BYJU'S

R D Sharma Solutions For Class 10 Maths Chapter 7 -Statistics

Exercise 7.3

Page No: 7.22

1. The following table gives the distribution of total household expenditure (in rupees) of manual workers in a city.

Expenditure (in	Frequency (f _i)	Expenditure (in	Frequency (f _i)
rupees) (x)		rupees) (x _i)	
100 - 150	24	300 - 350	30
150 - 200	40	350 - 400	22
200 - 250	33	400 - 450	16
250 - 300	28	450 - 500	7

Find the average expenditure (in rupees) per household.

Solution:

Let the assumed mean (A) = 275

Class interval	Mid value (x _i)	$d_i\!=x_i-275$	$u_i = (x_i - 275)/50$	Frequency fi	$f_i u_i$
100 - 150	125	-150	-3	24	-72
150 - 200	175	-100	-2	40	-80
200 - 250	225	-50	-1	33	-33
250 - 300	275	0	0	28	0
300 - 350	325	50	1	30	30
350 - 400	375	100	2	22	44
400 - 450	425	150	3	16	48
450 - 500	475	200	4	7	28
				N = 200	$\Sigma f_i u_i = -35$

It's seen that A = 275 and h = 50 So,

 $Mean = A + h x (\Sigma f_i u_i/N)$ = 275 + 50 (-35/200)= 275 - 8.75= 266.25

2. A survey was conducted by a group of students as a part of their environmental awareness program, in which they collected the following data regarding the number of plants in 200 houses in a locality. Find the mean number of plants per house.

Number of plants:	0 - 2	2 - 4	4 - 6	6 - 8	8 - 10	10 - 12	12 - 14
Number of house:	1	2	1	5	6	2	3

Which method did you use for finding the mean, and why?

Solution:

From the given data,

To find the class interval we know that, Class marks $(x_i) = (upper class limit + lower class limit)/2$ Now, let's compute x_i and f_ix_i by the following

Number of plants	Number of house (fi)	Xi	$f_i x_i$
0 - 2	1	1	1
2 - 4	2	3	6
4-6	1	5	5
6 - 8	5	7	35
8-10	6	9	54
10 - 12	2	11	22
12-14	3	13	39
Total	N = 20		$\Sigma f_i u_i = 162$

Here,

 $\begin{aligned} \text{Mean} &= \Sigma \text{ fi} u_i \, / \, \text{N} \\ &= 162 / \, 20 \\ &= 8.1 \end{aligned}$

Thus, the mean number of plants in a house is 8.1

We have used the direct method as the values of class mark x_i and f_i is very small.

3. Consider the following distribution of daily wages of workers of a factory

Daily wages (in ₹)	100 - 120	120 - 140	140 - 160	160 - 180	180 - 200
Number of workers:	12	14	8	6	10

Find the mean daily wages of the workers of the factory by using an appropriate method.

Solution:

Let the assume mean (A) = 150

Class interval	Mid value x _i	$d_i = x_i - 150$	$u_i = (x_i - 150)/20$	Frequency f _i	$f_i u_i$
100 - 120	110	-40	-2	12	-24
120 - 140	130	-20	-1	14	-14
140 - 160	150	0	0	8	0
160 - 180	170	20	1	6	6
180 - 200	190	40	2	10	20
				N= 50	$\Sigma f_i u_i = -12$

It's seen that,

$$A = 150 \text{ and } h = 20$$

So,

Mean = $A + h x (\Sigma f_i u_i/N)$

https://byjus.com

= 150 + 20 x (-12/50)= 150 - 24/5 = 150 = 4.8 = 145.20

4. Thirty women were examined in a hospital by a doctor and the number of heart beats per minute recorded and summarized as follows. Find the mean heart beats per minute for these women, choosing a suitable method.

,, one of the other							
Number of heart	65 - 68	68 - 71	71 - 74	74 - 77	77 - 80	80 - 83	83 - 86
beats per minute:							
Number of	2	4	3	8	7	4	2
women:							

Solution:

Using the relation $(x_i) = (upper class limit + lower class limit)/2$

And, class size of this data = 3

Let the assumed mean (A) = 75.5

So, let's calculate di, ui, fiui as following:

Number of heart	Number of	Xi	$d_i=x_i-75.5$	$u_i = (x_i - 755)/h$	fiui
beats per minute	women (fi)				
65 - 68	2	66.5	-9	-3	-6
68 - 71	4	69.5	-6	-2	-8
71 - 74	3	72.5	-3	-1	-3
74 – 77	8	75.5	0	0	0
77 - 80	7	78.5	3	1	7
80 - 83	4	81.5	6	2	8
83 - 86	2	84.5	9	3	6
	N = 30				$\Sigma f_i u_i = 4$

From table, it's seen that N = 30 and h = 3So, the mean = A + h x ($\Sigma f_i u_i/N$) = 75.5 + 3 x (4/30 = 75.5 + 2/5 = 75.9

Therefore, the mean heart beats per minute for those women are 75.9 beats per minute.

Find the mean of each of the following frequency distributions: (5 - 14) 5.

https://byjus.com

Class interval:	0-6	6 - 12	12 - 18	18 - 24	24 - 30
Frequency:	6	8	10	9	7

Solution:

Let's consider the assumed mean (A) = 15

Class interval	Mid - value x _i	$d_i = x_i - 15$	$u_i = (x_i - 15)/6$	f_i	$f_i u_i$
0-6	3	-12	-2	6	-12
6 - 12	9	-6	-1	8	-8
12 - 18	15	0	0	10	0
18 - 24	21	6	1	9	9
24 - 30	27	12	2	7	14
				N = 40	$\Sigma f_i u_i = 3$

From the table it's seen that,

A = 15 and h = 6Mean = A + h x ($\Sigma f_i u_i/N$) = 15 + 6 x (3/40) = 15 + 0.45 = 15.45

6.

Class interval:	50-70	70 - 90	90 - 110	110 - 130	130 - 150	150 - 170
Frequency:	18	12	13	27	8	22

Solution:

Let's consider the assumed mean (A) = 100

Class interval	Mid - value x _i	$d_i = x_i - 100$	$u_i = (x_i - 100)/20$	$\mathbf{f}_{\mathbf{i}}$	$f_i u_i$
50 - 70	60	-40	-2	18	-36
70 - 90	80	-20	-1	12	-12
90 - 110	100	0	0	13	0
110 - 130	120	20	1	27	27
130 - 150	140	40	2	8	16
150 - 170	160	60	3	22	66
				N= 100	$\Sigma f_i u_i = 61$

From the table it's seen that,

 $\begin{array}{l} A = 100 \text{ and } h = 20 \\ \text{Mean} = A + h \ x \ (\Sigma f_i \ u_i / N) \\ = 100 + 20 \ x \ (61/100) \\ = 100 + 12.2 \\ = 112.2 \end{array}$

7.

Class interval:	0 - 8	8 - 16	16 - 24	24 - 32	32 - 40
Frequency:	6	7	10	8	9

Solution:

Let's consider the assumed mean (A) = 20

Class interval	Mid - value xi	$d_i = x_i - 20$	$u_i = (x_i - 20)/8$	f_i	fiui
0-8	4	-16	-2	6	-12
8-16	12	-8	-1	7	-7
16 - 24	20	0	0	10	0
24 - 32	28	8	1	8	8
32 - 40	36	16	2	9	18
				N = 40	$\Sigma f_i u_i = 7$
			30	10 P64	

A = 20 and h = 8Mean = A + h x ($\Sigma f_i u_i/N$) $= 20 + 8 \times (7/40)$ = 20 + 1.4= 21.4

8. **Class interval:** 12 - 18 0 - 66 - 12 18 - 2424 - 30 **Frequency:** 7 10 12 6 5

Solution:

Let's consider the assumed mean (A) = 15

Class interval	Mid - value x _i	$d_i\!=\!x_i\!-\!15$	$u_i = (x_i - 15)/6$	$\mathbf{f}_{\mathbf{i}}$	fiui
0-6	3	-12	-2	7	-14
6 - 12	9	-6	-1	5	-5
12 - 18	15	0	0	10	0
18 - 24	21	6	1	12	12
24 - 30	27	12	2	6	12
				N = 40	$\Sigma f_i u_i = 5$

From the table it's seen that,

A = 15 and h = 6Mean = A + h x ($\Sigma f_i u_i/N$) $= 15 + 6 \times (5/40)$

= 15 + 0.75= 15.75

9.

Class interval:	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
Frequency:	9	12	15	10	14

Solution:

Let's consider the assumed mean (A) = 25

Class interval	Mid - value x _i	$d_i\!=\!x_i\!-\!25$	$u_i = (x_i - 25)/10$	f_i	$f_i u_i$
0-10	5	-20	-2	9	-18
10 - 20	15	-10	-1	12	-12
20 - 30	25	0	0	15	0
30-40	35	10	1	10	10
40 - 50	45	20	2	14	28
				N = 60	$\Sigma f_i u_i = 8$
From the table it'	s seen that,				
A = 25 and	d h = 10				
Mean $=$ A	$h + h x (\Sigma f_i u_i/N)$				
= 23	5 + 10 x (8/60)				
= 23	5 + 4/3				
= 79	9/3 = 26.333				

10.

Class interval:	0 - 8	8 - 16	16 - 24	24 - 32	32 - 40
Frequency:	5	9	10	8	8

Solution:

Let's consider the assumed mean (A) = 20

Class interval	Mid - value x _i	$d_i\!=\!x_i\!-\!20$	$u_i = (x_i - 20)/8$	f_i	$f_i u_i$
0 - 8	4	-16	-2	5	-10
8-16	12	-4	-1	9	-9
16 - 24	20	0	0	10	0
24 - 32	28	4	1	8	8
32 - 40	36	16	2	8	16
				N = 40	$\Sigma f_i u_i = 5$

From the table it's seen that,

A = 20 and h = 8

Mean = A + h x ($\Sigma f_i u_i/N$)

 $= 20 + 8 \times (5/40)$ = 20 + 1= 21

1	1	
T	1.	

Class interval:	0 - 8	8 - 16	16 - 24	24 - 32	32 - 40
Frequency:	5	6	4	3	2

Solution:

Let's consider the assumed mean (A) = 20

Class interval	Mid - value x _i	$d_i\!=x_i\!-20$	$u_i = (x_i - 20)/8$	fi	$f_i u_i$		
0 - 8	4	-16	-2	5	-12		
8-16	12	-8	-1	6	-8		
16 - 24	20	0	0	4	0		
24 - 32	28	8	1	3	9		
32 - 40	36	16	2	2	14		
				N = 20	$\Sigma f_i u_i = -9$		
From the table it' A = 20 and Mean = A							
	0 + 6 x (-9/20)						
= 20 - 72/20							
= 2	0-3.6						
= 1	6.4						

12.

Class interval:	10 - 30	30 - 50	50 - 70	70 – 90	90 - 110	110 - 130
Frequency:	5	8	12	20	3	2

Solution:

Let's consider the assumed mean (A) = 60

Class interval	Mid - value xi	$d_i = x_i - 60$	$u_i = (x_i - 60)/20$	\mathbf{f}_{i}	$f_i u_i$
10 - 30	20	-40	-2	5	-10
30 - 50	40	-20	-1	8	-8
50 - 70	60	0	0	12	0
70 - 90	80	20	1	20	20
90-110	100	40	2	3	6
110 - 130	120	60	3	2	6
				N = 50	$\Sigma f_i u_i = 14$

From the table it's seen that,

A = 60 and h = 20Mean = A + h x (Σ fi ui/N) = 60 + 20 x (14/50) = 60 + 28/5 = 60 + 5.6 = 65.6

<u>13.</u>

Class interval:	25 - 35	35 - 45	45 - 55	55 - 65	65 – 75
Frequency:	6	10	8	12	4

Solution:

Let's consider the assumed mean (A) = 50

Class interval	Mid - value xi	$d_i\!=\!x_i\!-\!50$	$u_i = (x_i - 50)/10$	$\mathbf{f}_{\mathbf{i}}$	fiui
25 - 35	30	-20	-2	6	-12
35 - 45	40	-10	-1	10	-10
45 - 55	50	0	0	8	0
55 - 65	60	10	1	12	12
65 - 75	70	20	2	4	8
				N = 40	$\Sigma f_i u_i = -2$

From the table it's seen that,

A = 50 and h = 10Mean = A + h x ($\Sigma f_i u_i/N$) = 50 + 10 x (-2/40) = 50 - 0.5 = 49.5

14.

Class interval:	25 – 29	30 - 34	35 - 39	40 – 44	45 – 49	50 - 54	55 - 59
Frequency:	14	22	16	6	5	3	4

Solution:

Let's consider the assumed mean (A) = 42

Class interval	Mid - value xi	$d_i\!=\!x_i\!-\!42$	$u_i = (x_i - 42)/5$	$\mathbf{f}_{\mathbf{i}}$	$f_i u_i$
25 - 29	27	-15	-3	14	-42
30-34	32	-10	-2	22	-44

35 - 39	37	-5	-1	16	-16
40 - 44	42	0	0	6	0
45 - 49	47	5	1	5	5
50 - 54	52	10	2	3	6
55 - 59	57	15	3	4	12
				N = 70	$\Sigma f_i u_i = -79$

From the table it's seen that,

 $\begin{array}{l} A = 42 \ and \ h = 5 \\ Mean = A + h \ x \ (\Sigma f_i \ u_i / N) \\ = 42 + 5 \ x \ (-79/70) \\ = 42 - 79/14 \\ = 42 - 5.643 \\ = 36.357 \end{array}$

https://byjus.com