrm{~A}$
Thus, there exists no pre-image of 6 .
Now, let x be the pre-image of $-3 \Rightarrow f(x)=-3$
$x^{2}-2 x-3=-3$
$x^{2}-2 x=0$
$x(x-2)=0$
$\mathrm{x}=0$ or 2
Clearly, both 0 and 2 are elements of A.
Thus, 0 and 2 are the pre-images of -3 .
Now, let x be the pre-image of $5 \Rightarrow f(x)=5$
$x^{2}-2 x-3=5$
$x^{2}-2 x-8=0$
$x^{2}-4 x+2 x-8=0$
$x(x-4)+2(x-4)=0$
$(\mathrm{x}+2)(\mathrm{x}-4)=0$
$x=-2$ or 4
However, $4 \notin \mathrm{~A}$ but $-2 \in \mathrm{~A}$
Thus, -2 is the pre-images of 5 .
$\therefore \emptyset,\{0,2\},-2$ are the pre-images of $6,-3,5$

5. If a function $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{r}
3 \mathrm{x}-2, \mathrm{x}<0 \\
1, \mathrm{x}=0 \\
4 \mathrm{x}+1, \mathrm{x}>0
\end{array}\right.
$$

Find: $\mathrm{f}(\mathbf{1}), \mathrm{f}(\mathbf{- 1)}, \mathrm{f}(\mathbf{0}), \mathrm{f}(\mathbf{2})$.

Solution:

Given:

Let us find $\mathrm{f}(1), \mathrm{f}(-1), \mathrm{f}(0)$ and $\mathrm{f}(2)$.
When $\mathrm{x}>0, \mathrm{f}(\mathrm{x})=4 \mathrm{x}+1$
Substituting $\mathrm{x}=1$ in the above equation, we get

$$
\begin{aligned}
f(1) & =4(1)+1 \\
& =4+1 \\
& =5
\end{aligned}
$$

When $\mathrm{x}<0, \mathrm{f}(\mathrm{x})=3 \mathrm{x}-2$
Substituting $x=-1$ in the above equation, we get

$$
\begin{aligned}
f(-1) & =3(-1)-2 \\
& =-3-2 \\
& =-5
\end{aligned}
$$

When $\mathrm{x}=0, \mathrm{f}(\mathrm{x})=1$
Substituting $x=0$ in the above equation, we get f $(0)=1$

When $\mathrm{x}>0, \mathrm{f}(\mathrm{x})=4 \mathrm{x}+1$
Substituting $\mathrm{x}=2$ in the above equation, we get

$$
\begin{aligned}
f(2) & =4(2)+1 \\
& =8+1 \\
& =9
\end{aligned}
$$

$$
\therefore \mathrm{f}(1)=5, \mathrm{f}(-1)=-5, \mathrm{f}(0)=1 \text { and } \mathrm{f}(2)=9 \text {. }
$$

6. A function $f: R \rightarrow R$ is defined by $f(x)=x^{2}$. Determine
(i) range of f
(ii) $\{x: f(x)=4\}$
(iii) $\{\mathrm{y}: \mathrm{f}(\mathrm{y})=-\mathbf{1}\}$

Solution:

Given:
$f: R \rightarrow R$ and $f(x)=x^{2}$.
(i) range of f

Domain of $f=R$ (set of real numbers)
We know that the square of a real number is always positive or equal to zero.
\therefore range of $f=R^{+} \cup\{0\}$
(ii) $\{x: f(x)=4\}$

Given:
$\mathrm{f}(\mathrm{x})=4$
we know, $\mathrm{x}^{2}=4$
$x^{2}-4=0$
$(\mathrm{x}-2)(\mathrm{x}+2)=0$
$\therefore \mathrm{x}= \pm 2$
$\therefore\{x: f(x)=4\}=\{-2,2\}$
(iii) $\{y: f(y)=-1\}$

Given:
$f(y)=-1$
$y^{2}=-1$
However, the domain of f is R, and for every real number y, the value of y^{2} is nonnegative.
Hence, there exists no real y for which $\mathrm{y}^{2}=-1$.
$\therefore\{\mathrm{y}: \mathrm{f}(\mathrm{y})=-1\}=\varnothing$
7. Let $f: R^{+} \rightarrow R$, where R^{+}is the set of all positive real numbers, be such that $f(x)=$
$\log _{\mathrm{e}} \mathrm{x}$. Determine
(i) the image set of the domain of f
(ii) $\{\mathrm{x}: \mathrm{f}(\mathrm{x})=-2\}$
(iii) whether $f(x y)=f(x)+f(y)$ holds.

Solution:

Given $\mathrm{f}: \mathrm{R}^{+} \rightarrow \mathrm{R}$ and $\mathrm{f}(\mathrm{x})=\log _{\mathrm{e}} \mathrm{x}$.
(i) the image set of the domain of f

Domain of $f=R^{+}$(set of positive real numbers)
We know the value of logarithm to the base e (natural logarithm) can take all possible real values.
\therefore The image set of $\mathrm{f}=\mathrm{R}$
(ii) $\{x: f(x)=-2\}$

Given $f(x)=-2$
$\log _{\mathrm{e}} \mathrm{X}=-2$
$\therefore \mathrm{x}=\mathrm{e}^{-2}$ [since, $\left.\log _{\mathrm{b}} \mathrm{a}=\mathrm{c} \Rightarrow \mathrm{a}=\mathrm{b}^{\mathrm{c}}\right]$
$\therefore\{\mathrm{x}: \mathrm{f}(\mathrm{x})=-2\}=\left\{\mathrm{e}^{-2}\right\}$
(iii) Whether $\mathrm{f}(\mathrm{xy})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$ holds.

We have $\mathrm{f}(\mathrm{x})=\log _{\mathrm{e}} \mathrm{X} \Rightarrow \mathrm{f}(\mathrm{y})=\log _{\mathrm{e}} \mathrm{y}$
Now, let us consider f (xy)
$F(x y)=\log _{e}(x y)$
$f(x y)=\log _{e}(x \times y)\left[\right.$ since, $\left.\log _{b}(a \times c)=\log _{b} a+\log _{b} c\right]$
$f(x y)=\log _{e} x+\log _{e} y$
$\mathrm{f}(\mathrm{xy})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$
\therefore the equation $\mathrm{f}(\mathrm{xy})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$ holds.
8. Write the following relations as sets of ordered pairs and find which of them are functions:
(i) $\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=3 \mathrm{x}, \mathrm{x} \in\{1,2,3\}, \mathrm{y} \in\{3,6,9,12\}\}$
(ii) $\{(x, y): y>x+1, x=1,2$ and $y=2,4,6\}$
(iii) $\{(\mathbf{x}, \mathbf{y}): \mathbf{x}+\mathbf{y}=\mathbf{3}, \mathbf{x}, \mathbf{y} \in\{0,1,2,3\}\}$

Solution:
(i) $\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=3 \mathrm{x}, \mathrm{x} \in\{1,2,3\}, \mathrm{y} \in\{3,6,9,12\}\}$

When $\mathrm{x}=1, \mathrm{y}=3(1)=3$
When $x=2, y=3(2)=6$
When $\mathrm{x}=3, \mathrm{y}=3(3)=9$
$\therefore \mathrm{R}=\{(1,3),(2,6),(3,9)\}$
Hence, the given relation R is a function.
(ii) $\{(\mathrm{x}, \mathrm{y}): \mathrm{y}>\mathrm{x}+1, \mathrm{x}=1,2$ and $\mathrm{y}=2,4,6\}$

When $x=1, y>1+1$ or $y>2 \Rightarrow y=\{4,6\}$
When $\mathrm{x}=2, \mathrm{y}>2+1$ or $\mathrm{y}>3 \Rightarrow \mathrm{y}=\{4,6\}$
$\therefore \mathrm{R}=\{(1,4),(1,6),(2,4),(2,6)\}$
Hence, the given relation R is not a function.
(iii) $\{(\mathrm{x}, \mathrm{y}): \mathrm{x}+\mathrm{y}=3, \mathrm{x}, \mathrm{y} \in\{0,1,2,3\}\}$

When $x=0,0+y=3 \Rightarrow y=3$
When $x=1,1+y=3 \Rightarrow y=2$
When $x=2,2+y=3 \Rightarrow y=1$
When $x=3,3+y=3 \Rightarrow y=0$
$\therefore \mathrm{R}=\{(0,3),(1,2),(2,1),(3,0)\}$
Hence, the given relation R is a function.
9. Let $f: R \rightarrow R$ and $g: C \rightarrow C$ be two functions defined as $f(x)=x^{2}$ and $g(x)=x^{2}$. Are they equal functions?

Solution:

Given:
$f: R \rightarrow R \in f(x)=x^{2}$ and $g: R \rightarrow R \in g(x)=x^{2}$
f is defined from R to R, the domain of $f=R$.
g is defined from C to C, the domain of $g=C$.
Two functions are equal only when the domain and codomain of both the functions are equal.
In this case, the domain of $\mathrm{f} \neq$ domain of g .
$\therefore \mathrm{f}$ and g are not equal functions.

1. If $f(x)=x^{2}-3 x+4$, then find the values of x satisfying the equation $f(x)=f(2 x+$ 1).

Solution:

Given:
$f(x)=x^{2}-3 x+4$.
Let us find x satisfying $\mathrm{f}(\mathrm{x})=\mathrm{f}(2 \mathrm{x}+1)$.
We have,

$$
\begin{aligned}
\mathrm{f}(2 \mathrm{x}+1) & =(2 \mathrm{x}+1)^{2}-3(2 \mathrm{x}+1)+4 \\
& =(2 \mathrm{x})^{2}+2(2 \mathrm{x})(1)+1^{2}-6 \mathrm{x}-3+4 \\
& =4 \mathrm{x}^{2}+4 \mathrm{x}+1-6 \mathrm{x}+1 \\
& =4 \mathrm{x}^{2}-2 \mathrm{x}+2
\end{aligned}
$$

Now, $\mathrm{f}(\mathrm{x})=\mathrm{f}(2 \mathrm{x}+1)$
$x^{2}-3 x+4=4 x^{2}-2 x+2$
$4 x^{2}-2 x+2-x^{2}+3 x-4=0$
$3 x^{2}+x-2=0$
$3 x^{2}+3 x-2 x-2=0$
$3 \mathrm{x}(\mathrm{x}+1)-2(\mathrm{x}+1)=0$
$(\mathrm{x}+1)(3 \mathrm{x}-2)=0$
$\mathrm{x}+1=0$ or $3 \mathrm{x}-2=0$
$x=-1$ or $3 x=2$
$x=-1$ or $2 / 3$
\therefore The values of x are -1 and $2 / 3$.
2. If $f(x)=(x-a)^{2}(x-b)^{2}$, find $f(a+b)$.

Solution:

Given:
$F(x)=(x-a)^{2}(x-b)^{2}$
Let us find $f(a+b)$.
We have,
$\mathrm{f}(\mathrm{a}+\mathrm{b})=(\mathrm{a}+\mathrm{b}-\mathrm{a})^{2}(\mathrm{a}+\mathrm{b}-\mathrm{b})^{2}$
$\mathrm{f}(\mathrm{a}+\mathrm{b})=(\mathrm{b})^{2}(\mathrm{a})^{2}$
$\therefore \mathrm{f}(\mathrm{a}+\mathrm{b})=\mathrm{a}^{2} \mathrm{~b}^{2}$
3. If $y=f(x)=(a x-b) /(b x-a)$, show that $x=f(y)$.

Solution:

Given:
$y=f(x)=(a x-b) /(b x-a) \Rightarrow f(y)=(a y-b) /(b y-a)$
Let us prove that $\mathrm{x}=\mathrm{f}(\mathrm{y})$.
We have,
$y=(a x-b) /(b x-a)$
By cross-multiplying,
$y(b x-a)=a x-b$
$b x y-a y=a x-b$
$b x y-a x=a y-b$
$x(b y-a)=a y-b$
$x=(a y-b) /(b y-a)=f(y)$
$\therefore \mathrm{x}=\mathrm{f}(\mathrm{y})$
Hence proved.

4. If $f(x)=1 /(1-x)$, show that $f[f\{f(x)\}]=x$.

Solution:

Given:
$\mathrm{f}(\mathrm{x})=1 /(1-\mathrm{x})$
Let us prove that $\mathrm{f}[\mathrm{f}\{\mathrm{f}(\mathrm{x})\}]=\mathrm{x}$.
Firstly, let us solve for $\mathrm{f}\{\mathrm{f}(\mathrm{x})\}$.

$$
\begin{aligned}
\mathrm{f}\{\mathrm{f}(\mathrm{x})\} & =\mathrm{f}\{1 /(1-\mathrm{x})\} \\
& =1 / 1-(1 /(1-\mathrm{x})) \\
& =1 /[(1-\mathrm{x}-1) /(1-\mathrm{x})] \\
& =1 /(-\mathrm{x} /(1-\mathrm{x})) \\
& =(1-\mathrm{x}) /-\mathrm{x} \\
& =(\mathrm{x}-1) / \mathrm{x} \\
\therefore \mathrm{f}\{\mathrm{f}(\mathrm{x})\} & =(\mathrm{x}-1) / \mathrm{x}
\end{aligned}
$$

Now, we shall solve for $\mathrm{f}[\mathrm{f}\{\mathrm{f}(\mathrm{x})\}]$

$$
\begin{aligned}
\mathrm{f}[\mathrm{f}\{\mathrm{f}(\mathrm{x})\}] & =\mathrm{f}[(\mathrm{x}-1) / \mathrm{x}] \\
& =1 /[1-(\mathrm{x}-1) / \mathrm{x}] \\
& =1 /[(\mathrm{x}-(\mathrm{x}-1)) / \mathrm{x}] \\
& =1 /[(\mathrm{x}-\mathrm{x}+1) / \mathrm{x}] \\
& =1 /(1 / \mathrm{x})
\end{aligned}
$$

$\therefore \mathrm{f}[\mathrm{f}\{\mathrm{f}(\mathrm{x})\}]=\mathrm{x}$
Hence proved.
5. If $f(x)=(x+1) /(x-1)$, show that $f[f(x)]=x$.

Solution:

Given:

$\mathrm{f}(\mathrm{x})=(\mathrm{x}+1) /(\mathrm{x}-1)$
Let us prove that $\mathrm{f}[\mathrm{f}(\mathrm{x})]=\mathrm{x}$.
$\mathrm{f}[\mathrm{f}(\mathrm{x})]=\mathrm{f}[(\mathrm{x}+1) /(\mathrm{x}-1)]$

$$
\begin{aligned}
& =[(\mathrm{x}+1) /(\mathrm{x}-1)+1] /[(\mathrm{x}+1) /(\mathrm{x}-1)-1] \\
& =[[(\mathrm{x}+1)+(\mathrm{x}-1)] /(\mathrm{x}-1)] /[[(\mathrm{x}+1)-(\mathrm{x}-1)] /(\mathrm{x}-1)] \\
& =[(\mathrm{x}+1)+(\mathrm{x}-1)] /[(\mathrm{x}+1)-(\mathrm{x}-1)] \\
& =(\mathrm{x}+1+\mathrm{x}-1) /(\mathrm{x}+1-\mathrm{x}+1) \\
& =2 \mathrm{x} / 2 \\
& =\mathrm{x}
\end{aligned}
$$

$\therefore \mathrm{f}[\mathrm{f}(\mathrm{x})]=\mathrm{x}$
Hence proved.

6. If

$$
f(x)=\left\{\begin{array}{r}
x^{2}, \text { when } x<0 \\
x, \text { when } 0 \leq x<1 \\
\frac{1}{x}, \text { when } x \geq 1
\end{array}\right.
$$

Find:

(i) $f(1 / 2)$
(ii) $\mathbf{f}(-2)$
(iii) \mathbf{f} (1)
(iv) $f(\sqrt{ } 3)$
(v) $f(\sqrt{ }-3)$

Solution:

(i) $f(1 / 2)$

When, $0 \leq \mathrm{x} \leq 1, \mathrm{f}(\mathrm{x})=\mathrm{x}$
$\therefore \mathrm{f}(1 / 2)=1 / 2$
(ii) $f(-2)$

When, $\mathrm{x}<0, \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$
$\mathrm{f}(-2)=(-2)^{2}$ $=4$
$\therefore \mathrm{f}(-2)=4$
(iii) f (1)

When, $\mathrm{x} \geq 1, \mathrm{f}(\mathrm{x})=1 / \mathrm{x}$
$\mathrm{f}(1)=1 / 1$
$\therefore \mathrm{f}(1)=1$
(iv) $f(\sqrt{ } 3)$

We have $\sqrt{ } 3=1.732>1$
When, $\mathrm{x} \geq 1, \mathrm{f}(\mathrm{x})=1 / \mathrm{x}$
$\therefore \mathrm{f}(\sqrt{ } 3)=1 / \sqrt{ } 3$
(v) $f(\sqrt{ }-3)$

We know $\sqrt{ }$ - 3 is not a real number and the function $f(x)$ is defined only when $x \in R$.
$\therefore \mathrm{f}(\sqrt{ }-3)$ does not exist.

EXERCISE 3.3

1. Find the domain of each of the following real valued functions of real variable:
(i) $f(x)=1 / x$
(ii) $f(x)=1 /(x-7)$
(iii) $f(x)=(3 x-2) /(x+1)$
(iv) $f(x)=(2 x+1) /\left(x^{2}-9\right)$
(v) $f(x)=\left(x^{2}+2 x+1\right) /\left(x^{2}-8 x+12\right)$

Solution:

(i) $\mathrm{f}(\mathrm{x})=1 / \mathrm{x}$

We know, $f(x)$ is defined for all real values of x, except for the case when $x=0$.
\therefore Domain of $\mathrm{f}=\mathrm{R}-\{0\}$
(ii) $\mathrm{f}(\mathrm{x})=1 /(\mathrm{x}-7)$

We know, $f(x)$ is defined for all real values of x , except for the case when $\mathrm{x}-7=0$ or x $=7$.
\therefore Domain of $\mathrm{f}=\mathrm{R}-\{7\}$
(iii) $\mathrm{f}(\mathrm{x})=(3 \mathrm{x}-2) /(\mathrm{x}+1)$

We know, $f(x)$ is defined for all real values of x, except for the case when $x+1=0$ or $x=$ -1 .
\therefore Domain of $\mathrm{f}=\mathrm{R}-\{-1\}$
(iv) $\mathrm{f}(\mathrm{x})=(2 \mathrm{x}+1) /\left(\mathrm{x}^{2}-9\right)$

We know, $f(x)$ is defined for all real values of x, except for the case when $x^{2}-9=0$.
$\mathrm{x}^{2}-9=0$
$x^{2}-3^{2}=0$
$(x+3)(x-3)=0$
$x+3=0$ or $x-3=0$
$\mathrm{x}= \pm 3$
\therefore Domain of $\mathrm{f}=\mathrm{R}-\{-3,3\}$
(v) $f(x)=\left(x^{2}+2 x+1\right) /\left(x^{2}-8 x+12\right)$

We know, $f(x)$ is defined for all real values of x, except for the case when $x^{2}-8 x+12=$ 0.
$x^{2}-8 x+12=0$
$x^{2}-2 x-6 x+12=0$
$x(x-2)-6(x-2)=0$
$(x-2)(x-6)=0$
$x-2=0$ or $x-6=0$
$\mathrm{x}=2$ or 6
\therefore Domain of $\mathrm{f}=\mathrm{R}-\{2,6\}$

2. Find the domain of each of the following real valued functions of real variable:

(i) $\mathbf{f}(\mathbf{x})=\sqrt{ }(\mathbf{x}-2)$
(ii) $f(x)=1 /\left(\sqrt{ }\left(x^{2}-1\right)\right)$
(iii) $f(x)=\sqrt{ }\left(9-x^{2}\right)$
(iv) $f(x)=\sqrt{ }(x-2) /(3-x)$

Solution:
(i) $f(x)=\sqrt{ }(x-2)$

We know the square of a real number is never negative.
$\mathrm{f}(\mathrm{x})$ takes real values only when $\mathrm{x}-2 \geq 0$
$x \geq 2$
$\therefore \mathrm{x} \in[2, \infty)$
\therefore Domain $(\mathrm{f})=[2, \infty)$
(ii) $\mathrm{f}(\mathrm{x})=1 /\left(\sqrt{ }\left(\mathrm{x}^{2}-1\right)\right)$

We know the square of a real number is never negative.
$f(x)$ takes real values only when $x^{2}-1 \geq 0$
$x^{2}-1^{2} \geq 0$
$(\mathrm{x}+1)(\mathrm{x}-1) \geq 0$
$\mathrm{x} \leq-1$ or $\mathrm{x} \geq 1$
$\therefore \mathrm{x} \in(-\infty,-1] \cup[1, \infty)$
In addition, $\mathrm{f}(\mathrm{x})$ is also undefined when $\mathrm{x}^{2}-1=0$ because denominator will be zero and the result will be indeterminate.
$x^{2}-1=0 \Rightarrow x= \pm 1$
So, $x \in(-\infty,-1] \cup[1, \infty)-\{-1,1\}$
$x \in(-\infty,-1) \cup(1, \infty)$
\therefore Domain $(f)=(-\infty,-1) \cup(1, \infty)$
(iii) $f(x)=\sqrt{ }\left(9-x^{2}\right)$

We know the square of a real number is never negative.
$f(x)$ takes real values only when $9-x^{2} \geq 0$
$9 \geq x^{2}$
$\mathrm{x}^{2} \leq 9$
$\mathrm{x}^{2}-9 \leq 0$
$x^{2}-3^{2} \leq 0$
$(x+3)(x-3) \leq 0$
$\mathrm{x} \geq-3$ and $\mathrm{x} \leq 3$
$x \in[-3,3]$
\therefore Domain (f) $=[-3,3]$
(iv) $f(x)=\sqrt{ }(x-2) /(3-x)$

We know the square root of a real number is never negative.
$f(x)$ takes real values only when $x-2$ and $3-x$ are both positive and negative.
(a) Both $x-2$ and $3-x$ are positive
$\mathrm{x}-2 \geq 0$
$x \geq 2$
$3-\mathrm{x} \geq 0$
$\mathrm{x} \leq 3$
Hence, $x \geq 2$ and $\mathrm{x} \leq 3$
$\therefore \mathrm{x} \in[2,3]$
(b) Both $\mathrm{x}-2$ and $3-\mathrm{x}$ are negative
$\mathrm{x}-2 \leq 0$
$\mathrm{x} \leq 2$
$3-\mathrm{x} \leq 0$
$x \geq 3$
Hence, $\mathrm{x} \leq 2$ and $\mathrm{x} \geq 3$
However, the intersection of these sets is null set. Thus, this case is not possible.
Hence, $x \in[2,3]-[3]$
$x \in[2,3]$
\therefore Domain $(\mathrm{f})=[2,3]$
3. Find the domain and range of each of the following real valued functions:
(i) $f(x)=(a x+b) /(b x-a)$
(ii) $\mathbf{f}(\mathbf{x})=(\mathbf{a x}-\mathrm{b}) /(\mathbf{c x}-\mathrm{d})$
(iii) $f(x)=\sqrt{ }(x-1)$
(iv) $f(x)=\sqrt{ }(x-3)$
(v) $f(x)=(x-2) /(2-x)$
(vi) $f(x)=|x-1|$
(vii) $f(x)=-|x|$
(viii) $f(x)=\sqrt{ }\left(9-x^{2}\right)$

Solution:
(i) $\mathrm{f}(\mathrm{x})=(\mathrm{ax}+\mathrm{b}) /(\mathrm{bx}-\mathrm{a})$
$f(x)$ is defined for all real values of x, except for the case when $b x-a=0$ or $x=a / b$.
Domain (f) $=\mathrm{R}-(\mathrm{a} / \mathrm{b})$
Let $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$(a x+b) /(b x-a)=y$
$a x+b=y(b x-a)$
$a x+b=b x y-a y$
$a x-b x y=-a y-b$
$x(a-b y)=-(a y+b)$
$\therefore \mathrm{x}=-(\mathrm{ay}+\mathrm{b}) /(\mathrm{a}-\mathrm{by})$
When $a-b y=0$ or $y=a / b$
Hence, $\mathrm{f}(\mathrm{x})$ cannot take the value a / b.
\therefore Range (f) $=\mathrm{R}-(\mathrm{a} / \mathrm{b})$
(ii) $\mathrm{f}(\mathrm{x})=(\mathrm{ax}-\mathrm{b}) /(\mathrm{cx}-\mathrm{d})$
$f(x)$ is defined for all real values of x, except for the case when $c x-d=0$ or $x=d / c$.
Domain (f) $=\mathrm{R}-(\mathrm{d} / \mathrm{c})$
Let $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$(a x-b) /(c x-d)=y$
$a x-b=y(c x-d)$
$a x-b=c x y-d y$
$a x-c x y=b-d y$
$x(a-c y)=b-d y$
$\therefore \mathrm{x}=(\mathrm{b}-\mathrm{dy}) /(\mathrm{a}-\mathrm{cy})$
When $\mathrm{a}-\mathrm{cy}=0$ or $\mathrm{y}=\mathrm{a} / \mathrm{c}$,
Hence, $f(x)$ cannot take the value a / c.
\therefore Range (f) $=\mathrm{R}-(\mathrm{a} / \mathrm{c})$
(iii) $f(x)=\sqrt{ }(x-1)$

We know the square of a real number is never negative.
$f(x)$ takes real values only when $x-1 \geq 0$
$\mathrm{x} \geq 1$
$\therefore \mathrm{x} \in[1, \infty)$
Thus, domain $(\mathrm{f})=[1, \infty)$
When $x \geq 1$, we have $x-1 \geq 0$
Hence, $\sqrt{ }(\mathrm{x}-1) \geq 0 \Rightarrow \mathrm{f}(\mathrm{x}) \geq 0$
$\mathrm{f}(\mathrm{x}) \in[0, \infty)$
\therefore Range $(\mathrm{f})=[0, \infty)$
(iv) $f(x)=\sqrt{ }(x-3)$

We know the square of a real number is never negative.
$f(x)$ takes real values only when $x-3 \geq 0$
$x \geq 3$
$\therefore \mathrm{x} \in[3, \infty)$
Domain (f) $=[3, \infty)$
When $x \geq 3$, we have $x-3 \geq 0$
Hence, $\sqrt{ }(\mathrm{x}-3) \geq 0 \Rightarrow \mathrm{f}(\mathrm{x}) \geq 0$
$\mathrm{f}(\mathrm{x}) \in[0, \infty)$
\therefore Range $(\mathrm{f})=[0, \infty)$
(v) $\mathrm{f}(\mathrm{x})=(\mathrm{x}-2) /(2-\mathrm{x})$
$f(x)$ is defined for all real values of x, except for the case when $2-x=0$ or $x=2$.
Domain (f) $=\mathrm{R}-\{2\}$
We have, $\mathrm{f}(\mathrm{x})=(\mathrm{x}-2) /(2-\mathrm{x})$

$$
\begin{aligned}
f(x) & =-(2-x) /(2-x) \\
& =-1
\end{aligned}
$$

When $\mathrm{x} \neq 2, \mathrm{f}(\mathrm{x})=-1$
\therefore Range (f) $=\{-1\}$
(vi) $\mathrm{f}(\mathrm{x})=|\mathrm{x}-1|$
we know $|x|=\left\{\begin{array}{c}-x, x<0 \\ x, x \geq 0\end{array}\right.$
Now we have,
$|x-1|=\left\{\begin{array}{c}-(x-1), x-1<0 \\ x-1, x-1 \geq 0\end{array}\right.$
$\therefore f(x)=|x-1|=\left\{\begin{array}{l}1-x, x<1 \\ x-1, x \geq 1\end{array}\right.$
Hence, $f(x)$ is defined for all real numbers x.
Domain (f) $=\mathrm{R}$
When, $\mathrm{x}<1$, we have $\mathrm{x}-1<0$ or $1-\mathrm{x}>0$.
$|x-1|>0 \Rightarrow f(x)>0$
When, $\mathrm{x} \geq 1$, we have $\mathrm{x}-1 \geq 0$.
$|x-1| \geq 0 \Rightarrow f(x) \geq 0$
$\therefore \mathrm{f}(\mathrm{x}) \geq 0$ or $\mathrm{f}(\mathrm{x}) \in[0, \infty)$
Range (f) $=[0, \infty$)
(vii) $f(x)=-|x|$
we know $|x|=\left\{\begin{array}{c}-x, x<0 \\ x, x \geq 0\end{array}\right.$
Now we have,
$-|x|=\left\{\begin{array}{c}-(-x), x<0 \\ -x, x \geq 0\end{array}\right.$
$\therefore f(x)=-|x|=\left\{\begin{array}{c}x, x<0 \\ -x, x \geq 0\end{array}\right.$
Hence, $f(x)$ is defined for all real numbers x.
Domain (f) $=\mathrm{R}$
When, $\mathrm{x}<0$, we have $-|\mathrm{x}|<0$
f(x) <0
When, $\mathrm{x} \geq 0$, we have $-\mathrm{x} \leq 0$.
$-|\mathrm{x}| \leq 0 \Rightarrow \mathrm{f}(\mathrm{x}) \leq 0$
$\therefore \mathrm{f}(\mathrm{x}) \leq 0$ or $\mathrm{f}(\mathrm{x}) \in(-\infty, 0]$
Range $(\mathrm{f})=(-\infty, 0]$
(viii) $f(x)=\sqrt{ }\left(9-x^{2}\right)$

We know the square of a real number is never negative.
$f(x)$ takes real values only when $9-x^{2} \geq 0$
$9 \geq \mathrm{x}^{2}$
$\mathrm{x}^{2} \leq 9$
$\mathrm{x}^{2}-9 \leq 0$
$x^{2}-3^{2} \leq 0$
$(x+3)(x-3) \leq 0$
$x \geq-3$ and $x \leq 3$
$\therefore \mathrm{x} \in[-3,3]$
Domain (f) $=[-3,3]$
When, $x \in[-3,3]$, we have $0 \leq 9-x^{2} \leq 9$
$0 \leq \sqrt{ }\left(9-x^{2}\right) \leq 3 \Rightarrow 0 \leq f(x) \leq 3$
$\therefore \mathrm{f}(\mathrm{x}) \in[0,3]$
Range (f) $=[0,3]$

EXERCISE 3.4

1. Find $f+g, f-g$, cf $(c \in R, c \neq 0)$, $f g, 1 / f$ and f / g in each of the following:
(i) $f(x)=x^{3}+1$ and $g(x)=x+1$
(ii) $f(\mathbf{x})=\sqrt{ }(x-1)$ and $g(x)=\sqrt{ }(x+1)$

Solution:

(i) $f(x)=x^{3}+1$ and $g(x)=x+1$

We have $f(x): R \rightarrow R$ and $g(x): R \rightarrow R$
(a) $\mathrm{f}+\mathrm{g}$

We know, $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$
$(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{x}^{3}+1+\mathrm{x}+1$

$$
=x^{3}+x+2
$$

So, ($\mathrm{f}+\mathrm{g}$) (x): $\mathrm{R} \rightarrow \mathrm{R}$
$\therefore \mathrm{f}+\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ is given by $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{x}^{3}+\mathrm{x}+2$
(b) $\mathrm{f}-\mathrm{g}$

We know, $(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$

$$
\begin{aligned}
(\mathrm{f}-\mathrm{g})(\mathrm{x}) & =\mathrm{x}^{3}+1-(\mathrm{x}+1) \\
& =\mathrm{x}^{3}+1-\mathrm{x}-1 \\
& =\mathrm{x}^{3}-\mathrm{x}
\end{aligned}
$$

So, (f -g) (x): R $\rightarrow \mathrm{R}$
$\therefore \mathrm{f}-\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ is given by $(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}$
(c) $\mathrm{cf}(\mathrm{c} \in \mathrm{R}, \mathrm{c} \neq 0)$

We know, (cf) (x) $=\mathrm{c} \times \mathrm{f}(\mathrm{x})$

$$
\begin{aligned}
(\mathrm{cf})(\mathrm{x}) & =\mathrm{c}\left(\mathrm{x}^{3}+1\right) \\
& =\mathrm{x}^{3}+\mathrm{c}
\end{aligned}
$$

So, (cf) (x) : R \rightarrow R
\therefore cf: $\mathrm{R} \rightarrow \mathrm{R}$ is given by $(\mathrm{cf})(\mathrm{x})=\mathrm{cx}^{3}+\mathrm{c}$
(d) fg

We know, $(\mathrm{fg})(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$
$(\mathrm{fg})(\mathrm{x})=\left(\mathrm{x}^{3}+1\right)(\mathrm{x}+1)$

$$
\begin{aligned}
& =(x+1)\left(x^{2}-x+1\right)(x+1) \\
& =(x+1)^{2}\left(x^{2}-x+1\right)
\end{aligned}
$$

So, (fg) (x): $\mathrm{R} \rightarrow \mathrm{R}$
$\therefore \mathrm{fg}: \mathrm{R} \rightarrow \mathrm{R}$ is given by $(\mathrm{fg})(\mathrm{x})=(\mathrm{x}+1)^{2}\left(\mathrm{x}^{2}-\mathrm{x}+1\right)$
(e) $1 / \mathrm{f}$

We know, (1/f) (x) = 1/f (x)
$1 / \mathrm{f}(\mathrm{x})=1 /\left(\mathrm{x}^{3}+1\right)$
Observe that $1 / \mathrm{f}(\mathrm{x})$ is undefined when $\mathrm{f}(\mathrm{x})=0$ or when $\mathrm{x}=-1$.
So, $1 / \mathrm{f}: \mathrm{R}-\{-1\} \rightarrow R$ is given by $1 / \mathrm{f}(\mathrm{x})=1 /\left(\mathrm{x}^{3}+1\right)$
(f) f/g

We know, $(\mathrm{f} / \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})$
$(\mathrm{f} / \mathrm{g})(\mathrm{x})=\left(\mathrm{x}^{3}+1\right) /(\mathrm{x}+1)$
Observe that $\left(x^{3}+1\right) /(x+1)$ is undefined when $g(x)=0$ or when $x=-1$.
Using $\mathrm{x}^{3}+1=(\mathrm{x}+1)\left(\mathrm{x}^{2}-\mathrm{x}+1\right)$, we have
$(\mathrm{f} / \mathrm{g})(\mathrm{x})=\left[(\mathrm{x}+1)\left(\mathrm{x}^{2}-\mathrm{x}+1\right) /(\mathrm{x}+1)\right]$

$$
=x^{2}-x+1
$$

$\therefore \mathrm{f} / \mathrm{g}: \mathrm{R}-\{-1\} \rightarrow \mathrm{R}$ is given by $(\mathrm{f} / \mathrm{g})(\mathrm{x})=\mathrm{x}^{2}-\mathrm{x}+1$
(ii) $f(x)=\sqrt{ }(x-1)$ and $g(x)=\sqrt{ }(x+1)$

We have $f(x):[1, \infty) \rightarrow R^{+}$and $g(x):[-1, \infty) \rightarrow R^{+}$as real square root is defined only for non-negative numbers.
(a) $f+g$

We know, $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$
$(\mathrm{f}+\mathrm{g})(\mathrm{x})=\sqrt{ }(\mathrm{x}-1)+\sqrt{ }(\mathrm{x}+1)$
Domain of $(f+g)=$ Domain of $f \cap$ Domain of g
Domain of $(\mathrm{f}+\mathrm{g})=[1, \infty) \cap[-1, \infty)$
Domain of $(f+g)=[1, \infty)$
$\therefore \mathrm{f}+\mathrm{g}:[1, \infty) \rightarrow \mathrm{R}$ is given by $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\sqrt{ }(\mathrm{x}-1)+\sqrt{ }(\mathrm{x}+1)$
(b) $\mathrm{f}-\mathrm{g}$

We know, $(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$
$(\mathrm{f}-\mathrm{g})(\mathrm{x})=\sqrt{ }(\mathrm{x}-1)-\sqrt{ }(\mathrm{x}+1)$
Domain of $(f-g)=$ Domain of $f \cap$ Domain of g
Domain of $(f-g)=[1, \infty) \cap[-1, \infty)$
Domain of $(\mathrm{f}-\mathrm{g})=[1, \infty)$
$\therefore \mathrm{f}-\mathrm{g}:[1, \infty) \rightarrow \mathrm{R}$ is given by $(\mathrm{f}-\mathrm{g})(\mathrm{x})=\sqrt{ }(\mathrm{x}-1)-\sqrt{ }(\mathrm{x}+1)$
(c) $\mathrm{cf}(\mathrm{c} \in \mathrm{R}, \mathrm{c} \neq 0)$

We know, (cf) (x) $=\mathrm{c} \times \mathrm{f}(\mathrm{x})$
(cf) $(x)=c \sqrt{ }(x-1)$
Domain of (cf) = Domain of f

Domain of (cf) $=[1, \infty)$
$\therefore c f:[1, \infty) \rightarrow R$ is given by $(c f)(x)=c \sqrt{ }(x-1)$
(d) fg

We know, $(\mathrm{fg})(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$
$(\mathrm{fg})(\mathrm{x})=\sqrt{ }(\mathrm{x}-1) \sqrt{ }(\mathrm{x}+1)$

$$
=\sqrt{ }\left(x^{2}-1\right)
$$

Domain of $(\mathrm{fg})=$ Domain of $f \cap$ Domain of g
Domain of $(\mathrm{fg})=[1, \infty) \cap[-1, \infty)$
Domain of $(\mathrm{fg})=[1, \infty)$
\therefore fg: $[1, \infty) \rightarrow \mathrm{R}$ is given by $(\mathrm{fg})(\mathrm{x})=\sqrt{ }\left(\mathrm{x}^{2}-1\right)$
(e) $1 / \mathrm{f}$

We know, (1/f) $(\mathrm{x})=1 / \mathrm{f}(\mathrm{x})$
$(1 / \mathrm{f})(\mathrm{x})=1 / \sqrt{ }(\mathrm{x}-1)$
Domain of $(1 / \mathrm{f})=$ Domain of f
Domain of $(1 / \mathrm{f})=[1, \infty)$
Observe that $1 / \sqrt{ }(x-1)$ is also undefined when $x-1=0$ or $x=1$.
$\therefore 1 / \mathrm{f}:(1, \infty) \rightarrow \mathrm{R}$ is given by $(1 / \mathrm{f})(\mathrm{x})=1 / \sqrt{ }(\mathrm{x}-1)$
(f) f / g

We know, $(\mathrm{f} / \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})$
$(\mathrm{f} / \mathrm{g})(\mathrm{x})=\sqrt{ }(\mathrm{x}-1) / \sqrt{ }(\mathrm{x}+1)$
$(\mathrm{f} / \mathrm{g})(\mathrm{x})=\sqrt{ }[(\mathrm{x}-1) /(\mathrm{x}+1)]$
Domain of $(f / g)=$ Domain of $f \cap$ Domain of g
Domain of $(\mathrm{f} / \mathrm{g})=[1, \infty) \cap[-1, \infty)$
Domain of $(\mathrm{f} / \mathrm{g})=[1, \infty)$
$\therefore \mathrm{f} / \mathrm{g}:[1, \infty) \rightarrow \mathrm{R}$ is given by $(\mathrm{f} / \mathrm{g})(\mathrm{x})=\sqrt{ }[(\mathrm{x}-1) /(\mathrm{x}+1)]$
2. Let $f(x)=2 x+5$ and $g(x)=x^{2}+x$. Describe
(i) $f+g$
(ii) $f-\mathbf{g}$
(iii) $f g$
(iv) \mathbf{f} / \mathbf{g}

Find the domain in each case.

Solution:
Given:
$\mathrm{f}(\mathrm{x})=2 \mathrm{x}+5$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}$
Both $f(x)$ and $g(x)$ are defined for all $x \in R$.

So, domain of $f=$ domain of $g=R$
(i) $f+g$

We know, $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$

$$
\begin{aligned}
(\mathrm{f}+\mathrm{g})(\mathrm{x}) & =2 \mathrm{x}+5+\mathrm{x}^{2}+\mathrm{x} \\
& =\mathrm{x}^{2}+3 \mathrm{x}+5
\end{aligned}
$$

$(f+g)(x)$ Is defined for all real numbers x.
\therefore The domain of $(\mathrm{f}+\mathrm{g})$ is R
(ii) $f-\mathrm{g}$

We know, $(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$

$$
\begin{aligned}
(\mathrm{f}-\mathrm{g})(\mathrm{x}) & =2 \mathrm{x}+5-\left(\mathrm{x}^{2}+\mathrm{x}\right) \\
& =2 \mathrm{x}+5-\mathrm{x}^{2}-\mathrm{x} \\
& =5+\mathrm{x}-\mathrm{x}^{2}
\end{aligned}
$$

$(f-g)(x)$ is defined for all real numbers x.
\therefore The domain of $(\mathrm{f}-\mathrm{g})$ is R
(iii) fg

We know, $(\mathrm{fg})(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$

$$
\begin{aligned}
(\mathrm{fg})(\mathrm{x}) & =(2 \mathrm{x}+5)\left(\mathrm{x}^{2}+\mathrm{x}\right) \\
& =2 \mathrm{x}\left(\mathrm{x}^{2}+\mathrm{x}\right)+5\left(\mathrm{x}^{2}+\mathrm{x}\right) \\
& =2 \mathrm{x}^{3}+2 \mathrm{x}^{2}+5 \mathrm{x}^{2}+5 \mathrm{x} \\
& =2 \mathrm{x}^{3}+7 \mathrm{x}^{2}+5 \mathrm{x}
\end{aligned}
$$

$(f g)(x)$ is defined for all real numbers x.
\therefore The domain of fg is R
(iv) f/g

We know, $(\mathrm{f} / \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})$
$(\mathrm{f} / \mathrm{g})(\mathrm{x})=(2 \mathrm{x}+5) /\left(\mathrm{x}^{2}+\mathrm{x}\right)$
$(\mathrm{f} / \mathrm{g})(\mathrm{x})$ is defined for all real values of x , except for the case when $\mathrm{x}^{2}+\mathrm{x}=0$.
$\mathrm{x}^{2}+\mathrm{x}=0$
$\mathrm{x}(\mathrm{x}+1)=0$
$x=0$ or $x+1=0$
$\mathrm{x}=0$ or -1
When $\mathrm{x}=0$ or $-1,(\mathrm{f} / \mathrm{g})(\mathrm{x})$ will be undefined as the division result will be indeterminate.
\therefore The domain of $\mathrm{f} / \mathrm{g}=\mathrm{R}-\{-1,0\}$

3. If $\mathbf{f}(\mathbf{x})$ be defined on $[-\mathbf{2}, 2]$ and is given by
$\mathbf{f (\| \mathbf { x } \|) + \| \mathbf { f } (\mathbf { x }) \| \text { . Find } \mathbf { g } (\mathbf { x }) \text { . }}$. $f(x)=\left\{\begin{array}{c}-1,-2 \leq x \leq 0 \\ x-1,0<x \leq 2\end{array}\right.$ and $\mathbf{g (x)}=$

Solution:

Given:
$f(x)=\left\{\begin{array}{c}-1,-2 \leq x \leq 0 \\ x-1,0<x \leq 2 \text { and }\end{array}\right.$
$\mathrm{g}(\mathrm{x})=\mathrm{f}(|\mathrm{x}|)+|\mathrm{f}(\mathrm{x})|$
Now we have,

$$
f(|x|)=\left\{\begin{array}{c}
-1,-2 \leq|x| \leq 0 \\
|x|-1,0<|x| \leq 2
\end{array}\right.
$$

However, $|\mathrm{x}| \geq 0 \Rightarrow \mathrm{ff}(|\mathrm{x}|)=|\mathrm{x}|-1$ when $0<|\mathrm{x}| \leq 2$
We also have,

$$
\begin{aligned}
|f(x)| & =\left\{\begin{array}{c}
|-1|,-2 \leq x \leq 0 \\
|x-1|, 0<x \leq 2
\end{array}\right. \\
& =\left\{\begin{array}{c}
1,-2 \leq x \leq 0 \\
|x-1|, 0<x \leq 2
\end{array}\right.
\end{aligned}
$$

We also know,

$$
\begin{aligned}
|x-1| & =\left\{\begin{array}{c}
-(x-1), x-1<0 \\
x-1, x-1 \geq 0
\end{array}\right. \\
& =\left\{\begin{array}{c}
-(x-1), x<1 \\
x-1, x \geq 1
\end{array}\right.
\end{aligned}
$$

Here, we shall only the range between [0,2].
$|x-1|=\left\{\begin{array}{c}-(x-1), 0<x<1 \\ x-1,1 \leq x \leq 2\end{array}\right.$
Substituting this value of $|\mathrm{x}-1|$ in $|\mathrm{f}(\mathrm{x})|$, we get

$$
\begin{aligned}
|f(x)| & =\left\{\begin{array}{c}
1,-2 \leq x \leq 0 \\
-(x-1), 0<x<1 \\
x-1,1 \leq x \leq 2
\end{array}\right. \\
& =\left\{\begin{array}{c}
1,-2 \leq x \leq 0 \\
1-x, 0<x<1 \\
x-1,1 \leq x \leq 2
\end{array}\right.
\end{aligned}
$$

Now, we need to find $g(x)$

$$
\mathrm{g}(\mathrm{x})=\mathrm{f}(|\mathrm{x}|)+|\mathrm{f}(\mathrm{x})|
$$

$$
=|\mathbf{x}|-1 \text { when } 0<|\mathbf{x}| \leq 2+\left\{\begin{array}{c}
1,-2 \leq x \leq 0 \\
1-x, 0<x<1 \\
x-1,1 \leq x \leq 2
\end{array}\right.
$$

$$
\begin{aligned}
g(x) & =\left\{\begin{array}{c}
-x-1,-2 \leq x \leq 0 \\
x-1,0<x<1 \\
x-1,1 \leq x \leq 2
\end{array}+\left\{\begin{array}{c}
1,-2 \leq x \leq 0 \\
1-x, 0<x<1 \\
x-1,1 \leq x \leq 2
\end{array}\right.\right. \\
& =\left\{\begin{array}{c}
-x-1+1,-2 \leq x \leq 0 \\
x-1+1-x, 0<x<1 \\
x-1+x-1,1 \leq x \leq 2
\end{array}\right. \\
& =\left\{\begin{array}{c}
-x,-2 \leq x \leq 0 \\
0,0<x<1 \\
2(x-1), 1 \leq x \leq 2
\end{array}\right. \\
\therefore \mathrm{g}(\mathrm{x}) & =\mathrm{f}(|\mathbf{x}|)+|\mathrm{f}(\mathrm{x})| \mid \\
& =\left\{\begin{array}{c}
-x,-2 \leq x \leq 0 \\
0,0<x<1 \\
2(x-1), 1 \leq x \leq 2
\end{array}\right.
\end{aligned}
$$

4. Let f, g be two real functions defined by $f(x)=\sqrt{ }(x+1)$ and $g(x)=\sqrt{ }\left(9-x^{2}\right)$. Then, describe each of the following functions.
(i) $f+g$
(ii) $\mathbf{g}-\mathbf{f}$
(iii) fg
(iv) \mathbf{f} / \mathbf{g}
(v) g / f
(vi) $2 f-\sqrt{ } 5 \mathrm{~g}$
(vii) $\mathbf{f}^{2}+7 \mathbf{f}$
(viii) $5 / \mathrm{g}$

Solution:
Given:
$f(x)=\sqrt{ }(x+1)$ and $g(x)=\sqrt{ }\left(9-x^{2}\right)$
We know the square of a real number is never negative.
So, $f(x)$ takes real values only when $x+1 \geq 0$
$\mathrm{x} \geq-1, \mathrm{x} \in[-1, \infty)$
Domain of $f=[-1, \infty)$
Similarly, $g(x)$ takes real values only when $9-x^{2} \geq 0$
$9 \geq x^{2}$
$x^{2} \leq 9$
$\mathrm{x}^{2}-9 \leq 0$
$x^{2}-3^{2} \leq 0$
$(x+3)(x-3) \leq 0$
$\mathrm{x} \geq-3$ and $\mathrm{x} \leq 3$
$\therefore \mathrm{x} \in[-3,3]$
Domain of $\mathrm{g}=[-3,3]$
(i) $\mathrm{f}+\mathrm{g}$

We know, $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$
$(f+g)(x)=\sqrt{ }(x+1)+\sqrt{ }\left(9-x^{2}\right)$
Domain of $f+g=$ Domain of $f \cap$ Domain of g

$$
\begin{aligned}
& =[-1, \infty) \cap[-3,3] \\
& =[-1,3]
\end{aligned}
$$

$\therefore \mathrm{f}+\mathrm{g}:[-1,3] \rightarrow \mathrm{R}$ is given by $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})=\sqrt{ }(\mathrm{x}+1)+\sqrt{ }\left(9-\mathrm{x}^{2}\right)$
(ii) $g-f$

We know, $(g-f)(x)=g(x)-f(x)$
$(g-f)(x)=\sqrt{ }\left(9-x^{2}\right)-\sqrt{(x+1)}$
Domain of $g-f=$ Domain of $g \cap$ Domain of f

$$
\begin{aligned}
& =[-3,3] \cap[-1, \infty) \\
& =[-1,3]
\end{aligned}
$$

$\therefore \mathrm{g}-\mathrm{f}:[-1,3] \rightarrow \mathrm{R}$ is given by $(\mathrm{g}-\mathrm{f})(\mathrm{x})=\mathrm{g}(\mathrm{x})-\mathrm{f}(\mathrm{x})=\sqrt{ }\left(9-\mathrm{x}^{2}\right)-\sqrt{ }(\mathrm{x}+1)$
(iii) fg

We know, $(\mathrm{fg})(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$
$(f g)(x)=\sqrt{ }(x+1) \sqrt{ }\left(9-x^{2}\right)$
$=\sqrt{ }\left[(x+1)\left(9-x^{2}\right)\right]$
$=\sqrt{ }\left[x\left(9-x^{2}\right)+\left(9-x^{2}\right)\right]$
$=\sqrt{ }\left(9 x-x^{3}+9-x^{2}\right)$
$=\sqrt{ }\left(9+9 x-x^{2}-x^{3}\right)$
Domain of $f g=$ Domain of $f \cap$ Domain of g

$$
\begin{aligned}
& =[-1, \infty) \cap[-3,3] \\
& =[-1,3]
\end{aligned}
$$

$\therefore f g:[-1,3] \rightarrow R$ is given by $(f g)(x)=f(x) g(x)=\sqrt{ }(x+1) \sqrt{ }\left(9-x^{2}\right)=\sqrt{ }\left(9+9 x-x^{2}-x^{3}\right)$
(iv) f / g

We know, $(\mathrm{f} / \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})$
$(f / g)(x)=\sqrt{ }(x+1) / \sqrt{ }\left(9-x^{2}\right)$
$=\sqrt{ }\left[(x+1) /\left(9-x^{2}\right)\right]$
Domain of $f / g=$ Domain of $f \cap$ Domain of g

$$
\begin{aligned}
& =[-1, \infty) \cap[-3,3] \\
& =[-1,3]
\end{aligned}
$$

However, (f / g) (x) is defined for all real values of $\mathrm{x} \in[-1,3]$, except for the case when 9 $-x^{2}=0$ or $x= \pm 3$
When $x= \pm 3$, (f / g) (x) will be undefined as the division result will be indeterminate.
Domain of $\mathrm{f} / \mathrm{g}=[-1,3]-\{-3,3\}$
Domain of $f / g=[-1,3)$
$\therefore \mathrm{f} / \mathrm{g}:[-1,3) \rightarrow \mathrm{R}$ is given by $(\mathrm{f} / \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})=\sqrt{ }(\mathrm{x}+1) / \sqrt{ }\left(9-\mathrm{x}^{2}\right)$
(v) g / f

We know, $(\mathrm{g} / \mathrm{f})(\mathrm{x})=\mathrm{g}(\mathrm{x}) / \mathrm{f}(\mathrm{x})$
(g/f) $(\mathrm{x})=\sqrt{ }\left(9-\mathrm{x}^{2}\right) / \sqrt{ }(\mathrm{x}+1)$

$$
=\sqrt{\left[\left(9-x^{2}\right) /(x+1)\right]}
$$

Domain of $g / f=$ Domain of $f \cap$ Domain of g

$$
\begin{aligned}
& =[-1, \infty) \cap[-3,3] \\
& =[-1,3]
\end{aligned}
$$

However, (g/f) (x) is defined for all real values of $x \in[-1,3]$, except for the case when x $+1=0$ or $\mathrm{x}=-1$
When $\mathrm{x}=-1$, (g/f) (x) will be undefined as the division result will be indeterminate.
Domain of $\mathrm{g} / \mathrm{f}=[-1,3]-\{-1\}$
Domain of $\mathrm{g} / \mathrm{f}=(-1,3]$
$\therefore \mathrm{g} / \mathrm{f}:(-1,3] \rightarrow \mathrm{R}$ is given by $(\mathrm{g} / \mathrm{f})(\mathrm{x})=\mathrm{g}(\mathrm{x}) / \mathrm{f}(\mathrm{x})=\sqrt{ }\left(9-\mathrm{x}^{2}\right) / \sqrt{ }(\mathrm{x}+1)$
(vi) $2 f-\sqrt{ } 5 g$

We know, $(2 f-\sqrt{5} g)(x)=2 f(x)-\sqrt{5} g(x)$
$(2 \mathrm{f}-\sqrt{5} \mathrm{~g})(\mathrm{x})=2 \mathrm{f}(\mathrm{x})-\sqrt{5} \mathrm{~g}(\mathrm{x})$

$$
\begin{aligned}
& =2 \sqrt{ }(x+1)-\sqrt{ } 5 \sqrt{ }\left(9-x^{2}\right) \\
& =2 \sqrt{ }(x+1)-\sqrt{ }\left(45-5 x^{2}\right)
\end{aligned}
$$

Domain of $2 f-\sqrt{5} g=$ Domain of $f \cap$ Domain of g

$$
\begin{aligned}
& =[-1, \infty) \cap[-3,3] \\
& =[-1,3]
\end{aligned}
$$

$\therefore 2 \mathrm{f}-\sqrt{ } 5 \mathrm{~g}:[-1,3] \rightarrow R$ is given by $(2 \mathrm{f}-\sqrt{ } 5 \mathrm{~g})(\mathrm{x})=2 \mathrm{f}(\mathrm{x})-\sqrt{ } 5 \mathrm{~g}(\mathrm{x})=2 \sqrt{ }(\mathrm{x}+1)-\sqrt{ }\left(45-5 \mathrm{x}^{2}\right)$
(vii) $\mathrm{f}^{2}+7 \mathrm{f}$

We know, $\left(\mathrm{f}^{2}+7 \mathrm{f}\right)(\mathrm{x})=\mathrm{f}^{2}(\mathrm{x})+(7 \mathrm{f})(\mathrm{x})$

$$
\begin{aligned}
\left(\mathrm{f}^{2}+7 \mathrm{f}\right)(\mathrm{x}) & =\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{x})+7 \mathrm{f}(\mathrm{x}) \\
& =\sqrt{ }(\mathrm{x}+1) \sqrt{ }(\mathrm{x}+1)+7 \sqrt{ }(\mathrm{x}+1) \\
& =\mathrm{x}+1+7 \sqrt{ }(\mathrm{x}+1)
\end{aligned}
$$

Domain of $f^{2}+7 f$ is same as domain of f.
Domain of $\mathrm{f}^{2}+7 \mathrm{f}=[-1, \infty)$
$\therefore \mathrm{f}^{2}+7 \mathrm{f}:[-1, \infty) \rightarrow \mathrm{R}$ is given by $\left(\mathrm{f}^{2}+7 \mathrm{f}\right)(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{x})+7 \mathrm{f}(\mathrm{x})=\mathrm{x}+1+7 \sqrt{ }(\mathrm{x}+1)$
(viii) 5/g

We know, (5/g) (x) = 5/g(x)
$(5 / \mathrm{g})(\mathrm{x})=5 / \sqrt{\left(9-x^{2}\right)}$
Domain of $5 / \mathrm{g}=$ Domain of $\mathrm{g}=[-3,3]$
However, $(5 / \mathrm{g})(\mathrm{x})$ is defined for all real values of $\mathrm{x} \in[-3,3]$, except for the case when 9 $-\mathrm{x}^{2}=0$ or $\mathrm{x}= \pm 3$
When $\mathrm{x}= \pm 3,(5 / \mathrm{g})(\mathrm{x})$ will be undefined as the division result will be indeterminate.
Domain of $5 / \mathrm{g}=[-3,3]-\{-3,3\}$

$$
=(-3,3)
$$

$\therefore 5 / \mathrm{g}:(-3,3) \rightarrow \mathrm{R}$ is given by $(5 / \mathrm{g})(\mathrm{x})=5 / \mathrm{g}(\mathrm{x})=5 / \sqrt{ }\left(9-\mathrm{x}^{2}\right)$
5. If $f(x)=\log _{e}(1-x)$ and $g(x)=[x]$, then determine each of the following functions:
(i) $f+g$
(ii) fg
(iii) f / g
(iv) g / f

Also, find $(\mathbf{f}+\mathrm{g})(-1),(\mathrm{fg})(\mathbf{0}),(\mathbf{f} / \mathrm{g})(\mathbf{1} / 2)$ and $(\mathrm{g} / \mathrm{f})(\mathbf{1} / \mathbf{2})$.
Solution:
Given:
$\mathrm{f}(\mathrm{x})=\log _{\mathrm{e}}(1-\mathrm{x})$ and $\mathrm{g}(\mathrm{x})=[\mathrm{x}]$
We know, $f(x)$ takes real values only when $1-x>0$
$1>x$
$\mathrm{x}<1, \therefore \mathrm{x} \in(-\infty, 1)$
Domain of $f=(-\infty, 1)$
Similarly, $\mathrm{g}(\mathrm{x})$ is defined for all real numbers x .
Domain of $g=[x], x \in R$

$$
=\mathrm{R}
$$

(i) $\mathrm{f}+\mathrm{g}$

We know, $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$
$(\mathrm{f}+\mathrm{g})(\mathrm{x})=\log _{\mathrm{e}}(1-\mathrm{x})+[\mathrm{x}]$
Domain of $f+g=$ Domain of $f \cap$ Domain of g
Domain of $f+g=(-\infty, 1) \cap R$

$$
=(-\infty, 1)
$$

$\therefore \mathrm{f}+\mathrm{g}:(-\infty, 1) \rightarrow \mathrm{R}$ is given by $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\log _{\mathrm{e}}(1-\mathrm{x})+[\mathrm{x}]$
(ii) fg

We know, $(\mathrm{fg})(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$
$(\mathrm{fg})(\mathrm{x})=\log _{\mathrm{e}}(1-\mathrm{x}) \times[\mathrm{x}]$

$$
=[x] \log _{e}(1-x)
$$

Domain of $f g=$ Domain of $f \cap$ Domain of g

$$
\begin{aligned}
& =(-\infty, 1) \cap \mathrm{R} \\
& =(-\infty, 1)
\end{aligned}
$$

$\therefore \mathrm{fg}:(-\infty, 1) \rightarrow \mathrm{R}$ is given by $(\mathrm{fg})(\mathrm{x})=[\mathrm{x}] \log _{\mathrm{e}}(1-\mathrm{x})$
(iii) f/g

We know, $(\mathrm{f} / \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})$
$(\mathrm{f} / \mathrm{g})(\mathrm{x})=\log _{\mathrm{e}}(1-\mathrm{x}) /[\mathrm{x}]$
Domain of $f / g=$ Domain of $f \cap$ Domain of g

$$
\begin{aligned}
& =(-\infty, 1) \cap \mathrm{R} \\
& =(-\infty, 1)
\end{aligned}
$$

However, (f / g) (x) is defined for all real values of $\mathrm{x} \in(-\infty, 1)$, except for the case when $[\mathrm{x}]=0$.
We have, $[\mathrm{x}]=0$ when $0 \leq \mathrm{x}<1$ or $\mathrm{x} \in[0,1$)
When $0 \leq \mathrm{x}<1$, (f / g) (x) will be undefined as the division result will be indeterminate.
Domain of $f / g=(-\infty, 1)-[0,1)$

$$
=(-\infty, 0)
$$

$\therefore \mathrm{f} / \mathrm{g}:(-\infty, 0) \rightarrow \mathrm{R}$ is given by $(\mathrm{f} / \mathrm{g})(\mathrm{x})=\log _{\mathrm{e}}(1-\mathrm{x}) /[\mathrm{x}]$
(iv) g / f

We know, $(\mathrm{g} / \mathrm{f})(\mathrm{x})=\mathrm{g}(\mathrm{x}) / \mathrm{f}(\mathrm{x})$
$(\mathrm{g} / \mathrm{f})(\mathrm{x})=[\mathrm{x}] / \log _{\mathrm{e}}(1-\mathrm{x})$
However, $(\mathrm{g} / \mathrm{f})(\mathrm{x})$ is defined for all real values of $\mathrm{x} \in(-\infty, 1)$, except for the case when
$\log _{e}(1-x)=0$.
$\log _{\mathrm{e}}(1-\mathrm{x})=0 \Rightarrow 1-\mathrm{x}=1$ or $\mathrm{x}=0$
When $\mathrm{x}=0,(\mathrm{~g} / \mathrm{f})(\mathrm{x})$ will be undefined as the division result will be indeterminate.
Domain of $\mathrm{g} / \mathrm{f}=(-\infty, 1)-\{0\}$

$$
=(-\infty, 0) \cup(0,1)
$$

$\therefore \mathrm{g} / \mathrm{f}:(-\infty, 0) \cup(0,1) \rightarrow \mathrm{R}$ is given by $(\mathrm{g} / \mathrm{f})(\mathrm{x})=[\mathrm{x}] / \log _{\mathrm{e}}(1-\mathrm{x})$
(a) We need to find $(\mathrm{f}+\mathrm{g})(-1)$.

We have, $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\log _{\mathrm{e}}(1-\mathrm{x})+[\mathrm{x}], \mathrm{x} \in(-\infty, 1)$
Substituting $x=-1$ in the above equation, we get

$$
\begin{aligned}
(\mathrm{f}+\mathrm{g})(-1) & =\log _{\mathrm{e}}(1-(-1))+[-1] \\
& =\log _{\mathrm{e}}(1+1)+(-1) \\
& =\log _{\mathrm{e}} 2-1
\end{aligned}
$$

$\therefore(\mathrm{f}+\mathrm{g})(-1)=\log _{\mathrm{e}} 2-1$
(b) We need to find (fg) (0).

We have, $(\mathrm{fg})(\mathrm{x})=[\mathrm{x}] \log _{\mathrm{e}}(1-\mathrm{x}), \mathrm{x} \in(-\infty, 1)$
Substituting $\mathrm{x}=0$ in the above equation, we get
$(\mathrm{fg})(0)=[0] \log _{\mathrm{e}}(1-0)$

$$
=0 \times \log _{\mathrm{e}} 1
$$

$\therefore(\mathrm{fg})(0)=0$
(c) We need to find (f / g) $(1 / 2)$

We have, $(\mathrm{f} / \mathrm{g})(\mathrm{x})=\log _{\mathrm{e}}(1-\mathrm{x}) /[\mathrm{x}], \mathrm{x} \in(-\infty, 0)$
However, $1 / 2$ is not in the domain of f / g.
$\therefore(\mathrm{f} / \mathrm{g})(1 / 2)$ does not exist.
(d) We need to find (g/f) (1/2)

We have, $(\mathrm{g} / \mathrm{f})(\mathrm{x})=[\mathrm{x}] / \log _{\mathrm{e}}(1-\mathrm{x}), \mathrm{x} \in(-\infty, 0) \cup(0, \infty)$
Substituting $x=1 / 2$ in the above equation, we get

$$
\begin{aligned}
(\mathrm{g} / \mathrm{f})(1 / 2) & =[\mathrm{x}] / \log _{\mathrm{e}}(1-\mathrm{x}) \\
& =(1 / 2) / \log _{\mathrm{e}}(1-1 / 2) \\
& =0.5 / \log _{\mathrm{e}}(1 / 2) \\
& =0 / \log _{\mathrm{e}}(1 / 2) \\
& =0 \\
\therefore(\mathrm{~g} / \mathrm{f})(1 / 2) & =0
\end{aligned}
$$

