

Exercise 4.1

Page No: 4.3

1. Fill in the blanks using the correct word given in brackets:

(i) All circles are _____ (congruent, similar).

(ii) All squares are _____ (similar, congruent).

(iii) All ______ triangles are similar (isosceles, equilaterals).

(iv) Two triangles are similar, if their corresponding angles are _____ (proportional,

equal)

(v) Two triangles are similar, if their corresponding sides are ______ (proportional, equal) (vi) Two polygons of the same number of sides are similar, if (a) ______ their corresponding angles are and their corresponding sides are (b) ______ (equal, proportional).

Solutions:

(i) All circles are similar.

- (ii) All squares are similar.
- (iii) All equilateral triangles are similar.

(iv) Two triangles are similar, if their corresponding angles are <u>equal</u>.

(v) Two triangles are similar, if their corresponding sides are proportional.

(vi) Two polygons of the same number of sides are similar, if (a) <u>equal</u> their corresponding angles are and their corresponding sides are (b) <u>proportional</u>.

Exercise 4.2

```
Page No: 4.19
```

1. In a \triangle ABC, D and E are points on the sides AB and AC respectively such that DE || BC. i) If AD = 6 cm, DB = 9 cm and AE = 8 cm, Find AC. Solution:

Given: \triangle ABC, DE || BC, AD = 6 cm, DB = 9 cm and AE = 8 cm. Required to find AC.

```
By using Thales Theorem, [As DE || BC]

AD/BD = AE/CE

Let CE = x.

So then,

6/9 = 8/x

6x = 72 \text{ cm}

x = 72/6 \text{ cm}

x = 12 \text{ cm}

\therefore AC = AE + CE = 12 + 8 = 20.
```

ii) If AD/DB = 3/4 and AC = 15 cm, Find AE. Solution:

Given: AD/BD = 3/4 and AC = 15 cm [As DE || BC] Required to find AE.

By using Thales Theorem, [As DE || BC] AD/BD = AE/CE Let, AE = x, then CE = 15-x. $\Rightarrow 3/4 = x/(15-x)$ 45 - 3x = 4x -3x - 4x = -45 7x = 45 x = 45/7 x = 6.43 cm \therefore AE= 6.43cm

iii) If AD/DB = 2/3 and AC = 18 cm, Find AE. Solution:

Given: AD/BD = 2/3 and AC = 18 cm Required to find AE.

By using Thales Theorem, [As DE || BC] AD/BD = AE/CE Let, AE = x and CE = 18 - x $\Rightarrow 23 = x/(18-x)$

3x = 36 - 2x 5x = 36 cm x = 36/5 cm x = 7.2 cm $\therefore AE = 7.2 \text{ cm}$

iv) If AD = 4 cm, AE = 8 cm, DB = x - 4 cm and EC = 3x - 19, find x. Solution:

Given: AD = 4 cm, AE = 8 cm, DB = x - 4 and EC = 3x - 19Required to find x.

By using Thales Theorem, [As DE || BC] AD/BD = AE/CE Then, 4/(x - 4) = 8/(3x - 19) 4(3x - 19) = 8(x - 4) 12x - 76 = 8(x - 4) 12x - 8x = -32 + 76 4x = 44 cm x = 11 cm

v) If AD = 8 cm, AB = 12 cm and AE = 12 cm, find CE. Solution:

Given: AD = 8 cm, AB = 12 cm, and AE = 12 cm. Required to find CE,

```
By using Thales Theorem, [As DE || BC]

AD/BD = AE/CE

8/4 = 12/CE

8 \times CE = 4 \times 12 \text{ cm}

CE = (4 \times 12)/8 \text{ cm}

CE = 48/8 \text{ cm}

\therefore CE = 6 \text{ cm}
```

vi) If AD = 4 cm, DB = 4.5 cm and AE = 8 cm, find AC. Solution:

Given: AD = 4 cm, DB = 4.5 cm, AE = 8 cm Required to find AC.

By using Thales Theorem, [As DE || BC] AD/BD = AE/CE 4/4.5 = 8/AC $AC = (4.5 \times 8)/4$ cm $\therefore AC = 9$ cm

vii) If AD = 2 cm, AB = 6 cm and AC = 9 cm, find AE. Solution:

Given: AD = 2 cm, AB = 6 cm and AC = 9 cm Required to find AE.

DB = AB – AD = 6 – 2 = 4 cm By using Thales Theorem, [As DE || BC] AD/BD = AE/CE 2/4 = x/(9-x)4x = 18 - 2x6x = 18x = 3 cm ∴ AE= 3cm

viii) If AD/BD = 4/5 and EC = 2.5 cm, Find AE. Solution:

Given: AD/BD = 4/5 and EC = 2.5 cm Required to find AE.

By using Thales Theorem, [As DE || BC] AD/BD = AE/CEThen, 4/5 = AE/2.5 $\therefore AE = 4 \times 2.55 = 2 \text{ cm}$

ix) If AD = x cm, DB = x - 2 cm, AE = x + 2 cm, and EC = x - 1 cm, find the value of x. Solution:

Given: AD = x, DB = x - 2, AE = x + 2 and EC = x - 1Required to find the value of x.

By using Thales Theorem, [As DE || BC] AD/BD = AE/CE So, x/(x-2) = (x+2)/(x-1) x(x-1) = (x-2)(x+2) $x^2 - x - x^2 + 4 = 0$ x = 4

x) If AD = 8x - 7 cm, DB = 5x - 3 cm, AE = 4x - 3 cm, and EC = (3x - 1) cm, Find the value of x. Solution:

Given: AD = 8x - 7, DB = 5x - 3, AER = 4x - 3 and EC = 3x - 1Required to find x.

B BYJU'S

R D Sharma Solutions For Class 10 Maths Chapter 4 -Triangles

By using Thales Theorem, [As DE || BC] AD/BD = AE/CE (8x-7)/(5x-3) = (4x-3)/(3x-1) (8x-7)(3x-1) = (5x-3)(4x-3) $24x^2 - 29x + 7 = 20x^2 - 27x + 9$ $4x^2 - 2x - 2 = 0$ $2(2x^2 - x - 1) = 0$ $2x^2 - x - 1 = 0$ $2x^2 - 2x + x - 1 = 0$ 2x(x-1) + 1(x-1) = 0 (x-1)(2x+1) = 0 $\Rightarrow x = 1 \text{ or } x = -1/2$

We know that the side of triangle can never be negative. Therefore, we take the positive value. $\therefore x = 1$.

xi) If AD = 4x - 3, AE = 8x - 7, BD = 3x - 1, and CE = 5x - 3, find the value of x. Solution:

Given: AD = 4x - 3, BD = 3x - 1, AE = 8x - 7 and EC = 5x - 3Required to find x.

By using Thales Theorem, [As DE || BC] AD/BD = AE/CE

So, (4x-3)/(3x-1) = (8x-7)/(5x-3) (4x - 3)(5x - 3) = (3x - 1)(8x - 7) 4x(5x - 3) -3(5x - 3) = 3x(8x - 7) -1(8x - 7) $20x^2 - 12x - 15x + 9 = 24x^2 - 29x + 7$ $20x^2 - 27x + 9 = 24^2 - 29x + 7$ $\Rightarrow -4x^2 + 2x + 2 = 0$ $4x^2 - 2x - 2 = 0$ $4x^2 - 4x + 2x - 2 = 0$ 4x(x - 1) + 2(x - 1) = 0 (4x + 2)(x - 1) = 0 $\Rightarrow x = 1 \text{ or } x = -2/4$ We know that the side of triangle can never be negative. Therefore, we take the positive value.

 $\therefore \mathbf{x} = 1$

xii) If AD = 2.5 cm, BD = 3.0 cm, and AE = 3.75 cm, find the length of AC. Solution:

Given: AD = 2.5 cm, AE = 3.75 cm and BD = 3 cm Required to find AC.

By using Thales Theorem, [As DE || BC] AD/BD = AE/CE


```
2.5/ 3 = 3.75/CE

2.5 x CE = 3.75 x 3

CE = 3.75×32.5

CE = 11.252.5

CE = 4.5

Now, AC = 3.75 + 4.5

\therefore AC = 8.25 cm.
```

2. In a Δ ABC, D and E are points on the sides AB and AC respectively. For each of the following cases show that DE \parallel BC:

i) AB = 12 cm, AD = 8 cm, AE = 12 cm, and AC = 18 cm. Solution:

Required to prove DE || BC. We have, AB = 12 cm, AD = 8 cm, AE = 12 cm, and AC = 18 cm. (Given) So, BD = AB - AD = 12 - 8 = 4 cmAnd, CE = AC - AE = 18 - 12 = 6 cmIt's seen that, AD/BD = 8/4 = 1/2 AE/CE = 12/6 = 1/2Thus, AD/BD = AE/CESo, by the converse of Thale's Theorem We have, $DE \parallel BC$.

Hence Proved.

ii) AB = 5.6 cm, AD = 1.4 cm, AC = 7.2 cm, and AE = 1.8 cm. Solution:

Required to prove DE || BC. We have, AB = 5.6 cm, AD = 1.4 cm, AC = 7.2 cm, and AE = 1.8 cm. (Given) So, BD = AB - AD = 5.6 - 1.4 = 4.2 cm And, CE = AC - AE = 7.2 - 1.8 = 5.4 cm

It's seen that,

AD/BD = 1.4/4.2 = 1/3 AE/CE = 1.8/5.4 =1/3

Thus,

AD/BD = AE/CE So, by the converse of Thale's Theorem We have, DE || BC. Hence Proved.

iii) AB = 10.8 cm, BD = 4.5 cm, AC = 4.8 cm, and AE = 2.8 cm. Solution:

Required to prove DE || BC. We have AB = 10.8 cm, BD = 4.5 cm, AC = 4.8 cm, and AE = 2.8 cm.So, AD = AB - DB = 10.8 - 4.5 = 6.3And, CE = AC - AE = 4.8 - 2.8 = 2It's seen that,

AD/BD = 6.3/ 4.5 = 2.8/ 2.0 = AE/CE = 7/5

So, by the converse of Thale's Theorem We have, DE || BC. Hence Proved.

iv) AD = 5.7 cm, BD = 9.5 cm, AE = 3.3 cm, and EC = 5.5 cm. Solution:

> Required to prove DE || BC. We have AD = 5.7 cm, BD = 9.5 cm, AE = 3.3 cm, and EC = 5.5 cm Now, AD/BD = 5.7/9.5 = 3/5And, AE/CE = 3.3/5.5 = 3/5

Thus,

AD/BD = AE/CE So, by the converse of Thale's Theorem We have, DE || BC. Hence Proved.

3. In a \triangle ABC, P and Q are the points on sides AB and AC respectively, such that PQ || BC. If AP = 2.4 cm, AQ = 2 cm, QC = 3 cm and BC = 6 cm. Find AB and PQ.

Solution:

Given: \triangle ABC, AP = 2.4 cm, AQ = 2 cm, QC = 3 cm, and BC = 6 cm. Also, PQ || BC. Required to find: AB and PQ.

 $\angle APQ = \angle ABC$ (Corresponding angles are equal, PQ||BC and AB being a transversal) Thus, $\triangle APQ$ and $\triangle ABC$ are similar to each other by AA criteria.

Now, we know that

Corresponding parts of similar triangles are propositional.

$$\Rightarrow AP/AB = PQ/BC$$

$$\Rightarrow PQ = (AP/AB) \times BC$$

$$= (2.4/6) \times 6 = 2.4$$

 \therefore PQ = 2.4 cm.

4. In a \triangle ABC, D and E are points on AB and AC respectively, such that DE || BC. If AD = 2.4 cm, AE = 3.2 cm, DE = 2 cm and BC = 5 cm. Find BD and CE. Solution:

Given: \triangle ABC such that AD = 2.4 cm, AE = 3.2 cm, DE = 2 cm and BE = 5 cm. Also DE || BC. Required to find: BD and CE.

As DE || BC, AB is transversal, $\angle APQ = \angle ABC$ (corresponding angles) As DE || BC, AC is transversal, $\angle AED = \angle ACB$ (corresponding angles)

In \triangle ADE and \triangle ABC, \angle ADE= \angle ABC \angle AED= \angle ACB $\therefore \triangle$ ADE = \triangle ABC (AA similarity criteria)

Now, we know that

Corresponding parts of similar triangles are propositional.

 $\Rightarrow AD/AB = AE/AC = DE/BC$ AD/AB = DE/BC 2.4/(2.4 + DB) = 2/5 [Since, AB = AD + DB] 2.4 + DB = 6 DB = 6 - 2.4DB = 3.6 cm

In the same way,

$$\Rightarrow AE/AC = DE/BC$$

3.2/ (3.2 + EC) = 2/5 [Since AC = AE + EC]
3.2 + EC = 8
EC = 8 - 3.2
EC = 4.8 cm

 \therefore BD = 3.6 cm and CE = 4.8 cm.

Exercise 4.3

Page No: 4.31

1. In a Δ ABC, AD is the bisector of ∠ A, meeting side BC at D. (i) if BD = 2.5 cm, AB = 5 cm, and AC = 4.2 cm, find DC. Solution:

Given: \triangle ABC and AD bisects \angle A, meeting side BC at D. And BD = 2.5 cm, AB = 5 cm, and AC = 4.2 cm.

Required to find: DC

Since, AD is the bisector of \angle A meeting side BC at D in \triangle ABC

 $\Rightarrow AB/AC = BD/DC$ 5/4.2 = 2.5/DC $5DC = 2.5 \times 4.2$ $\therefore DC = 2.1 \text{ cm}$

(ii) if BD = 2 cm, AB = 5 cm, and DC = 3 cm, find AC. Solution:

Given: \triangle ABC and AD bisects $\angle A$, meeting side BC at D. And BD = 2 cm, AB = 5 cm, and DC = 3 cm.

Required to find: AC

Since, AD is the bisector of \angle A meeting side BC at D in \triangle ABC

 $\Rightarrow AB/AC = BD/DC$ 5/AC = 2/3 $2AC = 5 \times 3$ $\therefore AC = 7.5 \text{ cm}$

(iii) if AB = 3.5 cm, AC = 4.2 cm, and DC = 2.8 cm, find BD. Solution:

Given: \triangle ABC and AD bisects \angle A, meeting side BC at D. And AB = 3.5 cm, AC = 4.2 cm, and DC = 2.8 cm. Required to find: BD

> A 3.5 cm 4.2 cm B D 2.8 cm C

Since, AD is the bisector of \angle A meeting side BC at D in \triangle ABC

⇒ AB/AC = BD/DC 3.5/4.2 = BD/2.8 $4.2 \times BD = 3.5 \times 2.8$ BD = 7/3 $\therefore BD = 2.3 \text{ cm}$

(iv) if AB = 10 cm, AC = 14 cm, and BC = 6 cm, find BD and DC. Solution:

Given: In \triangle ABC, AD is the bisector of \angle A meeting side BC at D. And, AB = 10 cm, AC = 14 cm, and BC = 6 cm

Required to find: BD and DC.

Since, AD is bisector of $\angle A$

We have,

AB/AC = BD/DC (AD is bisector of \angle A and side BC) Then, 10/14 = x/(6 - x) 14x = 60 - 6x 20x = 60

x = 60/20 $\therefore BD = 3 \text{ cm and } DC = (6 - 3) = 3 \text{ cm}.$

(v) if AC = 4.2 cm, DC = 6 cm, and BC = 10 cm, find AB. Solution:

Given: \triangle ABC and AD bisects \angle A, meeting side BC at D. And AC = 4.2 cm, DC = 6 cm, and BC = 10 cm.

Required to find: AB

Since, AD is the bisector of \angle A meeting side BC at D in \triangle ABC

 $\Rightarrow AB/AC = BD/DC$ AB/4.2 = BD/6We know that, BD = BC - DC = 10 - 6 = 4 cm

 $\Rightarrow AB/4.2 = 4/6$ AB = $(2 \times 4.2)/3$ $\therefore AB = 2.8 \text{ cm}$

(vi) if AB = 5.6 cm, AC = 6 cm, and DC = 3 cm, find BC. Solution:

Given: \triangle ABC and AD bisects \angle A, meeting side BC at D. And AB = 5.6 cm, AC = 6 cm, and DC = 3 cm. Required to find: BC

Since, AD is the bisector of \angle A meeting side BC at D in \triangle ABC

 $\Rightarrow AB/AC = BD/DC$ 5.6/6 = BD/3 BD = 5.6/2 = 2.8cm And, we know that, BD = BC - DC 2.8 = BC - 3 \therefore BC = 5.8 cm

(vii) if AB = 5.6 cm, BC = 6 cm, and BD = 3.2 cm, find AC. Solution:

Given: \triangle ABC and AD bisects \angle A, meeting side BC at D. And AB = 5.6 cm, BC = 6 cm, and BD = 3.2 cm. Required to find: AC

Since, AD is the bisector of \angle A meeting side BC at D in \triangle ABC

 $\Rightarrow AB/AC = BD/DC$ 5.6/AC = 3.2/DC And, we know that BD = BC - DC 3.2 = 6 - DC $\therefore DC = 2.8 \text{ cm}$

 $\Rightarrow \qquad 5.6/\text{ AC} = 3.2/2.8$

AC = (5.6 x 2.8)/3.2: AC = 4.9 cm

(viii) if AB = 10 cm, AC = 6 cm, and BC = 12 cm, find BD and DC. Solution:

Given: \triangle ABC and AD bisects \angle A, meeting side BC at D. AB = 10 cm, AC = 6 cm, and BC = 12 cm. Required to find: DC

Since, AD is the bisector of \angle A meeting side BC at D in \triangle ABC

 $\Rightarrow AB/AC = BD/DC$ 10/6 = BD/DC(i) And, we know that BD = BC - DC = 12 - DC Let BD = x, $\Rightarrow DC = 12 - x$ Thus (i) becomes,

10/6 = x/(12 - x) 5(12 - x) = 3x 60 - 5x = 3x $\therefore x = 60/8 = 7.5$

Hence, DC = 12 - 7.5 = 4.5 cm and BD = 7.5 cm

2. In figure 4.57, AE is the bisector of the exterior ∠CAD meeting BC produced in E. If AB = 10 cm, AC = 6 cm, and BC = 12 cm, find CE. Solution:

Given: AE is the bisector of the exterior \angle CAD and AB = 10 cm, AC = 6 cm, and BC = 12 cm. Required to find: CE

Since AE is the bisector of the exterior \angle CAD. BE / CE = AB / AC Let's take CE as x. So, we have BE/ CE = AB/ AC (12+x)/ x = 10/ 6 6x + 72 = 10x 10x - 6x = 72 4x = 72 \therefore x = 18

Therefore, CE = 18 cm.

3. In fig. 4.58, \triangle ABC is a triangle such that AB/AC = BD/DC, \angle B=70°, \angle C = 50°, find \angle BAD. Solution:

Given: \triangle ABC such that AB/AC = BD/DC, \angle B = 70° and \angle C = 50° Required to find: \angle BAD

We know that, In $\triangle ABC$, $\angle A = 180 - (70 + 50)$ = 180 - 120 $= 60^{\circ}$

[Angle sum property of a triangle]

Since,

AB/AC = BD/DC, AD is the angle bisector of angle $\angle A$.

Thus,

 $\angle BAD = \angle A/2 = 60/2 = 30^{\circ}$

Exercise 4.4

Page No: 4.37

1. (i) In fig. 4.70, if AB||CD, find the value of x. Solution:

It's given that AB||CD. Required to find the value of x.

We know that,

Diagonals of a parallelogram bisect each other. So,

AO/CO = BO/DO

$$\Rightarrow \frac{4}{(4x-2)} = \frac{(x+1)}{(2x+4)}$$

$$\frac{4(2x+4)}{4(2x+4)} = \frac{(4x-2)(x+1)}{(4x-2)}$$

$$8x+16 = \frac{x(4x-2)}{1(4x-2)} + \frac{1}{(4x-2)}$$

$$8x+16 = \frac{4x^2}{2x+4x-2}$$

$$-\frac{4x^2}{8x+16+2-2x} = 0$$

$$-\frac{4x^2}{6x+8} = 0$$

$$4x^2 - 6x - 18 = 0$$

$$4x^2 - 6x - 18 = 0$$

$$4x^2 - 12x + 6x - 18 = 0$$

$$4x(x-3) + 6(x-3) = 0$$

$$(4x+6)(x-3) = 0$$

$$\therefore x = -\frac{6}{4} \text{ or } x = 3$$

(ii) In fig. 4.71, if AB||CD, find the value of x. Solution:

It's given that AB||CD. Required to find the value of x.

(iii) In fig. 4.72, if AB || CD. If OA = 3x – 19, OB = x – 4, OC = x- 3 and OD = 4, find x. Solution:

It's given that AB||CD. Required to find the value of x.

We know that, Diagonals of a parallelogram bisect each other So,

AO/ CO = BO/ DO (3x - 19)/(x - 3) = (x-4)/4 4(3x - 19) = (x - 3)(x - 4) 12x - 76 = x(x - 4) - 3(x - 4) $12x - 76 = x^2 - 4x - 3x + 12$ $-x^2 + 7x - 12 + 12x - 76 = 0$ $-x^2 + 19x - 88 = 0$ $x^2 - 19x + 88 = 0$ $x^2 - 11x - 8x + 88 = 0$ x(x - 11) - 8(x - 11) = 0 \therefore x = 11 or x = 8

Exercise 4.5

Page No: 4.37

1. In fig. 4.136, $\triangle ACB \sim \triangle APQ$. If BC = 8 cm, PQ = 4 cm, BA = 6.5 cm and AP = 2.8 cm, find CA and AQ.

Solution:

Given, $\Delta ACB \sim \Delta APQ$ BC = 8 cm, PQ = 4 cm, BA = 6.5 cm and AP = 2.8 cmRequired to find: CA and AQ

We know that,

 $\Delta ACB \sim \Delta APQ$ [given]

BA/ AQ = CA/ AP = BC/ PQ [Corresponding Parts of Similar Triangles] So, 6.5/ AQ = 8/ 4

```
AQ = (6.5 \text{ x } 4)/8
AQ = 3.25 \text{ cm}
Similarly, as
CA/AP = BC/PQ
CA/2.8 = 8/4
CA = 2.8 \text{ x } 2
CA = 5.6 \text{ cm}
```

Hence, CA = 5.6 cm and AQ = 3.25 cm.

2. In fig.4.137, AB || QR, find the length of PB. Solution:

Given,

 Δ PQR, AB || QR and AB = 3 cm, QR = 9 cm and PR = 6 cm Required to find: PB

In $\triangle PAB$ and $\triangle PQR$ We have, $\angle P = \angle P$ $\angle PAB = \angle PQR$ $\Rightarrow \triangle PAB \sim \triangle PQR$

[Common] [Corresponding angles as AB||QR with PQ as the transversal] [By AA similarity criteria]

Hence,

 $\Rightarrow AB/QR = PB/PR$ $\Rightarrow 3/9 = PB/6$ PB = 6/3 [Corresponding Parts of Similar Triangles are propositional]

Therefore, PB = 2 cm

3. In fig. 4.138 given, XY||BC. Find the length of XY. Solution:

Given,

 $\begin{array}{l} XY \| BC \\ AX = 1 \text{ cm}, XB = 3 \text{ cm and } BC = 6 \text{ cm} \end{array}$ Required to find: XY

In $\triangle AXY$ and $\triangle ABC$	
We have,	
$\angle A = \angle A$	[Common]
$\angle AXY = \angle ABC$	[Corresponding angles as AB QR with PQ as the transversal]
$\Rightarrow \Delta AXY \sim \Delta ABC$	[By AA similarity criteria]

Hence,

XY/ BC = AX/ AB [Corresponding Parts of Similar Triangles are propositional] We know that, (AB = AX + XB = 1 + 3 = 4)XY/6 = 1/4

Therefore, XY = 1.5 cm

XY/1 = 6/4

4. In a right-angled triangle with sides a and b and hypotenuse c, the altitude drawn on the hypotenuse is x. Prove that ab = cx. Solution:

Consider $\triangle ABC$ to be a right angle triangle having sides a and b and hypotenuse c. Let BD be the altitude drawn on the hypotenuse AC. Required to prove: ab = cx

We know that,
In $\triangle ACB$ and $\triangle CDB$
$\angle B = \angle B$
$\angle ACB = \angle CDB = 90^{\circ}$
$\Rightarrow \Delta ACB \sim \Delta CDB$

[Common]

[By AA similarity criteria]

Hence,

AB/BD = AC/BCa/x = c/b $\Rightarrow xc = ab$

[Corresponding Parts of Similar Triangles are propositional]

B BYJU'S

R D Sharma Solutions For Class 10 Maths Chapter 4 -Triangles

Therefore, ab = cx

5. In fig. 4.139, $\angle ABC = 90$ and $BD \perp AC$. If BD = 8 cm, and AD = 4 cm, find CD. Solution:

Given,

 $\angle ABC = 90^{\circ} \text{ and } BD \perp AC$ BD = 8 cm AD = 4 cm Required to find: CD.

We know that,

ABC is a right angled triangle and BD \perp AC. Then, Δ DBA $\sim \Delta$ DCB BD/ CD = AD/ BD BD² = AD x DC (8)² = 4 x DC DC = 64/4 = 16 cm

[By AA similarity]

Therefore, CD = 16 cm

6. In fig.4.140, $\angle ABC = 90^{\circ}$ and BD $\perp AC$. If AC = 5.7 cm, BD = 3.8 cm and CD = 5.4 cm, Find BC. Solution:

Given: BD \perp AC AC = 5.7 cm, BD = 3.8 cm and CD = 5.4 cm \angle ABC = 90° Required to find: BC

We know that,

[By AA similarity] $\triangle ABC \sim \triangle BDC$ $\angle BCA = \angle DCA = 90^{\circ}$ $\angle AXY = \angle ABC$ [Common]

Thus,

Given:

[Corresponding Parts of Similar Triangles are propositional] AB/BD = BC/CD5.7/ 3.8 = BC/ 5.4 BC = (5.7 x 5.4)/3.8 = 8.1

Therefore, BC = 8.1 cm

7. In the fig.4.141 given, DE \parallel BC such that AE = (1/4)AC. If AB = 6 cm, find AD. Solution:

DE||BC AE = (1/4)ACAB = 6 cm.Required to find: AD. В https://byjus.com

In $\triangle ADE$ and $\triangle ABC$	
We have,	
$\angle A = \angle A$	[Common]
$\angle ADE = \angle ABC$	[Corresponding angles as AB QR with PQ as the transversal]
$\Rightarrow \Delta ADE \sim \Delta ABC$	[By AA similarity criteria]

Then,

AD/AB = AE/ACAD/6 = 1/44 x AD = 6AD = 6/4

[Corresponding Parts of Similar Triangles are propositional]

Therefore, AD = 1.5 cm

8. In the fig.4.142 given, if AB \perp BC, DC \perp BC, and DE \perp AC, prove that $\Delta CED \sim \Delta ABC$ Solution:

 $\angle B = \angle E = 90^{\circ} \qquad [give \\ \angle BAC = \angle ECD \qquad [alter \\ Therefore, \triangle CED \sim \triangle ABC \qquad [AA]$

[given] [alternate angles since, AB || CD with BC as transversal] [AA similarity]

9. Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at the point O. Using similarity criterion for two triangles, show that OA/ OC = OB/ OD Solution:

Given: OC is the point of intersection of AC and BD in the trapezium ABCD, with AB \parallel DC. Required to prove: OA/ OC = OB/ OD

We know that, In $\triangle AOB$ and $\triangle COD$ $\angle AOB = \angle COD$ $\angle OAB = \angle OCD$ Then, $\triangle AOB \sim \triangle COD$

[Vertically Opposite Angles] [Alternate angles]

Therefore, OA/OC = OB/OD

[Corresponding sides are proportional]

10. If Δ ABC and Δ AMP are two right triangles, right angled at B and M, respectively such that ∠MAP = ∠BAC. Prove that
(i) ΔABC ~ ΔAMP
(ii) CA/ PA = BC/ MP
Solution:

(i) Given:

 Δ ABC and Δ AMP are the two right triangles.

 $\Rightarrow \Delta ABC \sim \Delta AMP \qquad [AA similarity]$ (ii) Since, $\Delta ABC \sim \Delta AMP$ CA/PA = BC/MPHence proved.
[Corresponding sides are proportional]

11. A vertical stick 10 cm long casts a shadow 8 cm long. At the same time, a tower casts a shadow 30 m long. Determine the height of the tower. Solution:

Therefore, PQ = 37.5 m

12. In fig.4.143, $\angle A = \angle CED$, prove that $\triangle CAB \sim \triangle CED$. Also find the value of x. Solution:

Exercise 4.6

Page No: 4.94

1. Triangles ABC and DEF are similar.

(i) If area of $(\Delta ABC) = 16 \text{ cm}^2$, area $(\Delta DEF) = 25 \text{ cm}^2$ and BC = 2.3 cm, find EF. (ii) If area $(\Delta ABC) = 9 \text{ cm}^2$, area $(\Delta DEF) = 64 \text{ cm}^2$ and DE = 5.1 cm, find AB. (iii) If AC = 19 cm and DF = 8 cm, find the ratio of the area of two triangles. (iv) If area of $(\Delta ABC) = 36 \text{ cm}^2$, area $(\Delta DEF) = 64 \text{ cm}^2$ and DE = 6.2 cm, find AB. (v) If AB = 1.2 cm and DE = 1.4 cm, find the ratio of the area of two triangles. Solutions:

As we know that, the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides, we get

 $\frac{ar\Delta ABC}{ar\Delta DEF} = \left(\frac{BC}{EF}\right)^2 \frac{16}{25} = \left(\frac{2.3}{EF}\right)^2 \frac{4}{5} = \frac{2.3}{EF}$

Therefore, EF = 2.875 cm

(ii)
$$\frac{ar\Delta ABC}{ar\Delta DEF} = \left(\frac{AB}{DE}\right)^2 \frac{9}{64} = \left(\frac{AB}{DE}\right)^2 \frac{3}{8} = \frac{AB}{5.1}$$

Therefore, AB = 1.9125 cm

$$\lim_{\text{(iii)}} \frac{ar\Delta ABC}{ar\Delta DEF} = \left(\frac{AC}{DF}\right)^2 \frac{ar\Delta ABC}{ar\Delta DEF} = \left(\frac{19}{8}\right)^2 \frac{ar\Delta ABC}{ar\Delta DEF} = \left(\frac{361}{64}\right)^2$$

Therefore, the ratio of the areas of the two triangles are 361: 64

$$\frac{ar\Delta ABC}{ar\Delta DEF} = \left(\frac{AB}{DE}\right)^2 \frac{36}{64} = \left(\frac{AB}{DE}\right)^2 \frac{6}{8} = \frac{AB}{6.2}$$

(iv)

Therefore, AB = 4.65 cm

$$\frac{ar\Delta ABC}{ar\Delta DEF} = \left(\frac{AB}{DE}\right)^2 \frac{ar\Delta ABC}{ar\Delta DEF} = \left(\frac{1.2}{1.4}\right)^2 \frac{ar\Delta ABC}{ar\Delta DEF} = \left(\frac{36}{49}\right)$$
(v)

Therefore, the ratio of the areas of the two triangles are 36: 49

2. In the fig 4.178, $\triangle ACB \sim \triangle APQ$. If BC = 10 cm, PQ = 5 cm, BA = 6.5 cm, AP = 2.8 cm, find CA and AQ. Also, find the area ($\triangle ACB$): area ($\triangle APQ$). Solution:

Given:

 \triangle ACB is similar to \triangle APQ BC = 10 cm PQ = 5 cm BA = 6.5 cm AP = 2.8 cm

Required to Find: CA, AQ and that the area (\triangle ACB): area (\triangle APQ).

Since, $\triangle ACB \sim \triangle APQ$ We know that, AB/AQ = BC/PQ = AC/AP [Corresponding Parts of Similar Triangles] AB/AQ = BC/PQ 6.5/AQ = 10/5 $\Rightarrow AQ = 3.25$ cm Similarly, BC/PQ = CA/AP CA/2.8 = 10/5 $\Rightarrow CA = 5.6$ cm Next,

Since the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides, we have,

ar(\triangle ACQ): ar(\triangle APQ) = (BC/PQ)2 = (10/5)2 = (2/1)2

= 4/1

Therefore, the ratio is 4:1.

3. The areas of two similar triangles are 81 cm² and 49 cm² respectively. Find the ration of their corresponding heights. What is the ratio of their corresponding medians? Solution:

Given: The areas of two similar triangles are 81cm² and 49cm². Required to find: The ratio of their corresponding heights and the ratio of their corresponding medians.

Let's consider the two similar triangles as $\triangle ABC$ and $\triangle PQR$, AD and PS be the altitudes of $\triangle ABC$ and $\triangle PQR$ respectively.

So,

By area of similar triangle theorem, we have

- $ar(\Delta ABC)/ar(\Delta PQR) = AB^2/PQ^2$
- $\Rightarrow \qquad 81/49 = AB^2/PQ^2$
- \Rightarrow 9/7 = AB/PQ
- In $\triangle ABD$ and $\triangle PQS$ $\angle B = \angle Q$ $\angle ABD = \angle PSQ = 90^{\circ}$

[Since $\triangle ABC \sim \triangle PQR$]

 $\Rightarrow \Delta ABD \sim \Delta PQS \qquad [By AA similarity]$ Hence, as the corresponding parts of similar triangles are proportional, we have AB/ PQ = AD/ PS

Therefore,

AD/ PS = 9/7 (Ratio of altitudes)

Similarly,

The ratio of two similar triangles is equal to the ratio of the squares of their corresponding medians also.

Thus, ratio of altitudes = Ratio of medians = 9/7

4. The areas of two similar triangles are 169 cm²and 121 cm² respectively. If the longest side of the larger triangle is 26 cm, find the longest side of the smaller triangle. Solution:

Given:

The area of two similar triangles is 169cm² and 121cm². The longest side of the larger triangle is 26cm. Required to find: the longest side of the smaller triangle

Let the longer side of the smaller triangle = x

We know that, the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides, we have

ar(larger triangle)/ ar(smaller triangle) = (side of the larger triangle/ side of the smaller triangle)²

$$= 169/121$$

Taking square roots of LHS and RHS, we get

$$= 13/1$$

Since, sides of similar triangles are propositional, we can say

3/11 = (longer side of the larger triangle)/(longer side of the smaller triangle)

 $\Rightarrow \quad 13/11 = 26/x \\ x = 22$

Therefore, the longest side of the smaller triangle is 22 cm.

5. The area of two similar triangles are 25 cm² and 36cm² respectively. If the altitude of the first triangle is 2.4 cm, find the corresponding altitude of the other. Solution:

Given: The area of two similar triangles are 25 cm² and 36cm² respectively, the altitude of the first triangle is 2.4 cm

Required to find: the altitude of the second triangle

We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes, we have

 $\Rightarrow \qquad \text{ar(triangle1)/ar(triangle2) = (altitude1/ altitude2)^2} \\ \Rightarrow \qquad 25/36 = (2.4)^2/ (altitude2)^2$

Taking square roots of LHS and RHS, we get

5/6 = 2.4/ altitude2

altitude2 = $(2.4 \times 6)/5 = 2.88 \text{ cm}$

Therefore, the altitude of the second triangle is 2.88cm.

6. The corresponding altitudes of two similar triangles are 6 cm and 9 cm respectively. Find the ratio of their areas. Solution:

Given:

⇒

The corresponding altitudes of two similar triangles are 6 cm and 9 cm. Required to find: Ratio of areas of the two similar triangles

We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their

corresponding altitudes, we have

ar(triangle1)/ar(triangle2) = (altitude1/ altitude2)² = $(6/9)^2$ = 36/81= 4/9

Therefore, the ratio of the areas of two triangles = 4: 9.

7. ABC is a triangle in which $\angle A = 90^{\circ}$, AN $\perp BC$, BC = 12 cm and AC = 5 cm. Find the ratio of the areas of $\triangle ANC$ and $\triangle ABC$. Solution:

Given:

]
y

Since the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides, we get have $ar(\Delta ANC)/ar(\Delta ABC) = (AC/BC)^2 = (5/12)^2 = 25/144$

Therefore, $ar(\Delta ANC)/ar(\Delta ABC) = 25:144$

8. In Fig 4.179, DE || BC
(i) If DE = 4m, BC = 6 cm and Area (ΔADE) = 16cm², find the area of ΔABC.
(ii) If DE = 4cm, BC = 8 cm and Area (ΔADE) = 25cm², find the area of ΔABC.
(iii) If DE: BC = 3: 5. Calculate the ratio of the areas of ΔADE and the trapezium BCED. Solution:

(i) Since the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides, we have,

 $\frac{\text{Ar}(\Delta \text{ADE})}{\text{Ar}(\Delta \text{ABC})} = \frac{\text{DE}^2}{\text{BC}^2}$ 16/ Ar(\Delta \text{ABC}) = \frac{4^2}{6^2}

- $\Rightarrow \qquad \operatorname{Ar}(\Delta ABC) = (6^2 \times 16)/4^2$
- \Rightarrow Ar(\triangle ABC) = 36 cm²

(ii) Since the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides, we have,

Ar(ΔADE)/ Ar(ΔABC) = DE²/ BC² 25/ Ar(ΔABC) = 4²/ 8²

$$\Rightarrow \qquad \operatorname{Ar}(\Delta ABC) = (8^2 \times 25)/4^2$$

 \Rightarrow Ar(ΔABC) = 100 cm²

(iii) According to the question,

Ar(ΔADE)/ Ar(ΔABC) = DE²/ BC² Ar(ΔADE)/ Ar(ΔABC) = 3²/ 5² Ar(ΔADE)/ Ar(ΔABC) = 9/25

Assume that the area of $\triangle ADE = 9x$ sq units And, area of $\triangle ABC = 25x$ sq units So, Area of trapezium BCED = Area of $\triangle ABC - Area of \triangle ADE$ = 25x - 9x= 16x

Now, $Ar(\Delta ADE)/Ar(trap BCED) = 9x/16x$ $Ar(\Delta ADE)/Ar(trapBCED) = 9/16$

9. In \triangle ABC, D and E are the mid- points of AB and AC respectively. Find the ratio of the areas \triangle ADE and \triangle ABC. Solution:

Given:

In \triangle ABC, D and E are the midpoints of AB and AC respectively. Required to find: Ratio of the areas of \triangle ADE and \triangle ABC

Since, D and E are the mid	points of AB and AC respectively.
We can say,	
DE BC	(By converse of mid-point theorem)
Also, $DE = (1/2) BC$	

In $\triangle ADE$ and $\triangle ABC$, $\angle ADE = \angle B$ $\angle DAE = \angle BAC$

(Corresponding angles) (common)

Thus, $\triangle ADE \sim \triangle ABC$ (AA Similarity)

Now, we know that

The ratio of areas of two similar triangles is equal to the ratio of square of their corresponding sides, so

 $Ar(\Delta ADE) / Ar(\Delta ABC) = AD^{2} / AB^{2}$ $Ar(\Delta ADE) / Ar(\Delta ABC) = 1^{2} / 2^{2}$ $Ar(\Delta ADE) / Ar(\Delta ABC) = 1/4$

Therefore, the ratio of the areas $\triangle ADE$ and $\triangle ABC$ is 1:4

10. The areas of two similar triangles are 100 cm² and 49 cm² respectively. If the altitude of the bigger triangles is 5 cm, find the corresponding altitude of the other. Solution:

Given: The area of the two similar triangles is 100cm^2 and 49cm^2 . And the altitude of the bigger triangle is 5cm.

Required to find: The corresponding altitude of the other triangle

We know that,

The ratio of the areas of the two similar triangles is equal to the ratio of squares of their corresponding altitudes.

 $ar(bigger triangle)/ar(smaller triangle) = (altitude of the bigger triangle/ altitude of the smaller triangle)^2$

(100/49) = (5/ altitude of the smaller triangle)²

Taking square root on LHS and RHS, we get

(10/7) = (5/ altitude of the smaller triangle) = 7/2

Therefore, altitude of the smaller triangle = 3.5 cm

11. The areas of two similar triangles are 121 cm² and 64 cm² respectively. If the median of the first triangle is 12.1 cm, find the corresponding median of the other. Solution:

Given: the area of the two triangles is 121cm² and 64cm² respectively and the median of the first triangle is 12.1cm Required to find: the corresponding median of the other triangle

We know that.

The ratio of the areas of the two similar triangles are equal to the ratio of the squares of their medians.

ar(triangle1)/ ar(triangle2) = (median of triangle 1/median of triangle 2)² $121/64 = (12.1/ \text{ median of triangle 2})^2$

Taking the square roots on both LHS and RHS, we have

 $11/8 = (12.1 / \text{ median of triangle } 2) = (12.1 \times 8) / 11$

Therefore, Median of the other triangle = 8.8cm

Exercise 4.7

Page No: 4.119

1. If the sides of a triangle are 3 cm, 4 cm, and 6 cm long, determine whether the triangle is a right-angled triangle. Solution:

We have, Sides of triangle as AB = 3 cmBC = 4 cmAC = 6 cmOn finding their squares, we get $AB^2 = 3^2 = 9$ $BC^2 = 4^2 = 16$ $AC^2 = 6^2 = 36$

Since, $AB^2 + BC^2 \neq AC^2$

So, by converse of Pythagoras theorem the given sides cannot be the sides of a right triangle.

2. The sides of certain triangles are given below. Determine which of them are right triangles.
(i) a = 7 cm, b = 24 cm and c = 25 cm
(ii) a = 9 cm, b = 16 cm and c = 18 cm
(iii) a = 1.6 cm, b = 3.8 cm and c = 4 cm
(iv) a = 8 cm, b = 10 cm and c = 6 cm
Solutions:

- (i) Given, a = 7 cm, b = 24 cm and c = 25 cm $\therefore a^2 = 49, b^2 = 576 \text{ and } c^2 = 625$ Since, $a^2 + b^2 = 49 + 576 = 625 = c^2$ Then, by converse of Pythagoras theorem The given sides are of a right triangle.
- (ii) Given,

a = 9 cm, b = 16 cm and c = 18 cm \therefore a² = 81, b² = 256 and c² = 324 Since, a² + b² = 81 + 256 = 337 \neq c² Then, by converse of Pythagoras theorem The given sides cannot be of a right triangle.

(iii) Given, a = 1.6 cm, b = 3.8 cm and C = 4 cm $\therefore a^2 = 2.56, b^2 = 14.44 \text{ and } c^2 = 16$ Since, $a^2 + b^2 = 2.56 + 14.44 = 17 \neq c^2$ Then, by converse of Pythagoras theorem The given sides cannot be of a right triangle.

(iv) Given, a = 8 cm, b = 10 cm and C = 6 cm $\therefore a^2 = 64, b^2 = 100 \text{ and } c^2 = 36$ Since, $a^2 + c^2 = 64 + 36 = 100 = b^2$ Then, by converse of Pythagoras theorem The given sides are of a right triangle

3. A man goes 15 metres due west and then 8 metres due north. How far is he from the starting point? Solution:

Let the starting point of the man be O and final point be A. $In \Delta ABO,$ by Pythagoras theorem $AO^2 = AB^2 + BO^2$ $\Rightarrow AO^2 = 8^2 + 15^2$ $\Rightarrow AO^2 = 64 + 225 = 289$ $\Rightarrow AO = \sqrt{289} = 17m$

 \therefore the man is 17m far from the starting point.

BYJU'S

R D Sharma Solutions For Class 10 Maths Chapter 4 -Triangles

```
In \triangle ABC, by Pythagoras theorem

AB^2 + BC^2 = AC^2

\Rightarrow 15^2 + BC^2 = 17^2

225 + BC^2 = 17^2

BC^2 = 289 - 225

BC^2 = 64

\therefore BC = 8 \text{ m}
```

Therefore, the distance of the foot of the ladder from building = 8 m

5. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between their feet is 12 m, find the distance between their tops. Solution:

Let CD and AB be the poles of height 11m and 6m. Then, its seen that CP = 11 - 6 = 5m. From the figure, AP should be 12m (given)

In triangle APC, by applying Pythagoras theorem, we have $AP^2 + PC^2 = AC^2$ $12^2 + 5^2 = AC^2$ $AC^2 = 144 + 25 = 169$ $\therefore AC = 13$ (by taking sq. root on both sides)

Thus, the distance between their tops = 13 m.

6. In an isosceles triangle ABC, AB = AC = 25 cm, BC = 14 cm. Calculate the altitude from A on BC. Solution:

Given,

```
\triangle ABC, AB = AC = 25 cm and BC = 14.
```


7. The foot of a ladder is 6 m away from a wall and its top reaches a window 8 m above the ground. If the ladder is shifted in such a way that its foot is 8 m away from the wall, to what height does its tip reach?

Solution:

Let's assume the length of ladder to be, AD = BE = x m

So, in $\triangle ACD$, by Pythagoras theorem We have, $AD^2 = AC^2 + CD^2$ $\Rightarrow x^2 = 8^2 + 6^2 \dots$ (i) Also, in $\triangle BCE$, by Pythagoras theorem $BE^2 = BC^2 + CE^2$ $\Rightarrow x^2 = BC^2 + 8^2 \dots$ (ii)

Compare (i) and (ii) $BC^{2} + 8^{2} = 8^{2} + 6^{2}$ $\Rightarrow BC^{2} + 6^{2}$ $\Rightarrow BC = 6 m$

Therefore, the tip of the ladder reaches to a height od 6m.

8. Two poles of height 9 in and 14 m stand on a plane ground. If the distance between their feet is 12 m, find the distance between their tops. Solution:

Comparing with the figure, it's given that AC = 14 m, DC = 12 m and ED = BC = 9 m

Construction: Draw EB \perp AC Now, It's seen that AB = AC - BC = (14 - 9) = 5 m And, EB = DC = 12m [distance between their feet] Thus, In \triangle ABE, by Pythagoras theorem, we have $AE^2 = AB^2 + BE^2$ $AE^2 = 5^2 + 12^2$ $AE^2 = 25 + 144 = 169$

 \Rightarrow AE = $\sqrt{169}$ = 13 m

Therefore, the distance between their tops = 13 m

9. Using Pythagoras theorem determine the length of AD in terms of b and c shown in Fig. 4.219 Solution:

10. A triangle has sides 5 cm, 12 cm and 13 cm. Find the length to one decimal place, of the perpendicular from the opposite vertex to the side whose length is 13 cm. Solution:

From the fig. AB = 5cm, BC = 12 cm and AC = 13 cm. Then, $AC^2 = AB^2 + BC^2$. $\Rightarrow (13)^2 = (5)^2 + (12)^2 = 25 + 144 = 169 = 13^2$ This proves that $\triangle ABC$ is a right triangle, right angled at B. Let BD be the length of perpendicular from B on AC.

11. ABCD is a square. F is the mid-point of AB. BE is one third of BC. If the area of \triangle FBE = 108cm², find the length of AC. Solution:

Given,

ABCD is a square. And, F is the mid-point of AB. BE is one third of BC. Area of Δ FBE = 108cm² Required to find: length of AC

Let's assume the sides of the square to be x. AB = BC = CD = DA = x cm⇒ And, AF = FB = x/2 cmBE = x/3 cmSo. Now, the area of \triangle FBE = 1/2 x BE x FB $108 = (1/2) \times (x/3) \times (x/2)$ ⇒ $x^2 = 108 x 2 x 3 x 2 = 1296$ ⇒ $x = \sqrt{1296}$ [taking square roots of both the sides] \Rightarrow $\therefore x = 36 cm$ Further in \triangle ABC, by Pythagoras theorem, we have $AC^2 = AB^2 + BC^2$ $AC^2 = x^2 + x^2 = 2x^2$ ⇒ $AC^2 = 2 x (36)^2$ ⇒ $AC = 36\sqrt{2} = 36 \times 1.414 = 50.904 \text{ cm}$ ⇒

Therefore, the length of AC is 50.904 cm.

12. In an isosceles triangle ABC, if AB = AC = 13cm and the altitude from A on BC is 5cm, find BC. Solution:

Given, An isosceles triangle ABC, AB = AC = 13cm, AD = 5cm Required to find: BC

In \triangle ADB, by using Pythagoras theorem, we have $AD^2 + BD^2 = 13^2$ $5^2 + BD^2 = 169$ $BD^2 = 169 - 25 = 144$ $\Rightarrow BD = \sqrt{144} = 12 \text{ cm}$

Similarly, applying Pythagoras theorem is \triangle ADC we can have, $AC^2 = AD^2 + DC^2$ $13^2 = 5^2 + DC^2$ $\Rightarrow DC = \sqrt{144} = 12$ cm

Thus, BC = BD + DC = 12 + 12 = 24 cm

13. In a $\triangle ABC$, AB = BC = CA = 2a and $AD \perp BC$. Prove that (i) $AD = a\sqrt{3}$ (ii) Area ($\triangle ABC$) = $\sqrt{3} a^2$ Solution:

 $= \sqrt{3} a^2$

14. The lengths of the diagonals of a rhombus is 24cm and 10cm. Find each side of the rhombus. Solution:

Let ABCD be a rhombus and AC and BD be the diagonals of ABCD. So, AC = 24cm and BD = 10cm

We know that diagonals of a rhombus bisect each other at right angle. (Perpendicular to each other)

So,

AO = OC = 12cm and BO = OD = 3cm In $\triangle AOB$, by Pythagoras theorem, we have AB² = AO² + BO² = 12² + 5² = 144 + 25 = 169 \Rightarrow AB = $\sqrt{169}$ = 13cm Since, the sides of rhombus are all equal. Therefore, AB = BC = CD = AD = 13cm.