R D Sharma Solutions For Class 10 Maths Chapter 4 -
 Triangles

Exercise 4.1

1. Fill in the blanks using the correct word given in brackets:
(i) All circles are \qquad (congruent, similar).
(ii) All squares are \qquad (similar, congruent).
(iii) All \qquad triangles are similar (isosceles, equilaterals).
(iv) Two triangles are similar, if their corresponding angles are \qquad (proportional, equal)
(v) Two triangles are similar, if their corresponding sides are \qquad (proportional, equal)
(vi) Two polygons of the same number of sides are similar, if (a) \qquad their corresponding angles are and their corresponding sides are (b) \qquad (equal, proportional).

Solutions:
(i) All circles are similar.
(ii) All squares are similar.
(iii) All equilateral triangles are similar.
(iv) Two triangles are similar, if their corresponding angles are equal.
(v) Two triangles are similar, if their corresponding sides are proportional.
(vi) Two polygons of the same number of sides are similar, if (a) equal their corresponding angles are and their corresponding sides are (b) proportional.

Exercise 4.2

1. In a $\triangle A B C$, D and E are points on the sides $A B$ and $A C$ respectively such that $D E \| B C$.
i) If $\mathrm{AD}=6 \mathrm{~cm}, \mathrm{DB}=9 \mathrm{~cm}$ and $\mathrm{AE}=8 \mathrm{~cm}$, Find AC .

Solution:
Given: $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}, \mathrm{AD}=6 \mathrm{~cm}, \mathrm{DB}=9 \mathrm{~cm}$ and $\mathrm{AE}=8 \mathrm{~cm}$.
Required to find $A C$.
By using Thales Theorem, [As DE || BC]

$$
\mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{CE}
$$

Let $\mathrm{CE}=\mathrm{x}$.
So then,

$$
\begin{gathered}
6 / 9=8 / \mathrm{x} \\
6 \mathrm{x}=72 \mathrm{~cm} \\
\mathrm{x}=72 / 6 \mathrm{~cm} \\
\mathrm{x}=12 \mathrm{~cm} \\
\therefore \mathrm{AC}=\mathrm{AE}+\mathrm{CE}=12+8=20 .
\end{gathered}
$$

ii) If $\mathrm{AD} / \mathrm{DB}=\mathbf{3 / 4}$ and $\mathrm{AC}=15 \mathrm{~cm}$, Find AE .

Solution:

Given: $\mathrm{AD} / \mathrm{BD}=3 / 4$ and $\mathrm{AC}=15 \mathrm{~cm}[\mathrm{As} \mathrm{DE} \| \mathrm{BC}]$
Required to find AE.
By using Thales Theorem, [As DE || BC]

$$
\mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{CE}
$$

Let, $\mathrm{AE}=\mathrm{x}$, then $\mathrm{CE}=15-\mathrm{x}$.

$$
\begin{aligned}
\Rightarrow \quad & 3 / 4=\mathrm{x} /(15-\mathrm{x}) \\
& 45-3 \mathrm{x}=4 \mathrm{x} \\
& -3 \mathrm{x}-4 \mathrm{x}=-45 \\
& 7 \mathrm{x}=45 \\
& x=45 / 7 \\
& x=6.43 \mathrm{~cm} \\
\therefore \mathrm{AE}= & 6.43 \mathrm{~cm}
\end{aligned}
$$

iii) If $\mathrm{AD} / \mathrm{DB}=2 / 3$ and $\mathrm{AC}=18 \mathrm{~cm}$, Find AE .

Solution:

Given: $\mathrm{AD} / \mathrm{BD}=2 / 3$ and $\mathrm{AC}=18 \mathrm{~cm}$
Required to find AE .
By using Thales Theorem, [As DE || BC]
$\mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{CE}$
Let, $\mathrm{AE}=\mathrm{x}$ and $\mathrm{CE}=18-\mathrm{x}$
$\Rightarrow \quad 23=\mathrm{x} /(18-\mathrm{x})$

$$
\begin{aligned}
& 3 \mathrm{x}=36-2 \mathrm{x} \\
& 5 \mathrm{x}=36 \mathrm{~cm} \\
& \mathrm{x}=36 / 5 \mathrm{~cm} \\
& \mathrm{x}=7.2 \mathrm{~cm}
\end{aligned}
$$

$\therefore \mathrm{AE}=7.2 \mathrm{~cm}$
iv) If $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}, \mathrm{DB}=\mathrm{x}-4 \mathrm{~cm}$ and $\mathrm{EC}=3 \mathrm{x}-19$, find x .

Solution:
Given: $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}, \mathrm{DB}=\mathrm{x}-4$ and $\mathrm{EC}=3 \mathrm{x}-19$
Required to find x .
By using Thales Theorem, [As DE || BC]
$\mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{CE}$
Then, $4 /(\mathrm{x}-4)=8 /(3 \mathrm{x}-19)$
$4(3 x-19)=8(x-4)$
$12 \mathrm{x}-76=8(\mathrm{x}-4)$
$12 \mathrm{x}-8 \mathrm{x}=-32+76$
$4 \mathrm{x}=44 \mathrm{~cm}$
$\mathrm{x}=11 \mathrm{~cm}$

Solution:

Given: $\mathrm{AD}=8 \mathrm{~cm}, \mathrm{AB}=12 \mathrm{~cm}$, and $\mathrm{AE}=12 \mathrm{~cm}$.
Required to find CE,
By using Thales Theorem, [As DE || BC]
$\mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{CE}$
$8 / 4=12 / \mathrm{CE}$
$8 \times \mathrm{CE}=4 \times 12 \mathrm{~cm}$
$\mathrm{CE}=(4 \times 12) / 8 \mathrm{~cm}$
$C E=48 / 8 \mathrm{~cm}$
$\therefore \mathrm{CE}=6 \mathrm{~cm}$
vi) If $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{DB}=4.5 \mathrm{~cm}$ and $\mathrm{AE}=8 \mathrm{~cm}$, find AC .

Solution:

Given: $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{DB}=4.5 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}$
Required to find AC .
By using Thales Theorem, [As DE || BC]
$\mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{CE}$
$4 / 4.5=8 / \mathrm{AC}$
$\mathrm{AC}=(4.5 \times 8) / 4 \mathrm{~cm}$
$\therefore \mathrm{AC}=9 \mathrm{~cm}$
vii) If $\mathrm{AD}=2 \mathrm{~cm}, \mathrm{AB}=6 \mathrm{~cm}$ and $\mathrm{AC}=9 \mathrm{~cm}$, find AE .

Solution:

Given: $\mathrm{AD}=2 \mathrm{~cm}, \mathrm{AB}=6 \mathrm{~cm}$ and $\mathrm{AC}=9 \mathrm{~cm}$ Required to find AE .
$\mathrm{DB}=\mathrm{AB}-\mathrm{AD}=6-2=4 \mathrm{~cm}$
By using Thales Theorem, [As DE || BC]

$$
\mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{CE}
$$

$2 / 4=x /(9-x)$
$4 \mathrm{x}=18-2 \mathrm{x}$
$6 x=18$
$x=3 \mathrm{~cm}$
$\therefore \mathrm{AE}=3 \mathrm{~cm}$
viii) If $\mathrm{AD} / \mathrm{BD}=4 / 5$ and $\mathrm{EC}=2.5 \mathrm{~cm}$, Find AE .

Solution:

Given: $\mathrm{AD} / \mathrm{BD}=4 / 5$ and $\mathrm{EC}=2.5 \mathrm{~cm}$
Required to find AE.
By using Thales Theorem, [As DE || BC]
$\mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{CE}$
Then, $4 / 5=\mathrm{AE} / 2.5$
$\therefore \mathrm{AE}=4 \times 2.55=2 \mathrm{~cm}$
ix) If $A D=x \mathrm{~cm}, \mathrm{DB}=\mathrm{x}-2 \mathrm{~cm}, \mathrm{AE}=\mathrm{x}+2 \mathrm{~cm}$, and $\mathrm{EC}=\mathrm{x}-1 \mathrm{~cm}$, find the value of x .

Solution:

Given: $\mathrm{AD}=\mathrm{x}, \mathrm{DB}=\mathrm{x}-2, \mathrm{AE}=\mathrm{x}+2$ and $\mathrm{EC}=\mathrm{x}-1$
Required to find the value of x.
By using Thales Theorem, [As DE || BC]

$$
\mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{CE}
$$

So, $\quad x /(x-2)=(x+2) /(x-1)$
$x(x-1)=(x-2)(x+2)$
$x^{2}-x-x^{2}+4=0$
$\mathrm{x}=4$
x) If $\mathrm{AD}=8 \mathrm{x}-7 \mathrm{~cm}, \mathrm{DB}=5 \mathrm{x}-3 \mathrm{~cm}, \mathrm{AE}=4 \mathrm{x}-3 \mathrm{~cm}$, and $\mathrm{EC}=(3 \mathrm{x}-1) \mathrm{cm}$, Find the value of x . Solution:

Given: $\mathrm{AD}=8 \mathrm{x}-7, \mathrm{DB}=5 \mathrm{x}-3, \mathrm{AER}=4 \mathrm{x}-3$ and $\mathrm{EC}=3 \mathrm{x}-1$
Required to find x .

By using Thales Theorem, [As DE || BC]

$$
\begin{aligned}
& \mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{CE} \\
& (8 \mathrm{x}-7) /(5 \mathrm{x}-3)=(4 \mathrm{x}-3) /(3 \mathrm{x}-1) \\
& (8 \mathrm{x}-7)(3 \mathrm{x}-1)=(5 \mathrm{x}-3)(4 \mathrm{x}-3) \\
& 24 \mathrm{x}^{2}-29 \mathrm{x}+7=20 \mathrm{x}^{2}-27 \mathrm{x}+9 \\
& 4 \mathrm{x}^{2}-2 \mathrm{x}-2=0 \\
& 2\left(2 \mathrm{x}^{2}-\mathrm{x}-1\right)=0 \\
& 2 \mathrm{x}^{2}-\mathrm{x}-1=0 \\
& 2 \mathrm{x}^{2}-2 \mathrm{x}+\mathrm{x}-1=0 \\
& \\
& 2 \mathrm{x}(\mathrm{x}-1)+1(\mathrm{x}-1)=0 \\
& \\
& \Rightarrow \quad(\mathrm{x}-1)(2 \mathrm{x}+1)=0 \\
& \Rightarrow \quad \mathrm{x}=1 \text { or } \mathrm{x}=-1 / 2
\end{aligned}
$$

We know that the side of triangle can never be negative. Therefore, we take the positive value.

$$
\therefore \mathrm{x}=1 \text {. }
$$

xi) If $A D=4 x-3, A E=8 x-7, B D=3 x-1$, and $C E=5 x-3$, find the value of x.

Solution:

Given: $\mathrm{AD}=4 \mathrm{x}-3, \mathrm{BD}=3 \mathrm{x}-1, \mathrm{AE}=8 \mathrm{x}-7$ and $\mathrm{EC}=5 \mathrm{x}-3$
Required to find x .
By using Thales Theorem, [As DE \|| BC]
$\mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{CE}$
So, $(4 \mathrm{x}-3) /(3 \mathrm{x}-1)=(8 \mathrm{x}-7) /(5 \mathrm{x}-3)$
$(4 \mathrm{x}-3)(5 \mathrm{x}-3)=(3 \mathrm{x}-1)(8 \mathrm{x}-7)$
$4 x(5 x-3)-3(5 x-3)=3 x(8 x-7)-1(8 x-7)$
$20 \mathrm{x}^{2}-12 \mathrm{x}-15 \mathrm{x}+9=24 \mathrm{x}^{2}-29 \mathrm{x}+7$
$20 x^{2}-27 x+9=24^{2}-29 x+7$
$\Rightarrow \quad-4 x^{2}+2 x+2=0$
$4 x^{2}-2 x-2=0$
$4 x^{2}-4 x+2 x-2=0$
$4 x(x-1)+2(x-1)=0$
$(4 \mathrm{x}+2)(\mathrm{x}-1)=0$
$\Rightarrow \quad \mathrm{x}=1$ or $\mathrm{x}=-2 / 4$
We know that the side of triangle can never be negative. Therefore, we take the positive value.

$$
\therefore \mathrm{x}=1
$$

xii) If $\mathrm{AD}=2.5 \mathrm{~cm}, \mathrm{BD}=\mathbf{3 . 0} \mathrm{cm}$, and $\mathrm{AE}=3.75 \mathrm{~cm}$, find the length of AC .

Solution:

Given: $\mathrm{AD}=2.5 \mathrm{~cm}, \mathrm{AE}=3.75 \mathrm{~cm}$ and $\mathrm{BD}=3 \mathrm{~cm}$ Required to find AC .

By using Thales Theorem, [As DE || BC]
$\mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{CE}$

$$
\begin{aligned}
& 2.5 / 3=3.75 / \mathrm{CE} \\
& 2.5 \times \mathrm{CE}=3.75 \times 3 \\
& \mathrm{CE}=3.75 \times 32.5 \\
& \mathrm{CE}=11.252 .5 \\
& \mathrm{CE}=4.5
\end{aligned}
$$

Now, $\mathrm{AC}=3.75+4.5$

$$
\therefore \mathrm{AC}=8.25 \mathrm{~cm} .
$$

2. In a $\triangle A B C$, D and E are points on the sides $A B$ and $A C$ respectively. For each of the following cases show that $\mathrm{DE}|\mid \mathrm{BC}$:
i) $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AD}=\mathbf{8 \mathrm { cm }}, \mathrm{AE}=12 \mathrm{~cm}$, and $\mathrm{AC}=18 \mathrm{~cm}$.

Solution:
Required to prove $\mathrm{DE} \| \mathrm{BC}$.
We have,
$\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AD}=8 \mathrm{~cm}, \mathrm{AE}=12 \mathrm{~cm}$, and $\mathrm{AC}=18 \mathrm{~cm}$. (Given)
So,

$$
\mathrm{BD}=\mathrm{AB}-\mathrm{AD}=12-8=4 \mathrm{~cm}
$$

And,

$$
\mathrm{CE}=\mathrm{AC}-\mathrm{AE}=18-12=6 \mathrm{~cm}
$$

It's seen that,

$$
\mathrm{AD} / \mathrm{BD}=8 / 4=1 / 2
$$

$\mathrm{AE} / \mathrm{CE}=12 / 6=1 / 2$
Thus,

$$
\mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{CE}
$$

So, by the converse of Thale's Theorem
We have,
DE || BC.
Hence Proved.
ii) $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AD}=1.4 \mathrm{~cm}, \mathrm{AC}=7.2 \mathrm{~cm}$, and $\mathrm{AE}=1.8 \mathrm{~cm}$.

Solution:

Required to prove $\mathrm{DE} \| \mathrm{BC}$.
We have,
$\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AD}=1.4 \mathrm{~cm}, \mathrm{AC}=7.2 \mathrm{~cm}$, and $\mathrm{AE}=1.8 \mathrm{~cm}$. (Given)
So,

$$
\mathrm{BD}=\mathrm{AB}-\mathrm{AD}=5.6-1.4=4.2 \mathrm{~cm}
$$

And,

$$
\mathrm{CE}=\mathrm{AC}-\mathrm{AE}=7.2-1.8=5.4 \mathrm{~cm}
$$

It's seen that,

$$
\mathrm{AD} / \mathrm{BD}=1.4 / 4.2=1 / 3
$$

$\mathrm{AE} / \mathrm{CE}=1.8 / 5.4=1 / 3$

Thus,
$\mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{CE}$
So, by the converse of Thale's Theorem
We have,
DE || BC.
Hence Proved.
iii) $\mathrm{AB}=10.8 \mathrm{~cm}, \mathrm{BD}=4.5 \mathrm{~cm}, \mathrm{AC}=4.8 \mathrm{~cm}$, and $\mathrm{AE}=2.8 \mathrm{~cm}$.

Solution:

Required to prove $\mathrm{DE}|\mid \mathrm{BC}$.
We have
$\mathrm{AB}=10.8 \mathrm{~cm}, \mathrm{BD}=4.5 \mathrm{~cm}, \mathrm{AC}=4.8 \mathrm{~cm}$, and $\mathrm{AE}=2.8 \mathrm{~cm}$.
So,

$$
\mathrm{AD}=\mathrm{AB}-\mathrm{DB}=10.8-4.5=6.3
$$

And,

$$
\mathrm{CE}=\mathrm{AC}-\mathrm{AE}=4.8-2.8=2
$$

It's seen that,

$$
\mathrm{AD} / \mathrm{BD}=6.3 / 4.5=2.8 / 2.0=\mathrm{AE} / \mathrm{CE}=7 / 5
$$

So, by the converse of Thale's Theorem
We have,
DE || BC.
Hence Proved.
iv) $\mathrm{AD}=5.7 \mathrm{~cm}, \mathrm{BD}=9.5 \mathrm{~cm}, \mathrm{AE}=3.3 \mathrm{~cm}$, and $\mathrm{EC}=5.5 \mathrm{~cm}$.

Solution:

Required to prove $\mathrm{DE} \| \mathrm{BC}$.
We have
$\mathrm{AD}=5.7 \mathrm{~cm}, \mathrm{BD}=9.5 \mathrm{~cm}, \mathrm{AE}=3.3 \mathrm{~cm}$, and $\mathrm{EC}=5.5 \mathrm{~cm}$
Now,
$\mathrm{AD} / \mathrm{BD}=5.7 / 9.5=3 / 5$
And,

$$
\mathrm{AE} / \mathrm{CE}=3.3 / 5.5=3 / 5
$$

Thus,
$\mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{CE}$
So, by the converse of Thale's Theorem
We have,
DE \| BC .
Hence Proved.
3. In a $\triangle A B C, P$ and Q are the points on sides $A B$ and $A C$ respectively, such that $P Q \| B C$. If $A P$ $=2.4 \mathrm{~cm}, A Q=2 \mathrm{~cm}, Q C=3 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. Find $A B$ and $P Q$.

Solution:

Given: $\triangle \mathrm{ABC}, \mathrm{AP}=2.4 \mathrm{~cm}, \mathrm{AQ}=2 \mathrm{~cm}, \mathrm{QC}=3 \mathrm{~cm}$, and $\mathrm{BC}=6 \mathrm{~cm}$. Also, $\mathrm{PQ} \| \mathrm{BC}$. Required to find: AB and PQ .

By using Thales Theorem, we have [As it's given that $\mathrm{PQ} \| \mathrm{BC}$]

$$
\begin{aligned}
& \mathrm{AP} / \mathrm{PB}=\mathrm{AQ} / \mathrm{QC} \\
& 2.4 / \mathrm{PB}=2 / 3 \\
& 2 \times \mathrm{PB}=2.4 \times 3 \\
& \\
& \Rightarrow \quad \mathrm{~PB}=(2.4 \times 3) / 2 \mathrm{~cm} \\
& \mathrm{~PB}=3.6 \mathrm{~cm}
\end{aligned}
$$

Now finding, $\mathrm{AB}=\mathrm{AP}+\mathrm{PB}$

$$
\mathrm{AB}=2.4+3.6
$$

$$
\Rightarrow \quad \mathrm{AB}=6 \mathrm{~cm}
$$

Now, considering $\triangle \mathrm{APQ}$ and $\triangle \mathrm{ABC}$
We have,

$$
\angle \mathrm{A}=\angle \mathrm{A}
$$

$\angle \mathrm{APQ}=\angle \mathrm{ABC}$ (Corresponding angles are equal, $\mathrm{PQ} \| \mathrm{BC}$ and AB being a transversal)
Thus, $\triangle \mathrm{APQ}$ and $\triangle \mathrm{ABC}$ are similar to each other by AA criteria.
Now, we know that
Corresponding parts of similar triangles are propositional.

$$
\begin{array}{rlrl}
\Rightarrow & \mathrm{AP} / \mathrm{AB}=\mathrm{PQ} / \mathrm{BC} \\
\Rightarrow & \mathrm{PQ} & =(\mathrm{AP} / \mathrm{AB}) \times \mathrm{BC} \\
& & =(2.4 / 6) \times 6=2.4
\end{array}
$$

$$
\therefore \mathrm{PQ}=2.4 \mathrm{~cm}
$$

4. In a $\triangle \mathrm{ABC}, \mathrm{D}$ and E are points on AB and AC respectively, such that $\mathrm{DE} \| \mathrm{BC}$. If $\mathrm{AD}=\mathbf{2 . 4} \mathbf{~ c m}$, $A E=3.2 \mathrm{~cm}, \mathrm{DE}=2 \mathrm{~cm}$ and $\mathrm{BC}=5 \mathrm{~cm}$. Find BD and CE.
Solution:

Given: $\Delta \mathrm{ABC}$ such that $\mathrm{AD}=2.4 \mathrm{~cm}, \mathrm{AE}=3.2 \mathrm{~cm}, \mathrm{DE}=2 \mathrm{~cm}$ and $\mathrm{BE}=5 \mathrm{~cm}$. Also $\mathrm{DE} \| \mathrm{BC}$. Required to find: BD and CE .

As $D E \| B C, A B$ is transversal, $\angle \mathrm{APQ}=\angle \mathrm{ABC}$ (corresponding angles)
As $D E \| B C, A C$ is transversal, $\angle \mathrm{AED}=\angle \mathrm{ACB}$ (corresponding angles)

In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$, $\angle A D E=\angle A B C$ $\angle \mathrm{AED}=\angle \mathrm{ACB}$ $\therefore \triangle \mathrm{ADE}=\triangle \mathrm{ABC}(\mathrm{AA}$ similarity criteria)

Now, we know that
Corresponding parts of similar triangles are propositional.

$$
\begin{array}{ll}
\Rightarrow \quad \mathrm{AD} / \mathrm{AB}=\mathrm{AE} / \mathrm{AC}=\mathrm{DE} / \mathrm{BC} \\
\mathrm{AD} / \mathrm{AB}=\mathrm{DE} / \mathrm{BC} \\
2.4 /(2.4+\mathrm{DB})=2 / 5[\text { Since }, \mathrm{AB}=\mathrm{AD}+\mathrm{DB}] \\
2.4+\mathrm{DB}=6 \\
\mathrm{DB}=6-2.4 \\
\mathrm{DB}=3.6 \mathrm{~cm}
\end{array}
$$

In the same way,
$\Rightarrow \quad \mathrm{AE} / \mathrm{AC}=\mathrm{DE} / \mathrm{BC}$
$3.2 /(3.2+\mathrm{EC})=2 / 5[$ Since $\mathrm{AC}=\mathrm{AE}+\mathrm{EC}]$
$3.2+\mathrm{EC}=8$
$\mathrm{EC}=8-3.2$
$\mathrm{EC}=4.8 \mathrm{~cm}$
$\therefore \mathrm{BD}=3.6 \mathrm{~cm}$ and $\mathrm{CE}=4.8 \mathrm{~cm}$.

Exercise 4.3

1. In a $\triangle A B C, A D$ is the bisector of $\angle A$, meeting side $B C$ at D.
(i) if $B D=2.5 \mathrm{~cm}, A B=5 \mathrm{~cm}$, and $A C=4.2 \mathrm{~cm}$, find $D C$.

Solution:
Given: $\triangle \mathrm{ABC}$ and AD bisects $\angle \mathrm{A}$, meeting side BC at D . $\mathrm{And} \mathrm{BD}=2.5 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$, and $\mathrm{AC}=4.2 \mathrm{~cm}$.
Required to find: DC

Since, AD is the bisector of $\angle \mathrm{A}$ meeting side BC at D in $\triangle \mathrm{ABC}$

$$
\begin{array}{cl}
\Rightarrow \quad \mathrm{AB} / \mathrm{AC}=\mathrm{BD} / \mathrm{DC} \\
& 5 / 4.2=2.5 / \mathrm{DC} \\
5 \mathrm{DC}=2.5 \times 4.2 \\
& \therefore \mathrm{DC}=2.1 \mathrm{~cm}
\end{array}
$$

(ii) if $\mathrm{BD}=2 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$, and $\mathrm{DC}=\mathbf{3 \mathrm { cm }}$, find AC .

Solution:
Given: $\triangle \mathrm{ABC}$ and AD bisects $\angle \mathrm{A}$, meeting side BC at D . And $\mathrm{BD}=2 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$, and DC $=3 \mathrm{~cm}$.
Required to find: AC

Since, AD is the bisector of $\angle \mathrm{A}$ meeting side BC at D in $\triangle \mathrm{ABC}$
$\Rightarrow \quad \mathrm{AB} / \mathrm{AC}=\mathrm{BD} / \mathrm{DC}$
$5 / \mathrm{AC}=2 / 3$
$2 \mathrm{AC}=5 \times 3$
$\therefore \mathrm{AC}=7.5 \mathrm{~cm}$
(iii) if $\mathrm{AB}=3.5 \mathrm{~cm}, \mathrm{AC}=4.2 \mathrm{~cm}$, and $\mathrm{DC}=2.8 \mathrm{~cm}$, find BD .

Solution:

Given: $\triangle \mathrm{ABC}$ and AD bisects $\angle \mathrm{A}$, meeting side BC at D . $\mathrm{And} \mathrm{AB}=3.5 \mathrm{~cm}, \mathrm{AC}=4.2 \mathrm{~cm}$, and $\mathrm{DC}=2.8 \mathrm{~cm}$.
Required to find: BD

Since, AD is the bisector of $\angle \mathrm{A}$ meeting side BC at D in $\triangle \mathrm{ABC}$
$\Rightarrow \quad \mathrm{AB} / \mathrm{AC}=\mathrm{BD} / \mathrm{DC}$
$3.5 / 4.2=\mathrm{BD} / 2.8$
$4.2 \times \mathrm{BD}=3.5 \times 2.8$
$\mathrm{BD}=7 / 3$
$\therefore \mathrm{BD}=2.3 \mathrm{~cm}$
(iv) if $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{AC}=14 \mathrm{~cm}$, and $\mathrm{BC}=\mathbf{6 \mathrm { cm }}$, find BD and DC .

Solution:

Given: In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the bisector of $\angle \mathrm{A}$ meeting side BC at D . $\mathrm{And}, \mathrm{AB}=10 \mathrm{~cm}, \mathrm{AC}=14$ cm , and $\mathrm{BC}=6 \mathrm{~cm}$
Required to find: BD and DC .

Since, AD is bisector of $\angle \mathrm{A}$
We have,

$$
\mathrm{AB} / \mathrm{AC}=\mathrm{BD} / \mathrm{DC} \quad(\mathrm{AD} \text { is bisector of } \angle \mathrm{A} \text { and side } \mathrm{BC})
$$

Then, $10 / 14=x /(6-x)$

$$
14 x=60-6 x
$$

$$
20 x=60
$$

$$
\therefore \mathrm{BD}=3 \mathrm{~cm} \text { and } \mathrm{DC}=(6-3)=3 \mathrm{~cm} .
$$

(v) if $\mathrm{AC}=4.2 \mathrm{~cm}, \mathrm{DC}=6 \mathrm{~cm}$, and $\mathrm{BC}=10 \mathrm{~cm}$, find AB .

Solution:

Given: $\triangle \mathrm{ABC}$ and AD bisects $\angle \mathrm{A}$, meeting side BC at D . And $\mathrm{AC}=4.2 \mathrm{~cm}, \mathrm{DC}=6 \mathrm{~cm}$, and $B C=10 \mathrm{~cm}$.
Required to find: AB

Since, AD is the bisector of $\angle \mathrm{A}$ meeting side BC at D in $\triangle \mathrm{ABC}$
$\Rightarrow \quad \mathrm{AB} / \mathrm{AC}=\mathrm{BD} / \mathrm{DC}$
$\mathrm{AB} / 4.2=\mathrm{BD} / 6$
We know that,

$$
\mathrm{BD}=\mathrm{BC}-\mathrm{DC}=10-6=4 \mathrm{~cm}
$$

$\Rightarrow \quad \mathrm{AB} / 4.2=4 / 6$
$\mathrm{AB}=(2 \times 4.2) / 3$
$\therefore \mathrm{AB}=2.8 \mathrm{~cm}$
(vi) if $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$, and $\mathrm{DC}=\mathbf{3 \mathrm { cm }}$, find BC .

Solution:
Given: $\triangle \mathrm{ABC}$ and AD bisects $\angle \mathrm{A}$, meeting side BC at D . $\mathrm{And} \mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$, and $\mathrm{DC}=3 \mathrm{~cm}$.
Required to find: BC

Since, AD is the bisector of $\angle \mathrm{A}$ meeting side BC at D in $\triangle \mathrm{ABC}$
$\Rightarrow \quad \mathrm{AB} / \mathrm{AC}=\mathrm{BD} / \mathrm{DC}$
$5.6 / 6=\mathrm{BD} / 3$
$\mathrm{BD}=5.6 / 2=2.8 \mathrm{~cm}$
And, we know that,
$\mathrm{BD}=\mathrm{BC}-\mathrm{DC}$
$2.8=\mathrm{BC}-3$
$\therefore \mathrm{BC}=5.8 \mathrm{~cm}$
(vii) if $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{BC}=\mathbf{6 \mathrm { cm }}$, and $\mathrm{BD}=3.2 \mathrm{~cm}$, find AC .

Solution:
Given: $\triangle \mathrm{ABC}$ and AD bisects $\angle \mathrm{A}$, meeting side BC at D . And $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$, and $\mathrm{BD}=3.2 \mathrm{~cm}$.
Required to find: AC

Since, AD is the bisector of $\angle \mathrm{A}$ meeting side BC at D in $\triangle \mathrm{ABC}$
$\Rightarrow \quad \mathrm{AB} / \mathrm{AC}=\mathrm{BD} / \mathrm{DC}$
$5.6 / \mathrm{AC}=3.2 / \mathrm{DC}$
And, we know that
$\mathrm{BD}=\mathrm{BC}-\mathrm{DC}$
$3.2=6-\mathrm{DC}$
$\therefore \mathrm{DC}=2.8 \mathrm{~cm}$
$\Rightarrow \quad 5.6 / \mathrm{AC}=3.2 / 2.8$
$\mathrm{AC}=(5.6 \times 2.8) / 3.2$

$$
\therefore \mathrm{AC}=4.9 \mathrm{~cm}
$$

(viii) if $\mathrm{AB}=\mathbf{1 0} \mathrm{cm}, \mathrm{AC}=\mathbf{6 \mathrm { cm }}$, and $\mathrm{BC}=\mathbf{1 2} \mathrm{cm}$, find BD and DC .

Solution:
Given: $\triangle \mathrm{ABC}$ and AD bisects $\angle \mathrm{A}$, meeting side BC at $\mathrm{D} . \mathrm{AB}=10 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$, and $\mathrm{BC}=12$ cm.

Required to find: DC

Since, AD is the bisector of $\angle \mathrm{A}$ meeting side BC at D in $\triangle \mathrm{ABC}$
$\Rightarrow \quad \mathrm{AB} / \mathrm{AC}=\mathrm{BD} / \mathrm{DC}$

$$
\begin{equation*}
10 / 6=\mathrm{BD} / \mathrm{DC} \tag{i}
\end{equation*}
$$

And, we know that

$$
\mathrm{BD}=\mathrm{BC}-\mathrm{DC}=12-\mathrm{DC}
$$

Let $\mathrm{BD}=\mathrm{x}$,
$\Rightarrow \quad \mathrm{DC}=12-\mathrm{x}$
Thus (i) becomes,

$$
\begin{aligned}
& 10 / 6=x /(12-x) \\
& 5(12-x)=3 x \\
& 60-5 x=3 x \\
& \therefore x=60 / 8=7.5
\end{aligned}
$$

Hence, $\mathrm{DC}=12-7.5=4.5 \mathrm{~cm}$ and $\mathrm{BD}=7.5 \mathrm{~cm}$
2. In figure 4.57, AE is the bisector of the exterior $\angle C A D$ meeting BC produced in E . If $\mathrm{AB}=10$ $\mathrm{cm}, \mathrm{AC}=6 \mathrm{~cm}$, and $\mathrm{BC}=12 \mathrm{~cm}$, find CE .

Solution:

Given: AE is the bisector of the exterior $\angle \mathrm{CAD}$ and $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$, and $\mathrm{BC}=12 \mathrm{~cm}$. Required to find: CE

Since $A E$ is the bisector of the exterior $\angle C A D$.

$$
\mathrm{BE} / \mathrm{CE}=\mathrm{AB} / \mathrm{AC}
$$

Let's take CE as x .
So, we have

$$
\mathrm{BE} / \mathrm{CE}=\mathrm{AB} / \mathrm{AC}
$$

$$
(12+x) / x=10 / 6
$$

$$
6 x+72=10 x
$$

$$
10 x-6 x=72
$$

$$
4 x=72
$$

$$
\therefore \mathrm{x}=18
$$

Therefore, $\mathrm{CE}=18 \mathrm{~cm}$.
3. In fig. 4.58, $\triangle A B C$ is a triangle such that $A B / A C=B D / D C, \angle B=70^{\circ}, \angle C=50^{\circ}$, find $\angle B A D$. Solution:

Given: $\triangle \mathrm{ABC}$ such that $\mathrm{AB} / \mathrm{AC}=\mathrm{BD} / \mathrm{DC}, \angle \mathrm{B}=70^{\circ}$ and $\angle \mathrm{C}=50^{\circ}$
Required to find: $\angle B A D$

We know that,
In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
& \angle \mathrm{A}=180-(70+50) \\
& =180-120 \\
& =60^{\circ}
\end{aligned}
$$ Triangles

Since,

$$
\mathrm{AB} / \mathrm{AC}=\mathrm{BD} / \mathrm{DC}
$$

AD is the angle bisector of angle $\angle \mathrm{A}$.
Thus,

$$
\angle \mathrm{BAD}=\angle \mathrm{A} / 2=60 / 2=30^{\circ}
$$

Exercise 4.4

1. (i) In fig. 4.70, if $A B \| C D$, find the value of x. Solution:

It's given that $A B \| C D$.
Required to find the value of x.

We know that,
Diagonals of a parallelogram bisect each other.
So,

$$
\mathrm{AO} / \mathrm{CO}=\mathrm{BO} / \mathrm{DO}
$$

$\Rightarrow \quad 4 /(4 x-2)=(x+1) /(2 x+4)$

$$
4(2 x+4)=(4 x-2)(x+1)
$$

$$
8 x+16=x(4 x-2)+1(4 x-2)
$$

$$
8 x+16=4 x^{2}-2 x+4 x-2
$$

$$
-4 x^{2}+8 x+16+2-2 x=0
$$

$$
-4 x^{2}+6 x+8=0
$$

$$
4 x^{2}-6 x-18=0
$$

$$
4 x^{2}-12 x+6 x-18=0
$$

$$
4 x(x-3)+6(x-3)=0
$$

$$
(4 x+6)(x-3)=0
$$

$$
\therefore x=-6 / 4 \text { or } x=3
$$

(ii) In fig. 4.71, if $A B \| C D$, find the value of x.

Solution:
It's given that $A B \| C D$.
Required to find the value of x.

We know that,
Diagonals of a parallelogram bisect each other
So,

$$
\mathrm{AO} / \mathrm{CO}=\mathrm{BO} / \mathrm{DO}
$$

$$
\Rightarrow \quad(6 x-5) /(2 x+1)=(5 x-3) /(3 x-1)
$$

$$
(6 x-5)(3 x-1)=(2 x+1)(5 x-3)
$$

$$
3 x(6 x-5)-1(6 x-5)=2 x(5 x-3)+1(5 x-3)
$$

$$
18 x^{2}-10 x^{2}-21 x+5+x+3=0
$$

$$
8 x^{2}-16 x-4 x+8=0
$$

$$
8 x(x-2)-4(x-2)=0
$$

$$
(8 x-4)(x-2)=0
$$

$$
x=4 / 8=1 / 2 \text { or } x=-2
$$

$$
\therefore \mathrm{x}=\mathbf{1} / \mathbf{2}
$$

(iii) In fig. 4.72, if $A B \| C D$. If $O A=3 x-19, O B=x-4, O C=x-3$ and $O D=4$, find x.

Solution:

It's given that $A B \| C D$.
Required to find the value of x.

We know that,
Diagonals of a parallelogram bisect each other
So,

$$
\begin{aligned}
& \mathrm{AO} / \mathrm{CO}=\mathrm{BO} / \mathrm{DO} \\
& (3 \mathrm{x}-19) /(\mathrm{x}-3)=(\mathrm{x}-4) / 4 \\
& 4(3 \mathrm{x}-19)=(\mathrm{x}-3)(\mathrm{x}-4) \\
& 12 \mathrm{x}-76=\mathrm{x}(\mathrm{x}-4)-3(\mathrm{x}-4) \\
& 12 \mathrm{x}-76=\mathrm{x}^{2}-4 \mathrm{x}-3 \mathrm{x}+12 \\
& -\mathrm{x}^{2}+7 \mathrm{x}-12+12 \mathrm{x}-76=0 \\
& -\mathrm{x}^{2}+19 \mathrm{x}-88=0 \\
& \mathrm{x}^{2}-19 \mathrm{x}+88=0 \\
& \mathrm{x}^{2}-11 \mathrm{x}-8 \mathrm{x}+88=0 \\
& \mathrm{x}(\mathrm{x}-11)-8(\mathrm{x}-11)=0 \\
& \therefore \mathrm{x}=11 \text { or } \mathrm{x}=8
\end{aligned}
$$

Exercise 4.5

1. In fig. 4.136, $\triangle A C B \sim \triangle A P Q$. If $B C=8 \mathrm{~cm}, P Q=4 \mathrm{~cm}, B A=6.5 \mathrm{~cm}$ and $A P=2.8 \mathrm{~cm}$, find $C A$ and AQ.
Solution:
Given,

$$
\Delta \mathrm{ACB} \sim \triangle \mathrm{APQ}
$$

$$
\mathrm{BC}=8 \mathrm{~cm}, \mathrm{PQ}=4 \mathrm{~cm}, \mathrm{BA}=6.5 \mathrm{~cm} \text { and } \mathrm{AP}=2.8 \mathrm{~cm}
$$

Required to find: CA and AQ

We know that,
$\Delta \mathrm{ACB} \sim \triangle \mathrm{APQ} \quad$ [given]
$\mathrm{BA} / \mathrm{AQ}=\mathrm{CA} / \mathrm{AP}=\mathrm{BC} / \mathrm{PQ} \quad$ [Corresponding Parts of Similar Triangles]
So,

$$
\begin{aligned}
& 6.5 / \mathrm{AQ}=8 / 4 \\
& \mathrm{AQ}=(6.5 \times 4) / 8 \\
& \mathrm{AQ}=3.25 \mathrm{~cm}
\end{aligned}
$$

Similarly, as

$$
\begin{aligned}
& \mathrm{CA} / \mathrm{AP}=\mathrm{BC} / \mathrm{PQ} \\
& \mathrm{CA} / 2.8=8 / 4 \\
& \mathrm{CA}=2.8 \times 2 \\
& \mathrm{CA}=5.6 \mathrm{~cm}
\end{aligned}
$$

Hence, $\mathrm{CA}=5.6 \mathrm{~cm}$ and $\mathrm{AQ}=3.25 \mathrm{~cm}$.
2. In fig.4.137, $A B \| Q R$, find the length of $P B$.

Solution:

Given,
$\triangle \mathrm{PQR}, \mathrm{AB} \| \mathrm{QR}$ and
$\mathrm{AB}=3 \mathrm{~cm}, \mathrm{QR}=9 \mathrm{~cm}$ and $\mathrm{PR}=6 \mathrm{~cm}$
Required to find: PB

In $\triangle \mathrm{PAB}$ and $\triangle \mathrm{PQR}$
We have,
$\angle \mathrm{P}=\angle \mathrm{P}$
$\angle \mathrm{PAB}=\angle \mathrm{PQR}$
$\Rightarrow \triangle \mathrm{PAB} \sim \triangle \mathrm{PQR}$
[Common]
[Corresponding angles as $\mathrm{AB} \| \mathrm{QR}$ with PQ as the transversal] [By AA similarity criteria]

Hence,
$\mathrm{AB} / \mathrm{QR}=\mathrm{PB} / \mathrm{PR}$
$\Rightarrow \quad 3 / 9=\mathrm{PB} / 6$ $P B=6 / 3$

Therefore, $\mathrm{PB}=2 \mathrm{~cm}$
[Corresponding Parts of Similar Triangles are propositional]
3. In fig. 4.138 given, $X Y \| B C$. Find the length of $X Y$.

Solution:

Given,
XY||BC

$$
\mathrm{AX}=1 \mathrm{~cm}, \mathrm{XB}=3 \mathrm{~cm} \text { and } \mathrm{BC}=6 \mathrm{~cm}
$$

Required to find: XY

R D Sharma Solutions For Class 10 Maths Chapter 4 Triangles

In $\triangle \mathrm{AXY}$ and $\triangle \mathrm{ABC}$
We have,
$\angle \mathrm{A}=\angle \mathrm{A}$
$\angle A X Y=\angle A B C$
$\Rightarrow \triangle \mathrm{AXY} \sim \triangle \mathrm{ABC}$
[Common]
[Corresponding angles as $\mathrm{AB} \| \mathrm{QR}$ with PQ as the transversal] [By AA similarity criteria]

Hence,

$$
\mathrm{XY} / \mathrm{BC}=\mathrm{AX} / \mathrm{AB} \quad[\text { Corresponding Parts of Similar Triangles are propositional] }
$$

We know that,

$$
\begin{aligned}
& (\mathrm{AB}=\mathrm{AX}+\mathrm{XB}=1+3=4) \\
& \mathrm{XY} / 6=1 / 4 \\
& \mathrm{XY} / 1=6 / 4
\end{aligned}
$$

Therefore, $\mathrm{XY}=1.5 \mathrm{~cm}$
4. In a right-angled triangle with sides a and b and hypotenuse c, the altitude drawn on the hypotenuse is x . Prove that $\mathbf{a b}=\mathbf{c x}$.
Solution:
Consider $\triangle \mathrm{ABC}$ to be a right angle triangle having sides a and b and hypotenuse c . Let BD be the altitude drawn on the hypotenuse AC.
Required to prove: $a b=c x$

We know that,
In $\triangle \mathrm{ACB}$ and $\triangle \mathrm{CDB}$
$\angle B=\angle B$
$\angle \mathrm{ACB}=\angle \mathrm{CDB}=90^{\circ}$
$\Rightarrow \triangle \mathrm{ACB} \sim \triangle \mathrm{CDB}$
[Common]
[By AA similarity criteria]
Hence,

$$
\begin{array}{ll}
\mathrm{AB} / \mathrm{BD}=\mathrm{AC} / \mathrm{BC} & \text { [Corresponding Parts of Similar Triangles are propositional] } \\
\Rightarrow \quad \mathrm{a} / \mathrm{x}=\mathrm{c} / \mathrm{b}
\end{array}
$$

Therefore, $a b=c x$
5. In fig. 4.139, $\angle \mathrm{ABC}=90$ and $\mathrm{BD} \perp \mathrm{AC}$. If $\mathrm{BD}=8 \mathrm{~cm}$, and $\mathrm{AD}=\mathbf{4} \mathrm{cm}$, find CD .

Solution:
Given,

$$
\begin{aligned}
& \angle \mathrm{ABC}=90^{\circ} \text { and } \mathrm{BD} \perp \mathrm{AC} \\
& \mathrm{BD}=8 \mathrm{~cm} \\
& \mathrm{AD}=4 \mathrm{~cm}
\end{aligned}
$$

Required to find: CD.

We know that,
ABC is a right angled triangle and $\mathrm{BD} \perp \mathrm{AC}$.
Then, $\triangle \mathrm{DBA} \sim \Delta \mathrm{DCB}$
[By AA similarity]
$\mathrm{BD} / \mathrm{CD}=\mathrm{AD} / \mathrm{BD}$
$\mathrm{BD}^{2}=\mathrm{AD} \times \mathrm{DC}$
$(8)^{2}=4 \times \mathrm{DC}$
$\mathrm{DC}=64 / 4=16 \mathrm{~cm}$
Therefore, $\mathrm{CD}=16 \mathrm{~cm}$
6. In fig.4.140, $\angle \mathrm{ABC}=90^{\circ}$ and $\mathrm{BD} \perp \mathrm{AC}$. If $\mathrm{AC}=5.7 \mathrm{~cm}, \mathrm{BD}=3.8 \mathrm{~cm}$ and $\mathrm{CD}=5.4 \mathrm{~cm}$, Find BC . Solution:

Given:
$\mathrm{BD} \perp \mathrm{AC}$
$\mathrm{AC}=5.7 \mathrm{~cm}, \mathrm{BD}=3.8 \mathrm{~cm}$ and $\mathrm{CD}=5.4 \mathrm{~cm}$
$\angle \mathrm{ABC}=90^{\circ}$
Required to find: BC

We know that,

$$
\begin{aligned}
& \triangle \mathrm{ABC} \sim \triangle \mathrm{BDC} \quad[\text { By AA similarity }] \\
& \angle \mathrm{BCA}=\angle \mathrm{DCA}=90^{\circ} \\
& \angle \mathrm{AXY}=\angle \mathrm{ABC} \quad[\text { Common }]
\end{aligned}
$$

Thus,
$\mathrm{AB} / \mathrm{BD}=\mathrm{BC} / \mathrm{CD} \quad[$ Corresponding Parts of Similar Triangles are propositional $]$
$5.7 / 3.8=\mathrm{BC} / 5.4$
$\mathrm{BC}=(5.7 \times 5.4) / 3.8=8.1$

Therefore, $\mathrm{BC}=8.1 \mathrm{~cm}$
7. In the fig.4.141 given, $\mathrm{DE} \| \mathrm{BC}$ such that $\mathrm{AE}=(1 / 4) \mathrm{AC}$. If $\mathrm{AB}=\mathbf{6} \mathbf{~ c m}$, find AD . Solution:

Given:
DE\|BC
$\mathrm{AE}=(1 / 4) \mathrm{AC}$
$A B=6 \mathrm{~cm}$.
Required to find: AD .

R D Sharma Solutions For Class 10 Maths Chapter 4 Triangles

In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$
We have,
$\angle \mathrm{A}=\angle \mathrm{A}$
$\angle \mathrm{ADE}=\angle \mathrm{ABC}$
$\Rightarrow \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
[Common]
[Corresponding angles as $\mathrm{AB} \| \mathrm{QR}$ with PQ as the transversal] [By AA similarity criteria]

Then,
$\mathrm{AD} / \mathrm{AB}=\mathrm{AE} / \mathrm{AC} \quad[$ Corresponding Parts of Similar Triangles are propositional $]$
$\mathrm{AD} / 6=1 / 4$
$4 \times \mathrm{AD}=6$
$\mathrm{AD}=6 / 4$

Therefore, $\mathrm{AD}=1.5 \mathrm{~cm}$
8. In the fig.4.142 given, if $A B \perp B C, D C \perp B C$, and $D E \perp A C$, prove that $\triangle C E D \sim \triangle A B C$ Solution:

Given:
$\mathrm{AB} \perp \mathrm{BC}$,
$\mathrm{DC} \perp \mathrm{BC}$,
$\mathrm{DE} \perp \mathrm{AC}$
Required to prove: $\triangle \mathrm{CED} \sim \Delta \mathrm{ABC}$

We know that,
From $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CED}$

$$
\begin{array}{cl}
\angle \mathrm{B}=\angle \mathrm{E}=90^{\circ} & \text { [given] } \\
\angle \mathrm{BAC}=\angle \mathrm{ECD} & \text { [alternate angles since, } \mathrm{AB} \| \mathrm{CD} \text { with } \mathrm{BC} \text { as transversal] } \\
\text { Therefore, } \triangle \mathrm{CED} \sim \triangle \mathrm{ABC} & \text { [AA similarity] }
\end{array}
$$

9. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|\mid ~ D C$ intersect each other at the point O. Using similarity criterion for two triangles, show that $\mathrm{OA} / \mathrm{OC}=\mathrm{OB} / \mathrm{OD}$ Solution:

Given: OC is the point of intersection of AC and BD in the trapezium ABCD , with $\mathrm{AB} \| \mathrm{DC}$. Required to prove: $\mathrm{OA} / \mathrm{OC}=\mathrm{OB} / \mathrm{OD}$

We know that,

In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$
$\angle A O B=\angle C O D$
$\angle \mathrm{OAB}=\angle \mathrm{OCD}$
Then, $\triangle \mathrm{AOB} \sim \Delta \mathrm{COD}$
Therefore, $\mathrm{OA} / \mathrm{OC}=\mathrm{OB} / \mathrm{OD}$
[Vertically Opposite Angles]
[Alternate angles]
10. If $\Delta A B C$ and $\Delta A M P$ are two right triangles, right angled at B and M, respectively such that $\angle M A P=\angle B A C$. Prove that
(i) $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
(ii) $\mathrm{CA} / \mathrm{PA}=\mathrm{BC} / \mathrm{MP}$

Solution:

(i) Given:
$\Delta \mathrm{ABC}$ and $\triangle \mathrm{AMP}$ are the two right triangles.

We know that,

$$
\begin{aligned}
& \angle \mathrm{AMP}=\angle \mathrm{B}=90^{\circ} \\
& \angle \mathrm{MAP}=\angle \mathrm{BAC}
\end{aligned}
$$

[Vertically Opposite Angles]

R D Sharma Solutions For Class 10 Maths Chapter 4 -

$\Rightarrow \quad \Delta \mathrm{ABC} \sim \Delta \mathrm{AMP}$
(ii) Since, $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
$\mathrm{CA} / \mathrm{PA}=\mathrm{BC} / \mathrm{MP}$
Hence proved.
[AA similarity]
[Corresponding sides are proportional]
11. A vertical stick 10 cm long casts a shadow 8 cm long. At the same time, a tower casts a shadow 30 m long. Determine the height of the tower.

Solution:

Given:
Length of stick $=10 \mathrm{~cm}$
Length of the stick's shadow $=8 \mathrm{~cm}$
Length of the tower's shadow $=30 \mathrm{~m}=3000 \mathrm{~cm}$
Required to find: the height of the tower $=P Q$.

In $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\angle \mathrm{ABC}=\angle \mathrm{PQR}=90^{\circ}$
$\angle \mathrm{ACB}=\angle \mathrm{PRQ}$
$\Rightarrow \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
[Angular Elevation of Sun is same for a particular instant of time]
[By AA similarity]
So, we have

$$
\begin{aligned}
& \mathrm{AB} / \mathrm{BC}=\mathrm{PQ} / \mathrm{QR} \quad \text { [Corresponding sides are proportional] } \\
& 10 / 8=\mathrm{PQ} / 3000 \\
& \mathrm{PQ}=(3000 \times 10) / 8 \\
& \mathrm{PQ}=30000 / 8 \\
& \mathrm{PQ}=3750 / 100
\end{aligned}
$$

Therefore, $\mathrm{PQ}=37.5 \mathrm{~m}$
12. In fig.4.143, $\angle A=\angle C E D$, prove that $\triangle C A B \sim \triangle C E D$. Also find the value of x. Solution:

Given:
$\angle A=\angle C E D$
Required to prove: $\triangle \mathrm{CAB} \sim \Delta \mathrm{CED}$

In $\triangle \mathrm{CAB} \sim \Delta \mathrm{CED}$
$\angle \mathrm{C}=\angle \mathrm{C}$
[Common]
$\angle \mathrm{A}=\angle \mathrm{CED}$
[Given]
$\Rightarrow \Delta \mathrm{CAB} \sim \Delta \mathrm{CED}$
[By AA similarity]
Hence, we have

$$
\begin{aligned}
& \mathrm{CA} / \mathrm{CE}=\mathrm{AB} / \mathrm{ED} \quad \text { [Corresponding sides are proportional] } \\
& 15 / 10=9 / \mathrm{x} \\
& \mathrm{x}=(9 \times 10) / 15
\end{aligned}
$$

Therefore, $x=6 \mathrm{~cm}$

Exercise 4.6

1. Triangles ABC and DEF are similar.
(i) If area of $(\triangle A B C)=16 \mathrm{~cm}^{2}$, area $(\triangle D E F)=25 \mathrm{~cm}^{2}$ and $B C=2.3 \mathrm{~cm}$, find $E F$.
(ii) If area $(\triangle \mathrm{ABC})=9 \mathrm{~cm}^{2}$, area $(\triangle \mathrm{DEF})=64 \mathrm{~cm}^{2}$ and $D E=5.1 \mathrm{~cm}$, find AB .
(iii) If $\mathrm{AC}=19 \mathrm{~cm}$ and $\mathrm{DF}=8 \mathrm{~cm}$, find the ratio of the area of two triangles.
(iv) If area of $(\triangle \mathrm{ABC})=36 \mathrm{~cm}^{2}$, area $(\triangle \mathrm{DEF})=64 \mathrm{~cm}^{2}$ and $\mathrm{DE}=6.2 \mathrm{~cm}$, find AB .
(v) If $A B=1.2 \mathrm{~cm}$ and $D E=1.4 \mathrm{~cm}$, find the ratio of the area of two triangles.

Solutions:

As we know that, the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides, we get

$$
\text { (i) } \frac{a r \triangle A B C}{a r \triangle D E F}=\left(\frac{B C}{E F}\right)^{2} \frac{16}{25}=\left(\frac{2.3}{E F}\right)^{2} \frac{4}{5}=\frac{2.3}{E F}
$$

Therefore, $\mathrm{EF}=2.875 \mathrm{~cm}$

$$
\text { (ii) } \frac{\operatorname{ar} \triangle A B C}{a r \triangle D E F}=\left(\frac{A B}{D E}\right)^{2} \frac{9}{64}=\left(\frac{A B}{D E}\right)^{2} \frac{3}{8}=\frac{A B}{5.1}
$$

Therefore, $\mathrm{AB}=1.9125 \mathrm{~cm}$
(iii)

$$
\frac{\operatorname{ar} \triangle A B C}{\operatorname{ar} \triangle D E F}=\left(\frac{A C}{D F}\right)^{2} \frac{\operatorname{ar} \triangle A B C}{\operatorname{ar} \triangle D E F}=\left(\frac{19}{8}\right)^{2} \frac{\operatorname{ar} \triangle A B C}{\operatorname{ar} \triangle D E F}=\left(\frac{361}{64}\right)
$$

Therefore, the ratio of the areas of the two triangles are 361: 64

$$
\begin{aligned}
& \frac{a r \triangle A B C}{a r \triangle D E F}=\left(\frac{A B}{D E}\right)^{2} \frac{36}{64}=\left(\frac{A B}{D E}\right)^{2} \frac{6}{8}=\frac{A B}{6.2} \\
& \text { (iv) }
\end{aligned}
$$

Therefore, $\mathrm{AB}=4.65 \mathrm{~cm}$
(v)

$$
\frac{a r \triangle A B C}{a r \triangle D E F}=\left(\frac{A B}{D E}\right)^{2} \frac{\operatorname{ar} \triangle A B C}{a r \triangle D E F}=\left(\frac{1.2}{1.4}\right)^{2} \frac{\operatorname{ar} \triangle A B C}{a r \triangle D E F}=\left(\frac{36}{49}\right)
$$

Therefore, the ratio of the areas of the two triangles are 36: 49
2. In the fig 4.178, $\triangle \mathrm{ACB} \sim \Delta \mathrm{APQ}$. If $\mathrm{BC}=10 \mathrm{~cm}, \mathrm{PQ}=5 \mathrm{~cm}, \mathrm{BA}=6.5 \mathrm{~cm}, \mathrm{AP}=2.8 \mathrm{~cm}$, find CA and $A Q$. Also, find the area ($\triangle A C B$): area ($\triangle A P Q$).
Solution:
Given:

$$
\begin{aligned}
& \triangle \mathrm{ACB} \text { is similar to } \triangle \mathrm{APQ} \\
& \mathrm{BC}=10 \mathrm{~cm} \\
& \mathrm{PQ}=5 \mathrm{~cm} \\
& \mathrm{BA}=6.5 \mathrm{~cm} \\
& \mathrm{AP}=2.8 \mathrm{~cm}
\end{aligned}
$$

R D Sharma Solutions For Class 10 Maths Chapter 4 Triangles

Required to Find: CA, AQ and that the area ($\triangle \mathrm{ACB})$: area ($\triangle \mathrm{APQ}$).

Since, $\triangle \mathrm{ACB} \sim \triangle \mathrm{APQ}$
We know that,
$\mathrm{AB} / \mathrm{AQ}=\mathrm{BC} / \mathrm{PQ}=\mathrm{AC} / \mathrm{AP}$ [Corresponding Parts of Similar Triangles]
$\mathrm{AB} / \mathrm{AQ}=\mathrm{BC} / \mathrm{PQ}$
$6.5 / \mathrm{AQ}=10 / 5$
$\Rightarrow \quad \mathrm{AQ}=3.25 \mathrm{~cm}$
Similarly,

$$
\begin{aligned}
& \mathrm{BC} / \mathrm{PQ}=\mathrm{CA} / \mathrm{AP} \\
& \mathrm{CA} / 2.8=10 / 5 \\
& \Rightarrow \quad \mathrm{CA}=5.6 \mathrm{~cm}
\end{aligned}
$$

Next,
Since the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides, we have,

$$
\begin{aligned}
\operatorname{ar}(\triangle \mathrm{ACQ}): \operatorname{ar}(\triangle \mathrm{APQ}) & =(\mathrm{BC} / \mathrm{PQ}) 2 \\
& =(10 / 5) 2 \\
& =(2 / 1) 2 \\
& =4 / 1
\end{aligned}
$$

Therefore, the ratio is $4: 1$.
3. The areas of two similar triangles are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. Find the ration of their corresponding heights. What is the ratio of their corresponding medians?

Solution:

Given: The areas of two similar triangles are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$.
Required to find: The ratio of their corresponding heights and the ratio of their corresponding medians.

The Learning App

Let's consider the two similar triangles as $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}, \mathrm{AD}$ and PS be the altitudes of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ respectively.
So,
By area of similar triangle theorem, we have
$\operatorname{ar}(\triangle \mathrm{ABC}) / \operatorname{ar}(\triangle \mathrm{PQR})=\mathrm{AB}^{2} / \mathrm{PQ}^{2}$
$\Rightarrow \quad 81 / 49=\mathrm{AB}^{2} / \mathrm{PQ}^{2}$
$\Rightarrow \quad 9 / 7=\mathrm{AB} / \mathrm{PQ}$
In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQS}$
$\angle B=\angle Q$
[Since $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$]
$\angle \mathrm{ABD}=\angle \mathrm{PSQ}=90^{\circ}$
$\Rightarrow \quad \triangle \mathrm{ABD} \sim \triangle \mathrm{PQS}$
[By AA similarity]
Hence, as the corresponding parts of similar triangles are proportional, we have $\mathrm{AB} / \mathrm{PQ}=\mathrm{AD} / \mathrm{PS}$

Therefore,
$\mathrm{AD} / \mathrm{PS}=9 / 7$ (Ratio of altitudes)
Similarly,
The ratio of two similar triangles is equal to the ratio of the squares of their corresponding medians also.

Thus, ratio of altitudes $=$ Ratio of medians $=9 / 7$
4. The areas of two similar triangles are $169 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$ respectively. If the longest side of the larger triangle is 26 cm , find the longest side of the smaller triangle.
Solution:
Given:

R D Sharma Solutions For Class 10 Maths Chapter 4 -
 Triangles

The area of two similar triangles is $169 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$.
The longest side of the larger triangle is 26 cm .
Required to find: the longest side of the smaller triangle
Let the longer side of the smaller triangle $=x$
We know that, the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides, we have
$\operatorname{ar}($ larger triangle $) / \operatorname{ar}($ smaller triangle $)=(\text { side of the larger triangle } / \text { side of the smaller triangle })^{2}$

$$
=169 / 121
$$

Taking square roots of LHS and RHS, we get

$$
=13 / 11
$$

Since, sides of similar triangles are propositional, we can say
$3 / 11=$ (longer side of the larger triangle) $/$ (longer side of the smaller triangle)
$\Rightarrow \quad 13 / 11=26 / x$
$\mathrm{x}=22$
Therefore, the longest side of the smaller triangle is 22 cm .
5. The area of two similar triangles are $25 \mathrm{~cm}^{2}$ and $36 \mathrm{~cm}^{2}$ respectively. If the altitude of the first triangle is 2.4 cm , find the corresponding altitude of the other.

Solution:

Given: The area of two similar triangles are $25 \mathrm{~cm}^{2}$ and $36 \mathrm{~cm}^{2}$ respectively, the altitude of the first triangle is 2.4 cm
Required to find: the altitude of the second triangle
We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes, we have
$\Rightarrow \quad \operatorname{ar}($ triangle 1$) / \operatorname{ar}($ triangle 2$)=(\text { altitude } 1 / \text { altitude } 2)^{2}$
$\Rightarrow \quad 25 / 36=(2.4)^{2} /(\text { altitude2 })^{2}$
Taking square roots of LHS and RHS, we get

$$
5 / 6=2.4 / \text { altitude } 2
$$

$\Rightarrow \quad$ altitude $2=(2.4 \times 6) / 5=2.88 \mathrm{~cm}$
Therefore, the altitude of the second triangle is 2.88 cm .
6. The corresponding altitudes of two similar triangles are 6 cm and 9 cm respectively. Find the ratio of their areas.

Solution:

Given:
The corresponding altitudes of two similar triangles are 6 cm and 9 cm .
Required to find: Ratio of areas of the two similar triangles
We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their
corresponding altitudes, we have

$$
\begin{aligned}
\operatorname{ar}(\text { triangle } 1) / \operatorname{ar}(\text { triangle } 2) & =(\text { altitude } 1 / \text { altitude } 2)^{2}=(6 / 9)^{2} \\
& =36 / 81 \\
& =4 / 9
\end{aligned}
$$

Therefore, the ratio of the areas of two triangles $=4: 9$.
7. ABC is a triangle in which $\angle \mathrm{A}=90^{\circ}$, $\mathrm{AN} \perp \mathrm{BC}, \mathrm{BC}=12 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$. Find the ratio of the areas of $\triangle \mathrm{ANC}$ and $\triangle \mathrm{ABC}$.

Solution:

Given:

Given,
$\triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ}, \mathrm{AN} \perp \mathrm{BC}$
$\mathrm{BC}=12 \mathrm{~cm}$
$A C=5 \mathrm{~cm}$.
Required to find: $\operatorname{ar}(\triangle A N C) / \operatorname{ar}(\triangle A B C)$.

We have,

$$
\begin{array}{lll}
& \text { In } \triangle \mathrm{ANC} \text { and } \triangle \mathrm{ABC}, & \\
\angle \mathrm{ACN}=\angle \mathrm{ACB} & {[\text { Common] }} \\
& \angle \mathrm{A}=\angle \mathrm{ANC} & {\left[\text { each } 90^{\circ}\right]} \\
\Rightarrow \quad & \triangle \mathrm{ANC} \sim \triangle \mathrm{ABC} & \text { [AA similarity] }
\end{array}
$$

Since the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides, we get have $\operatorname{ar}(\triangle \mathrm{ANC}) / \operatorname{ar}(\triangle \mathrm{ABC})=(\mathrm{AC} / \mathrm{BC})^{2}=(5 / 12)^{2}=25 / 144$

Therefore, $\operatorname{ar}(\triangle \mathrm{ANC}) / \operatorname{ar}(\triangle \mathrm{ABC})=25: 144$
8. In Fig 4.179, DE $\|$ BC
(i) If $\mathrm{DE}=4 \mathrm{~m}, \mathrm{BC}=6 \mathrm{~cm}$ and Area $(\triangle \mathrm{ADE})=16 \mathrm{~cm}^{2}$, find the area of $\triangle \mathrm{ABC}$.
(ii) If $\mathrm{DE}=4 \mathrm{~cm}, \mathrm{BC}=\mathbf{8 \mathrm { cm }}$ and Area $(\triangle \mathrm{ADE})=25 \mathrm{~cm}^{2}$, find the area of $\triangle \mathrm{ABC}$.
(iii) If $\mathrm{DE}: \mathrm{BC}=3: 5$. Calculate the ratio of the areas of $\triangle \mathrm{ADE}$ and the trapezium BCED .

Solution:
Given,
$\mathrm{DE} \| \mathrm{BC}$.
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$
We know that,

$$
\begin{array}{ll}
\angle \mathrm{ADE}=\angle \mathrm{B} & {[\text { Corresponding angles }]} \\
\angle \mathrm{DAE}=\angle \mathrm{BAC} & {[\text { Common }]}
\end{array}
$$

Hence, $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$ (AA Similarity)

(i) Since the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides, we have,
$\operatorname{Ar}(\triangle \mathrm{ADE}) / \operatorname{Ar}(\triangle \mathrm{ABC})=\mathrm{DE}^{2} / \mathrm{BC}^{2}$
$16 / \operatorname{Ar}(\triangle \mathrm{ABC})=4^{2} / 6^{2}$
$\Rightarrow \quad \operatorname{Ar}(\triangle \mathrm{ABC})=\left(6^{2} \times 16\right) / 4^{2}$
$\Rightarrow \quad \operatorname{Ar}(\triangle \mathrm{ABC})=36 \mathrm{~cm}^{2}$
(ii) Since the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides, we have,
corresponding sides, we have,
$\operatorname{Ar}(\triangle \mathrm{ADE}) / \operatorname{Ar}(\triangle \mathrm{ABC})=\mathrm{DE}^{2} / \mathrm{BC}^{2}$
$25 / \operatorname{Ar}(\triangle \mathrm{ABC})=4^{2} / 8^{2}$
$\Rightarrow \quad \operatorname{Ar}(\triangle \mathrm{ABC})=\left(8^{2} \times 25\right) / 4^{2}$
$\Rightarrow \quad \operatorname{Ar}(\triangle \mathrm{ABC})=100 \mathrm{~cm}^{2}$
(iii) According to the question,

$$
\begin{aligned}
\operatorname{Ar}(\triangle \mathrm{ADE}) / \operatorname{Ar}(\triangle \mathrm{ABC}) & =\mathrm{DE}^{2} / \mathrm{BC}^{2} \\
\operatorname{Ar}(\triangle \mathrm{ADE}) / \operatorname{Ar}(\triangle \mathrm{ABC}) & =3^{2} / 5^{2} \\
\operatorname{Ar}(\triangle \mathrm{ADE}) / \operatorname{Ar}(\triangle \mathrm{ABC}) & =9 / 25
\end{aligned}
$$

Assume that the area of $\triangle A D E=9 x$ sq units
And, area of $\triangle A B C=25 x$ sq units
So,
Area of trapezium BCED $=$ Area of $\triangle \mathrm{ABC}-$ Area of $\triangle \mathrm{ADE}$

$$
\begin{aligned}
& =25 x-9 x \\
& =16 x
\end{aligned}
$$

Now, $\operatorname{Ar}(\triangle \mathrm{ADE}) / \operatorname{Ar}(\operatorname{trap} B C E D)=9 \mathrm{x} / 16 \mathrm{x}$
$\operatorname{Ar}(\triangle \mathrm{ADE}) / \operatorname{Ar}(\operatorname{trapBCED})=9 / 16$
9. In $\triangle A B C$, D and E are the mid- points of $A B$ and $A C$ respectively. Find the ratio of the areas $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$.

Solution:

Given:
In $\triangle \mathrm{ABC}, \mathrm{D}$ and E are the midpoints of AB and AC respectively.
Required to find: Ratio of the areas of $\triangle A D E$ and $\triangle A B C$

Since, D and E are the midpoints of AB and AC respectively.
We can say,
DE || BC
(By converse of mid-point theorem)
Also, $\mathrm{DE}=(1 / 2) \mathrm{BC}$
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$,
$\angle \mathrm{ADE}=\angle \mathrm{B}$
$\angle \mathrm{DAE}=\angle \mathrm{BAC}$
Thus, $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
(Corresponding angles)
(common)
(AA Similarity)

Now, we know that
The ratio of areas of two similar triangles is equal to the ratio of square of their corresponding sides, so

$$
\begin{aligned}
& \operatorname{Ar}(\triangle \mathrm{ADE}) / \operatorname{Ar}(\triangle \mathrm{ABC})=\mathrm{AD}^{2} / \mathrm{AB}^{2} \\
& \operatorname{Ar}(\triangle \mathrm{ADE}) / \operatorname{Ar}(\triangle \mathrm{ABC})=1^{2} / 2^{2} \\
& \operatorname{Ar}(\triangle \mathrm{ADE}) / \operatorname{Ar}(\triangle \mathrm{ABC})=1 / 4
\end{aligned}
$$

Therefore, the ratio of the areas $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$ is $1: 4$
10. The areas of two similar triangles are $100 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If the altitude of the bigger triangles is 5 cm , find the corresponding altitude of the other.

Solution:

Given: The area of the two similar triangles is $100 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$. And the altitude of the bigger triangle is 5 cm .
Required to find: The corresponding altitude of the other triangle
We know that,
The ratio of the areas of the two similar triangles is equal to the ratio of squares of their corresponding altitudes.
$\operatorname{ar}($ bigger triangle $) / \operatorname{ar}($ smaller triangle $)=$ (altitude of the bigger triangle/ altitude of the smaller triangle) ${ }^{2}$
$(100 / 49)=(5 / \text { altitude of the smaller triangle })^{2}$
Taking square root on LHS and RHS, we get
$(10 / 7)=(5 /$ altitude of the smaller triangle $)=7 / 2$
Therefore, altitude of the smaller triangle $=3.5 \mathrm{~cm}$
11. The areas of two similar triangles are $121 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively. If the median of the first triangle is $\mathbf{1 2 . 1} \mathbf{~ c m}$, find the corresponding median of the other.
Solution:
Given: the area of the two triangles is $121 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively and the median of the first triangle is 12.1 cm
Required to find: the corresponding median of the other triangle
We know that,
The ratio of the areas of the two similar triangles are equal to the ratio of the squares of their medians.
$\operatorname{ar}($ triangle 1$) / \operatorname{ar}($ triangle 2$)=(\text { median of triangle } 1 / \text { median of triangle } 2)^{2}$
$121 / 64=(12.1 / \text { median of triangle } 2)^{2}$
Taking the square roots on both LHS and RHS, we have
$11 / 8=(12.1 /$ median of triangle 2$)=(12.1 \times 8) / 11$
Therefore, Median of the other triangle $=8.8 \mathrm{~cm}$

Exercise 4.7

 right-angled triangle.

Solution:

We have,
Sides of triangle as

$$
\begin{aligned}
& \mathrm{AB}=3 \mathrm{~cm} \\
& \mathrm{BC}=4 \mathrm{~cm} \\
& \mathrm{AC}=6 \mathrm{~cm}
\end{aligned}
$$

On finding their squares, we get

$$
\begin{aligned}
& \mathrm{AB}^{2}=3^{2}=9 \\
& \mathrm{BC}^{2}=4^{2}=16 \\
& \mathrm{AC}^{2}=6^{2}=36
\end{aligned}
$$

Since, $\mathrm{AB}^{2}+\mathrm{BC}^{2} \neq \mathrm{AC}^{2}$
So, by converse of Pythagoras theorem the given sides cannot be the sides of a right triangle.
2. The sides of certain triangles are given below. Determine which of them are right triangles.
(i) $\mathrm{a}=7 \mathrm{~cm}, \mathrm{~b}=24 \mathrm{~cm}$ and $\mathrm{c}=25 \mathrm{~cm}$
(ii) $\mathrm{a}=9 \mathrm{~cm}, \mathrm{~b}=16 \mathrm{~cm}$ and $\mathrm{c}=18 \mathrm{~cm}$
(iii) $\mathrm{a}=1.6 \mathrm{~cm}, \mathrm{~b}=3.8 \mathrm{~cm}$ and $\mathrm{c}=4 \mathrm{~cm}$
(iv) $\mathrm{a}=8 \mathrm{~cm}, \mathrm{~b}=10 \mathrm{~cm}$ and $\mathrm{c}=6 \mathrm{~cm}$

Solutions:

(i) Given,
$\mathrm{a}=7 \mathrm{~cm}, \mathrm{~b}=24 \mathrm{~cm}$ and $\mathrm{c}=25 \mathrm{~cm}$
$\therefore \mathrm{a}^{2}=49, \mathrm{~b}^{2}=576$ and $\mathrm{c}^{2}=625$
Since, $a^{2}+b^{2}=49+576=625=c^{2}$
Then, by converse of Pythagoras theorem
The given sides are of a right triangle.
(ii) Given,
$\mathrm{a}=9 \mathrm{~cm}, \mathrm{~b}=16 \mathrm{~cm}$ and $\mathrm{c}=18 \mathrm{~cm}$
$\therefore \mathrm{a}^{2}=81, \mathrm{~b}^{2}=256$ and $\mathrm{c}^{2}=324$
Since, $a^{2}+b^{2}=81+256=337 \neq c^{2}$
Then, by converse of Pythagoras theorem
The given sides cannot be of a right triangle.
(iii) Given,
$\mathrm{a}=1.6 \mathrm{~cm}, \mathrm{~b}=3.8 \mathrm{~cm}$ and $\mathrm{C}=4 \mathrm{~cm}$
$\therefore \mathrm{a}^{2}=2.56, \mathrm{~b}^{2}=14.44$ and $\mathrm{c}^{2}=16$
Since, $a^{2}+b^{2}=2.56+14.44=17 \neq c^{2}$
Then, by converse of Pythagoras theorem
The given sides cannot be of a right triangle.
(iv) Given,
$\mathrm{a}=8 \mathrm{~cm}, \mathrm{~b}=10 \mathrm{~cm}$ and $\mathrm{C}=6 \mathrm{~cm}$
$\therefore \mathrm{a}^{2}=64, \mathrm{~b}^{2}=100$ and $\mathrm{c}^{2}=36$
Since, $a^{2}+c^{2}=64+36=100=b^{2}$
Then, by converse of Pythagoras theorem
The given sides are of a right triangle
3. A man goes 15 metres due west and then 8 metres due north. How far is he from the starting point?
Solution:
Let the starting point of the man be O and final point be A .

In $\triangle \mathrm{ABO}$,
by Pythagoras theorem $\mathrm{AO}^{2}=\mathrm{AB}^{2}+\mathrm{BO}^{2}$
$\Rightarrow \quad \mathrm{AO}^{2}=8^{2}+15^{2}$
$\Rightarrow \quad \mathrm{AO}^{2}=64+225=289$
$\Rightarrow \quad \mathrm{AO}=\sqrt{ } 289=17 \mathrm{~m}$
\therefore the man is 17 m far from the starting point.
4. A ladder 17 m long reaches a window of a building 15 m above the ground. Find the distance of the foot of the ladder from the building.

Solution:

In $\triangle \mathrm{ABC}$, by Pythagoras theorem

$$
\begin{aligned}
& \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2} \\
& \Rightarrow \quad 15^{2}+\mathrm{BC}^{2}=17^{2} \\
& 225+\mathrm{BC}^{2}=17^{2} \\
& \mathrm{BC}^{2}=289-225 \\
& \mathrm{BC}^{2}=64 \\
& \\
& \therefore \mathrm{BC}=8 \mathrm{~m}
\end{aligned}
$$

Therefore, the distance of the foot of the ladder from building $=8 \mathrm{~m}$
5. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between their feet is 12 m , find the distance between their tops.
Solution:
Let $C D$ and $A B$ be the poles of height 11 m and 6 m .
Then, its seen that $C P=11-6=5 \mathrm{~m}$.
From the figure, AP should be 12 m (given)

In triangle APC, by applying Pythagoras theorem, we have

$$
\begin{aligned}
& \mathrm{AP}^{2}+\mathrm{PC}^{2}=\mathrm{AC}^{2} \\
& 12^{2}+5^{2}=A C^{2} \\
& A C^{2}=144+25=169 \\
& \therefore \mathrm{AC}=13 \text { (by taking sq. root on both sides) }
\end{aligned}
$$

Thus, the distance between their tops $=13 \mathrm{~m}$.
6. In an isosceles triangle $\mathrm{ABC}, \mathrm{AB}=\mathrm{AC}=25 \mathrm{~cm}, \mathrm{BC}=14 \mathrm{~cm}$. Calculate the altitude from A on BC.
Solution:
Given,
$\Delta \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}=25 \mathrm{~cm}$ and $\mathrm{BC}=14$.

R D Sharma Solutions For Class 10 Maths Chapter 4 -

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$, we see that

$$
\begin{aligned}
& \angle \mathrm{ADB}=\angle \mathrm{ADC} \\
& \mathrm{AB}=\mathrm{AC} \\
& \mathrm{AD}=\mathrm{AD}
\end{aligned}
$$

Then, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
Thus, $\mathrm{BD}=\mathrm{CD}=7 \mathrm{~cm}$
$\left[\right.$ Each $\left.=90^{\circ}\right]$
[Given]
[Common]
[By RHS condition]
[By corresponding parts of congruent triangles]

Finally,
In $\triangle \mathrm{ADB}$, by Pythagoras theorem

$$
\mathrm{AD}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2}
$$

$\Rightarrow \quad \mathrm{AD}^{2}+7^{2}=25^{2}$
$\mathrm{AD}^{2}=625-49=576$

$$
\therefore \mathrm{AD}=\sqrt{ } 576=24 \mathrm{~cm}
$$

7. The foot of a ladder is 6 m away from a wall and its top reaches a window 8 m above the ground. If the ladder is shifted in such a way that its foot is $\mathbf{8} \mathbf{~ m}$ away from the wall, to what height does its tip reach?
Solution:
Let's assume the length of ladder to be, $\mathrm{AD}=\mathrm{BE}=\mathrm{x} m$

So, in $\triangle \mathrm{ACD}$, by Pythagoras theorem
We have,

$$
\begin{aligned}
& \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2} \\
& \Rightarrow \mathrm{x}^{2}=8^{2}+6^{2} \ldots \text { (i) }
\end{aligned}
$$

Also, in $\triangle \mathrm{BCE}$, by Pythagoras theorem

$$
\begin{align*}
& \mathrm{BE}^{2}=\mathrm{BC}^{2}+\mathrm{CE}^{2} \\
& \Rightarrow \mathrm{x}^{2}=\mathrm{BC}^{2}+8^{2} \tag{ii}
\end{align*}
$$

Compare (i) and (ii)
$\mathrm{BC}^{2}+8^{2}=8^{2}+6^{2}$
$\Rightarrow \quad \mathrm{BC}^{2}+6^{2}$
$\Rightarrow \quad \mathrm{BC}=6 \mathrm{~m}$
Therefore, the tip of the ladder reaches to a height od 6 m .
8. Two poles of height 9 in and 14 m stand on a plane ground. If the distance between their feet is 12 m , find the distance between their tops.

Solution:

Comparing with the figure, it's given that
$\mathrm{AC}=14 \mathrm{~m}, \mathrm{DC}=12 \mathrm{~m}$ and $\mathrm{ED}=\mathrm{BC}=9 \mathrm{~m}$
Construction: Draw EB $\perp \mathrm{AC}$
Now,
It's seen that $\mathrm{AB}=\mathrm{AC}-\mathrm{BC}=(14-9)=5 \mathrm{~m}$
And, $\mathrm{EB}=\mathrm{DC}=12 \mathrm{~m}$
[distance between their feet]
Thus,
In $\triangle \mathrm{ABE}$, by Pythagoras theorem, we have

$$
\begin{aligned}
& \mathrm{AE}^{2}=\mathrm{AB}^{2}+\mathrm{BE}^{2} \\
& \mathrm{AE}^{2}=5^{2}+12^{2} \\
& \mathrm{AE}^{2}=25+144=169
\end{aligned}
$$

R D Sharma Solutions For Class 10 Maths Chapter 4 -

$\Rightarrow \quad \mathrm{AE}=\sqrt{ } 169=13 \mathrm{~m}$
Therefore, the distance between their tops $=13 \mathrm{~m}$
9. Using Pythagoras theorem determine the length of $A D$ in terms of b and c shown in Fig. 4.219

Solution:

We have,
In $\triangle \mathrm{BAC}$, by Pythagoras theorem, we have

$$
\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}
$$

$\Rightarrow \quad \mathrm{BC}^{2}=\mathrm{c}^{2}+\mathrm{b}^{2}$
$\Rightarrow \quad B C=\sqrt{ }\left(c^{2}+b^{2}\right)$
In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CBA}$

$$
\begin{array}{ll}
\angle \mathrm{B}=\angle \mathrm{B} & {[\text { Common }]} \\
\angle \mathrm{ADB}=\angle \mathrm{BAC} & {\left[\text { Each } 90^{\circ}\right]}
\end{array}
$$

Then, $\Delta \mathrm{ABD} \sim \Delta \mathrm{CBA}$
[By AA similarity]
Thus,
$\mathrm{AB} / \mathrm{CB}=\mathrm{AD} / \mathrm{CA}$
[Corresponding parts of similar triangles are proportional]
c/ $\sqrt{ }\left(\mathrm{c}^{2}+\mathrm{b}^{2}\right)=\mathrm{AD} / \mathrm{b}$
$\therefore \mathrm{AD}=\mathrm{bc} / \sqrt{ }\left(\mathrm{c}^{2}+\mathrm{b}^{2}\right)$
10. A triangle has sides $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm . Find the length to one decimal place, of the perpendicular from the opposite vertex to the side whose length is 13 cm .
Solution:
From the fig. $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}$ and $\mathrm{AC}=13 \mathrm{~cm}$.
Then, $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$.
$\Rightarrow \quad(13)^{2}=(5)^{2}+(12)^{2}=25+144=169=13^{2}$
This proves that $\triangle \mathrm{ABC}$ is a right triangle, right angled at B .
Let BD be the length of perpendicular from B on AC .

So, area of $\Delta \mathrm{ABC}=(\mathrm{BC} \times \mathrm{BA}) / 2$

$$
\begin{aligned}
& =(12 \times 5) / 2 \\
& =30 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Also, area of } \Delta \mathrm{ABC}=(\mathrm{AC} \times \mathrm{BD}) / 2 \\
& =(13 \times \text { BD }) / 2 \\
& \Rightarrow \quad(13 \times \mathrm{BD}) / 2=30 \\
& \mathrm{BD}=60 / 13=4.6 \text { (to one decimal place) }
\end{aligned}
$$

11. $A B C D$ is a square. F is the mid-point of $A B$. $B E$ is one third of $B C$. If the area of $\triangle F B E=$ $108 \mathrm{~cm}^{2}$, find the length of $A C$.

Solution:

Given,
$A B C D$ is a square. And, F is the mid-point of $A B$.
BE is one third of BC .
Area of $\triangle \mathrm{FBE}=108 \mathrm{~cm}^{2}$
Required to find: length of AC

Let's assume the sides of the square to be x .
$\Rightarrow \quad \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=\mathrm{x} \mathrm{cm}$
And, $\quad \mathrm{AF}=\mathrm{FB}=\mathrm{x} / 2 \mathrm{~cm}$
So, $\quad B E=x / 3 \mathrm{~cm}$
Now, the area of $\Delta \mathrm{FBE}=1 / 2 \times \mathrm{BE} \times \mathrm{FB}$

$$
\begin{array}{ll}
\Rightarrow & 108=(1 / 2) \times(\mathrm{x} / 3) \times(\mathrm{x} / 2) \\
\Rightarrow & \mathrm{x}^{2}=108 \times 2 \times 3 \times 2=1296 \\
\Rightarrow & \mathrm{x}=\sqrt{ }(1296) \\
& \therefore \mathrm{x}=36 \mathrm{~cm}
\end{array}
$$

Further in $\triangle \mathrm{ABC}$, by Pythagoras theorem, we have

$$
\begin{array}{ll}
& \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
\Rightarrow & \mathrm{AC}^{2}=\mathrm{x}^{2}+\mathrm{x}^{2}=2 \mathrm{x}^{2} \\
\Rightarrow & \mathrm{AC}^{2}=2 \times(36)^{2} \\
\Rightarrow & \mathrm{AC}=36 \sqrt{ } 2=36 \times 1.414=50.904 \mathrm{~cm}
\end{array}
$$

Therefore, the length of AC is 50.904 cm .
12. In an isosceles triangle $A B C$, if $A B=A C=13 \mathrm{~cm}$ and the altitude from A on $B C$ is 5 cm , find BC.

Solution:

Given,
An isosceles triangle $\mathrm{ABC}, \mathrm{AB}=\mathrm{AC}=13 \mathrm{~cm}, \mathrm{AD}=5 \mathrm{~cm}$
Required to find: BC

In $\triangle \mathrm{ADB}$, by using Pythagoras theorem, we have
$\mathrm{AD}^{2}+\mathrm{BD}^{2}=13^{2}$
$5^{2}+\mathrm{BD}^{2}=169$
$\mathrm{BD}^{2}=169-25=144$
$\Rightarrow \mathrm{BD}=\sqrt{ } 144=12 \mathrm{~cm}$
Similarly, applying Pythagoras theorem is $\Delta \mathrm{ADC}$ we can have,
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$
$13^{2}=5^{2}+\mathrm{DC}^{2}$
$\Rightarrow \mathrm{DC}=\sqrt{ } 144=12 \mathrm{~cm}$

Thus, $\mathrm{BC}=\mathrm{BD}+\mathrm{DC}=12+12=24 \mathrm{~cm}$
13. In a $\triangle A B C, A B=B C=C A=2 a$ and $A D \perp B C$. Prove that
(i) $\mathbf{A D}=\mathrm{a} \sqrt{ } 3$
(ii) $\operatorname{Area}(\triangle \mathrm{ABC})=\sqrt{\mathbf{3}} \mathbf{a}^{2}$

Solution:

(i) In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$, we have
$\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$

$$
\mathrm{AB}=\mathrm{AC}
$$

[Given]
$\mathrm{AD}=\mathrm{AD}$
[Common]
So, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
[By RHS condition]
Hence, $\mathrm{BD}=\mathrm{CD}=\mathrm{a}$
[By C.P.C.T]
Now, in $\triangle A B D$, by Pythagoras theorem

$$
\begin{aligned}
& \mathrm{AD}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2} \\
& \mathrm{AD}^{2}+\mathrm{a}^{2}=2 \mathrm{a}^{2} \\
& \mathrm{AD}^{2}=4 \mathrm{a}^{2}-\mathrm{a}^{2}=3 \mathrm{a}^{2} \\
& \mathrm{AD}=\mathrm{a} \sqrt{3}
\end{aligned}
$$

(ii) $\operatorname{Area}(\triangle \mathrm{ABC})=1 / 2 \times \mathrm{BC} \times \mathrm{AD}$

$$
\begin{aligned}
& =1 / 2 \times(2 a) \times(a \sqrt{ } 3) \\
& =\sqrt{ } 3 a^{2}
\end{aligned}
$$

14. The lengths of the diagonals of a rhombus is 24 cm and 10 cm . Find each side of the rhombus. Solution:

Let ABCD be a rhombus and AC and BD be the diagonals of ABCD .
So, $\mathrm{AC}=24 \mathrm{~cm}$ and $\mathrm{BD}=10 \mathrm{~cm}$

R D Sharma Solutions For Class 10 Maths Chapter 4 Triangles

We know that diagonals of a rhombus bisect each other at right angle. (Perpendicular to each other)
So,
$\mathrm{AO}=\mathrm{OC}=12 \mathrm{~cm}$ and $\mathrm{BO}=\mathrm{OD}=3 \mathrm{~cm}$
In $\triangle A O B$, by Pythagoras theorem, we have
$\begin{aligned} \mathrm{AB}^{2} & =\mathrm{AO}^{2}+\mathrm{BO}^{2} \\ & =12^{2}+5^{2} \\ & =144+25 \\ & =169 \\ \Rightarrow \mathrm{AB} & =\sqrt{ } 169=13 \mathrm{~cm}\end{aligned}$
Since, the sides of rhombus are all equal.
Therefore, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}=13 \mathrm{~cm}$.

