

EXERCISE 30.4

PAGE NO: 30.39

Differentiate the following functions with respect to x:

1. $x^3 \sin x$ **Solution:** Let us consider $y = x^3 \sin x$ We need to find dy/dxWe know that y is a product of two functions say u and v where, $u = x^3$ and $v = \sin x$ \therefore y = uv Now let us apply product rule of differentiation. By using product rule, we get $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx} \dots \text{ Equation (1)}$ As, $u = x^3$ $\frac{du}{dx} = 3x^{3-1} = 3x^2 \dots \text{ Equation (2) } \{\text{Since}_{\infty} \frac{d}{dx} (x^n) = nx^{n-1} \}$ As, $v = \sin x$ $\frac{dv}{dx} = \frac{d}{dx}(\sin x) = \cos x$... Equation (3) {Since $\frac{d}{dx}(\sin x) = \cos x$ } From equation (1), we can find dy/dx $\frac{dy}{dx} = x^3 \frac{dv}{dx} + \sin x \frac{du}{dx}$ $\frac{dy}{dx} = x^3 \cos x + 3x^2 \sin x$ {Using equation 2 & 3} $\frac{dy}{dx} = x^3 \cos x + 3x^2 \sin x$

2. x³ e^x

Solution:

Let us consider $y = x^3 e^x$ We need to find dy/dx We know that y is a product of two functions say u and v where, $u = x^3$ and $v = e^x$ $\therefore y = uv$ Now let us apply product rule of differentiation. By using product rule, we get

https://byjus.com

 $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx} \dots \text{Equation (1)}$ As. $u = x^3$ $\frac{du}{dx} = 3x^{3-1} = 3x^2 \dots \text{Equation (2)} \left\{ \frac{d}{dx} (x^n) = nx^{n-1} \right\}$ As, $v = e^x$ $\frac{dv}{dx} = \frac{d}{dx}(e^{x}) = e^{x}$... Equation (3) {Since, $\frac{d}{dx}(e^{x}) = e^{x}$ } Now from equation (1), we can find dy/dx $\frac{dy}{dx} = x^3 \frac{dv}{dx} + e^x \frac{du}{dx}$ $\frac{dy}{dx} = x^3 e^x + 3x^2 e^x$ {Using equation 2 & 3} $\frac{dy}{dx} = x^2 e^x (3+x)$ 3. $x^2 e^x \log x$ **Solution:** Let us consider $y = x^2 e^x \log x$ We need to find dy/dxWe know that y is a product of two functions say u and v where, $u = x^2$ and $v = e^x$, w = 1/x \therefore y = uv Now let us apply product rule of differentiation. By using product rule, we get $\frac{dy}{dx} = uw\frac{dv}{dx} + vw\frac{du}{dx} + uv\frac{dw}{dx} \dots equation 1$ As, $u = x^2$ $\frac{du}{dx} = 2x^{2-1} = 2x \dots \text{ Equation (2) {Since, }} \frac{d}{dx}(x^n) = nx^{n-1}}{}$ As, $v = e^x$ $\frac{dv}{dx} = \frac{d}{dx}(e^{x}) = e^{x}$... Equation (3) {Since, $\frac{d}{dx}(e^{x}) = e^{x}$ } As, $w = \log x$ $\frac{dw}{dx} = \frac{d}{dx}(\log x) = \frac{1}{x} \dots \text{Equation (4) } \{\text{Since, } \frac{d}{dx}(\log_e x) = \frac{1}{x}\}$ Now, from equation 1, we can find dy/dx $\frac{dy}{dx} = x^2 \log x \frac{dv}{dx} + e^x \log x \frac{du}{dx} + x^2 e^x \frac{dw}{dx}$

$$\frac{dy}{dx} = x^2 e^x \log x + 2x e^x \log x + x^2 e^x \frac{1}{x}$$
 {Using equation 2, 3 & 4}
$$\frac{dy}{dx} = x e^x (1 + x \log x + 2 \log x)$$

4. xⁿ tan x Solution:

Let us consider $y = x^n \tan x$ We need to find dy/dxWe know that y is a product of two functions say u and v where, $u = x^n$ and v = tan x \therefore v = uv Now let us apply product rule of differentiation. By using product rule, we get $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$... Equation 1 $As, u = x^n$ $\frac{du}{dx} = nx^{n-1} \dots \text{Equation 2 } \{\text{Since, } \frac{d}{dx}(x^n) = nx^{n-1}\}$ As, $v = \tan x$ $\frac{dv}{dx} = \frac{d}{dx}(\tan x) = \sec^2 x \qquad \dots \text{ Equation 3 } \{\text{Since, } \frac{d}{dx}(\tan x) = \sec^2 x \}$ Now, from equation 1, we can find dy/dx $\frac{dy}{dx} = x^n \frac{dv}{dx} + \tan x \frac{du}{dx}$ $\frac{dy}{dx} = x^{n} \sec^{2} x + nx^{n-1} \tan x$ {Using equation 2 & 3} $\frac{dy}{dx} = x^{n-1}(n \tan x + x \sec^2 x)$

5. xⁿ log_a x Solution:

Let us consider $y = x^n \log_a x$ We need to find dy/dx We know that y is a product of two functions say u and v where, $u = x^n$ and $v = \log_a x$ $\therefore y = uv$ Now let us apply product rule of differentiation. By using product rule, we get

https://byjus.com

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{ Equation (1)}$$
As, $u = x^n$

$$\frac{du}{dx} = nx^{n-1} \dots \text{ Equation (2) } \{\text{Since, } \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As, $v = \log_a x$

$$\frac{dv}{dx} = \frac{d}{dx}(\log_a x) = \frac{1}{x \log_e a} \dots \text{ Equation (3) } \{\text{Since, } \frac{d}{dx}(\log_a x) = \frac{1}{x \log_e a}\}$$
Now, from equation 1, we can find dy/dx
$$\frac{dy}{dx} = x^n \frac{dv}{dx} + \log_a x \frac{du}{dx}$$

$$\frac{dy}{dx} = x^n \frac{1}{x \log_e a} + nx^{n-1} \log_a x$$
{Using equation 2 & 3}
$$\frac{dy}{dx} = x^{n-1} \left(n \log_a x + \frac{1}{\log a} \right)$$