Exercise 7.I

1. Calculate the mean for the following distribution:

$\mathbf{x :}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{f :}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 1}$	$\mathbf{3}$

Solution:

x	f	fx
5	4	20
6	8	48
7	14	98
8	11	88
9	3	27
	$\mathrm{~N}=40$	$\boldsymbol{\Sigma} \mathrm{fx}=281$

Mean $=\boldsymbol{\Sigma} \mathrm{fx} / \mathrm{N}=281 / 40$
\therefore Mean $=7.025$
2. Find the mean of the following data:

$\mathrm{x}:$	19	21	23	25	27	29	31
$\mathrm{f:}$	13	15	16	18	16	15	13

Solution:

x	f	fx
19	13	247
21	15	315
23	16	368
25	18	450
27	16	432
29	15	435
31	13	403
	$\mathrm{~N}=106$	$\Sigma \mathrm{fx}=2620$

Mean $=\boldsymbol{\Sigma} \mathrm{fx} / \mathrm{N}=2620 / 106$
\therefore Mean $=25$
3. If the mean of the following data is 20.6. Find the value of p.

x:	10	15	\mathbf{p}	25	35
$\mathbf{f :}$	$\mathbf{3}$	10	25	7	5

Solution:

x	f	fx

10	3	30
15	10	150
p	25	25 p
25	7	175
35	5	175
	$\mathrm{~N}=50$	$\Sigma \mathrm{fx}=530+25 \mathrm{p}$

We know that,

$$
\text { Mean }=\Sigma \mathrm{fx} / \mathrm{N}=(2620+25 \mathrm{p}) / 50
$$

Given,

$$
\text { Mean }=20.6
$$

$\Rightarrow \quad 20.6=(530+25 \mathrm{p}) / 50$
$(20.6 \times 50)-530=25 \mathrm{p}$
$\mathrm{p}=500 / 25$
$\therefore \mathrm{p}=20$
4. If the mean of the following data is 15 , find p.

$\mathrm{x}:$	5	10	15	20	25
$\mathrm{f}:$	6	p	6	10	5

Solution:

x	f	fx
5	6	30
10	p	10 p
15	6	90
20	10	200
25	5	125
	$\mathrm{~N}=\mathrm{p}+27$	$\Sigma \mathrm{fx}=445+10 \mathrm{p}$

We know that,

$$
\text { Mean }=\Sigma \mathrm{fx} / \mathrm{N}=(445+10 \mathrm{p}) /(\mathrm{p}+27)
$$

Given,

$$
\begin{aligned}
& \text { Mean }=15 \\
& \Rightarrow \quad 15=(445+10 \mathrm{p}) /(\mathrm{p}+27) \\
& 15 \mathrm{p}+405=445+10 \mathrm{p} \\
& 5 \mathrm{p}=40 \\
& \therefore \mathrm{p}=8
\end{aligned}
$$

5. Find the value of \mathbf{p} for the following distribution whose mean is $\mathbf{1 6 . 6}$

$\mathbf{x :}$	$\mathbf{8}$	12	15	\mathbf{p}	20	25	30
$\mathrm{f}:$	$\mathbf{1 2}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{1 6}$	$\mathbf{8}$	$\mathbf{4}$

Solution:

x	f	fx
8	12	96
12	16	192
15	20	300
P	24	24 p
20	16	320
25	8	200
30	4	120
	$\mathrm{~N}=100$	$\Sigma \mathrm{fx}=1228+24 \mathrm{p}$

We know that,

$$
\text { Mean }=\Sigma \mathrm{fx} / \mathrm{N}=(1228+24 \mathrm{p}) / 100
$$

Given,

$$
\text { Mean }=16.6
$$

$\Rightarrow \quad 16.6=(1228+24 \mathrm{p}) / 100$
$1660=1228+24 \mathrm{p}$
$24 \mathrm{p}=432$
$\therefore \mathrm{p}=18$
6. Find the missing value of p for the following distribution whose mean is 12.58

$\mathrm{x}:$	5	$\mathbf{8}$	$\mathbf{1 0}$	12	\mathbf{p}	20	25
$\mathrm{f:}$	$\mathbf{2}$	5	$\mathbf{8}$	22	7	$\mathbf{4}$	$\mathbf{2}$

Solution:

x	f	fx
5	2	10
8	5	40
10	8	80
12	22	264
P	7	7 p
20	4	80
25	2	50
	$\mathrm{~N}=50$	$\Sigma \mathrm{fx}=524+7 \mathrm{p}$

We know that,

$$
\text { Mean }=\Sigma \mathrm{fx} / \mathrm{N}=(524+7 \mathrm{p}) / 50
$$

Given,
Mean $=12.58$
$\Rightarrow \quad 12.58=(524+7 \mathrm{p}) / 50$
$629=524+7 \mathrm{p}$
$7 \mathrm{p}=629-524=105$
$\therefore \mathrm{p}=15$
7. Find the missing frequency (p) for the following distribution whose mean is 7.68

$\mathrm{x}:$	$\mathbf{3}$	5	7	9	11	13
$\mathrm{f}:$	6	8	15	\mathbf{p}	8	4

Solution:

x	f	fx
3	6	18
5	8	40
7	15	105
9	p	9 p
11	8	88
13	4	52
	$\mathrm{~N}=41+\mathrm{p}$	$\Sigma \mathrm{fx}=303+9 \mathrm{p}$

We know that,

$$
\text { Mean }=\Sigma \mathrm{fx} / \mathrm{N}=(303+9 \mathrm{p}) /(41+\mathrm{p})
$$

Given,
Mean $=7.68$
$\Rightarrow \quad 7.68=(303+9 p) /(41+p)$
$7.68(41+p)=303+9 p$
$7.68 p+314.88=303+9 p$
$1.32 p=11.88$
$\therefore \mathrm{p}=11.88 / 1.32=9$

Exercise 7.2

1. The number of telephone calls received at an exchange per interval for 250 successive oneminute intervals are given in the following frequency table:

No. of calls (x):	0	1	2	3	4	5	6
No. of intervals (f):	15	24	29	46	54	43	39

Compute the mean number of calls per interval.

Solution:

Let the assumed mean $(\mathrm{A})=3$

No. of calls x_{i}	No. of intervals f_{i}	$\mathrm{u}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{A}=\mathrm{x}_{\mathrm{i}}-3$	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
0	15	-3	-45
1	24	-2	-48
2	29	-1	-29
3	46	0	0
4	54	1	54
5	43	2	86
6	39	3	117
	$\mathrm{~N}=250$		$\Sigma \mathrm{fix}_{\mathrm{i}}=135$

Mean number of calls $=A+\sum f_{i} X_{i} / N$

$$
\begin{aligned}
& =3+135 / 250 \\
& =(750+135) / 250=885 / 250 \\
& =3.54
\end{aligned}
$$

2. Five coins were simultaneously tossed 1000 times, and at each toss the number of heads was observed. The number of tosses during which $0,1,2,3,4$ and 5 heads were obtained are shown in the table below. Find the mean number of heads per toss.

No. of heads per toss (x):	0	1	2	3	4	5
No. of tosses (f):	38	144	342	287	164	25

Solution:
Let the assumed mean $(\mathrm{A})=2$

No. of heads per toss x_{i}	No of intervals f_{i}	$\mathrm{u}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{A}=\mathrm{x}_{\mathrm{i}}-2$	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
0	38	-2	-76
1	144	-1	-144

2	342	0	0
3	287	1	287
4	164	2	328
5	25	3	75
	$\mathrm{~N}=1000$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=470$

Mean number of heads per toss $=A+\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} / \mathrm{N}$

$$
\begin{aligned}
& =2+470 / 1000 \\
& =2+0.470 \\
& =2.470
\end{aligned}
$$

3. The following table gives the number of branches and number of plants in the garden of a school.

No of branches (x):	2	3	4	5	6
No of plants $(f):$	49	43	57	38	13

Calculate the average number of branches per plant.

Solution:

Let the assumed mean $(\mathrm{A})=4$

No of branches xi	No of plants f_{i}	$\mathrm{u}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{A}=\mathrm{x}_{\mathrm{i}}-4$	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
2	49	-2	-98
3	43	-1	-43
4	57	0	0
5	38	1	38
6	13	2	26
	$\mathrm{~N}=200$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=-77$

Average number of branches per plant $=\mathrm{A}+\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} / \mathrm{N}=4+(-77 / 200)$

$$
\begin{aligned}
& =4-77 / 200 \\
& =(800-77) / 200 \\
& =3.615
\end{aligned}
$$

4. The following table gives the number of children of 150 families in a village

No of children (x):	0	1	2	3	4	5
No of families (f):	10	21	55	42	15	7

Find the average number of children per family.

Solution:

Let the assumed mean $(\mathrm{A})=2$

No of children x_{i}	No of families f_{i}	$\mathrm{u}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{A}=\mathrm{x}_{\mathrm{i}}-2$	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
0	10	-2	-20
1	21	-1	-21
2	55	0	0
3	42	1	42
4	15	2	30
5	7	3	21
	$\mathrm{~N}=150$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=52$

Average number of children for family $=A+\Sigma \mathrm{fixi}_{\mathrm{i}} / \mathrm{N}=2+52 / 150$

$$
\begin{aligned}
& =(300+52) / 150 \\
& =352 / 150 \\
& =2.35(\text { corrected to neat decimal })
\end{aligned}
$$

Exercise 7.3

1. The following table gives the distribution of total household expenditure (in rupees) of manual workers in a city.

Expenditure (in rupees) (x)	Frequency ($\left.\mathbf{f}_{\mathbf{i}}\right)$	Expenditure (in rupees) $\left(\mathbf{x}_{\mathbf{i}}\right)$	Frequency ($\left.\mathbf{f}_{\mathbf{i}}\right)$
$\mathbf{1 0 0}-\mathbf{1 5 0}$	$\mathbf{2 4}$	$\mathbf{3 0 0}-\mathbf{3 5 0}$	$\mathbf{3 0}$
$\mathbf{1 5 0}-\mathbf{2 0 0}$	$\mathbf{4 0}$	$\mathbf{3 5 0}-\mathbf{4 0 0}$	$\mathbf{2 2}$
$200-\mathbf{2 5 0}$	$\mathbf{3 3}$	$\mathbf{4 0 0}-\mathbf{4 5 0}$	$\mathbf{1 6}$
$250-\mathbf{3 0 0}$	$\mathbf{2 8}$	$\mathbf{4 5 0}-\mathbf{5 0 0}$	$\mathbf{7}$

Find the average expenditure (in rupees) per household.

Solution:

Let the assumed mean $(\mathrm{A})=275$

Class interval	Mid value $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-275$	$\mathrm{u}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-275\right) / 50$	Frequency f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$100-150$	125	-150	-3	24	-72
$150-200$	175	-100	-2	40	-80
$200-250$	225	-50	-1	33	-33
$250-300$	275	0	0	28	0
$300-350$	325	50	1	30	30
$350-400$	375	100	2	22	44
$400-450$	425	150	3	16	48
$450-500$	475	200	4	7	28
				$\mathrm{~N}=200$	$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-35$

It's seen that $\mathrm{A}=275$ and $\mathrm{h}=50$
So,

$$
\begin{aligned}
\text { Mean } & =\mathrm{A}+\mathrm{hx}\left(\Sigma \mathrm{f}_{\mathrm{i}} u_{i} / \mathrm{N}\right) \\
& =275+50((-35 / 200) \\
& =275-8.75 \\
& =266.25
\end{aligned}
$$

2. A survey was conducted by a group of students as a part of their environmental awareness program, in which they collected the following data regarding the number of plants in 200 houses in a locality. Find the mean number of plants per house.

Number of plants:	$0-2$	$2-4$	$4-6$	$6-8$	$8-10$	$10-12$	$12-14$
Number of house:	1	2	1	5	6	2	3

Which method did you use for finding the mean, and why?

Solution:

From the given data,

To find the class interval we know that, Class marks $\left(\mathrm{x}_{\mathrm{i}}\right)=($ upper class limit + lower class limit $) / 2$
Now, let's compute x_{i} and $\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ by the following

Number of plants	Number of house $\left(\mathrm{f}_{\mathrm{i}}\right)$	Xi_{i}	$\mathrm{f}_{\mathrm{ix}} \mathrm{i}$
$0-2$	1	1	1
$2-4$	2	3	6
$4-6$	1	5	5
$6-8$	5	7	35
$8-10$	6	9	54
$10-12$	2	11	22
$12-14$	3	13	39
Total	$\mathrm{N}=20$		$\Sigma \mathrm{f}_{\mathrm{i}} u_{\mathrm{i}}=162$

Here,

$$
\begin{aligned}
\text { Mean } & =\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / \mathrm{N} \\
& =162 / 20 \\
& =8.1
\end{aligned}
$$

Thus, the mean number of plants in a house is 8.1
We have used the direct method as the values of class mark x_{i} and f_{i} is very small.
3. Consider the following distribution of daily wages of workers of a factory

Daily wages (in ₹)	$100-120$	$120-140$	$140-160$	$160-180$	$180-200$
Number of workers:	12	14	8	6	10

Find the mean daily wages of the workers of the factory by using an appropriate method.

Solution:

Let the assume mean $(\mathrm{A})=150$

Class interval	Mid value x_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-150$	$\mathrm{u}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-150\right) / 20$	Frequency f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$100-120$	110	-40	-2	12	-24
$120-140$	130	-20	-1	14	-14
$140-160$	150	0	0	8	0
$160-180$	170	20	1	6	6
$180-200$	190	40	2	10	20
				$\mathrm{~N}=50$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-12$

It's seen that,

$$
\mathrm{A}=150 \text { and } \mathrm{h}=20
$$

So,

$$
\text { Mean }=\mathrm{A}+\mathrm{hx}\left(\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / \mathrm{N}\right)
$$

$$
\begin{aligned}
& =150+20 \times(-12 / 50) \\
& =150-24 / 5 \\
& =150=4.8 \\
& =145.20
\end{aligned}
$$

4. Thirty women were examined in a hospital by a doctor and the number of heart beats per minute recorded and summarized as follows. Find the mean heart beats per minute for these women, choosing a suitable method.

Number of heart beats per minute:	$65-68$	$68-71$	$71-74$	$74-77$	$77-80$	$80-83$	$83-86$
Number of women:	2	4	3	8	7	4	2

Solution:

Using the relation $\left(\mathrm{xi}_{\mathrm{i}}\right)=($ upper class limit + lower class limit $) / 2$
And, class size of this data $=3$
Let the assumed mean $(A)=75.5$
So, let's calculate $\mathrm{d}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}, \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$ as following:

Number of heart beats per minute	Number of women (f_{i}	x_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-75.5$	$\mathrm{u}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-755\right) / \mathrm{h}$	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$65-68$	2	66.5	-9	-3	-6
$68-71$	4	69.5	-6	-2	-8
$71-74$	3	72.5	-3	-1	-3
$74-77$	8	75.5	0	0	0
$77-80$	7	78.5	3	1	7
$80-83$	4	81.5	6	2	8
$83-86$	2	84.5	9	3	6
	$\mathrm{~N}=30$				$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=4$

From table, it's seen that

$$
\mathrm{N}=30 \text { and } \mathrm{h}=3
$$

So, the mean $=A+h x\left(\Sigma f_{i} u_{i} / N\right)$

$$
\begin{aligned}
& =75.5+3 \times(4 / 30 \\
& =75.5+2 / 5 \\
& =75.9
\end{aligned}
$$

Therefore, the mean heart beats per minute for those women are 75.9 beats per minute.

Find the mean of each of the following frequency distributions: (5-14) 5.

R D Sharma Solutions For Class 10 Maths Chapter 7 Statistics

Class interval:	$\mathbf{0 - 6}$	$\mathbf{6 - 1 2}$	$\mathbf{1 2 - 1 8}$	$\mathbf{1 8}-\mathbf{2 4}$	$24-30$
Frequency:	6	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{7}$

Solution:

Let's consider the assumed mean $(\mathrm{A})=15$

Class interval	Mid - value x_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-15$	$\mathrm{u}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-15\right) / 6$	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$0-6$	3	-12	-2	6	-12
$6-12$	9	-6	-1	8	-8
$12-18$	15	0	0	10	0
$18-24$	21	6	1	9	9
$24-30$	27	12	2	7	14
				$\mathrm{~N}=40$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=3$

From the table it's seen that,

$$
\begin{aligned}
& \mathrm{A}=15 \text { and } \mathrm{h}=6 \\
& \begin{aligned}
\text { Mean } & =\mathrm{A}+\mathrm{h} \times\left(\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / \mathrm{N}\right) \\
& =15+6 \times(30) \\
& =15+0.45 \\
& =15.45
\end{aligned}
\end{aligned}
$$

6.

Class interval:	$\mathbf{5 0}-\mathbf{7 0}$	$\mathbf{7 0}-\mathbf{9 0}$	$\mathbf{9 0}-\mathbf{1 1 0}$	$\mathbf{1 1 0}-\mathbf{1 3 0}$	$\mathbf{1 3 0}-\mathbf{1 5 0}$	$\mathbf{1 5 0}-170$
Frequency:	$\mathbf{1 8}$	$\mathbf{1 2}$	$\mathbf{1 3}$	27	$\mathbf{8}$	$\mathbf{2 2}$

Solution:

Let's consider the assumed mean $(A)=100$

Class interval	Mid - value xi_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-100$	$\mathrm{u}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-100\right) / 20$	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$50-70$	60	-40	-2	18	-36
$70-90$	80	-20	-1	12	-12
$90-110$	100	0	0	13	0
$110-130$	120	20	1	27	27
$130-150$	140	40	2	8	16
$150-170$	160	60	3	22	66
				$\mathrm{~N}=100$	$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=61$

From the table it's seen that,

$$
\begin{aligned}
& \mathrm{A}=100 \text { and } \mathrm{h}=20 \\
& \begin{aligned}
\text { Mean } & =\mathrm{A}+\mathrm{hx}\left(\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u} / \mathrm{N}\right) \\
& =100+20 \mathrm{x}(61 / 100) \\
& =100+12.2 \\
& =112.2
\end{aligned}
\end{aligned}
$$

7.

Class interval:	$\mathbf{0 - 8}$	$\mathbf{8 - 1 6}$	$\mathbf{1 6 - 2 4}$	$24-32$	$32-40$
Frequency:	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{9}$

Solution:

Let's consider the assumed mean $(A)=20$

Class interval	Mid - value x_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-20$	$\mathrm{u}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-20\right) / 8$	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$0-8$	4	-16	-2	6	-12
$8-16$	12	-8	-1	7	-7
$16-24$	20	0	0	10	0
$24-32$	28	8	1	8	8
$32-40$	36	16	2	9	18
				$\mathrm{~N}=40$	$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=7$

From the table it's seen that,

$$
\begin{aligned}
& \mathrm{A}=20 \text { and } \mathrm{h}=8 \\
& \begin{aligned}
\text { Mean } & =\mathrm{A}+\mathrm{hx}\left(\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{i} / \mathrm{N}\right) \\
& =20+8 \times(7 / 40) \\
& =20+1.4 \\
& =21.4
\end{aligned}
\end{aligned}
$$

8.

Class interval:	$\mathbf{0 - 6}$	$\mathbf{6 - 1 2}$	$\mathbf{1 2 - 1 8}$	$\mathbf{1 8}-24$	$24-30$
Frequency:	7	5	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{6}$

Solution:

Let's consider the assumed mean $(A)=15$

Class interval	Mid - value x_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-15$	$\mathrm{u}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-15\right) / 6$	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$0-6$	3	-12	-2	7	-14
$6-12$	9	-6	-1	5	-5
$12-18$	15	0	0	10	0
$18-24$	21	6	1	12	12
$24-30$	27	12	2	6	12
				$\mathrm{~N}=40$	$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=5$

From the table it's seen that,

$$
\begin{aligned}
& \mathrm{A}=15 \text { and } \mathrm{h}=6 \\
& \text { Mean }=\mathrm{A}+\mathrm{h} \times\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / \mathrm{N}\right) \\
& \\
& =15+6 \times(5 / 40)
\end{aligned}
$$

$$
\begin{aligned}
& =15+0.75 \\
& =15.75
\end{aligned}
$$

9.

Class interval:	$\mathbf{0 - 1 0}$	$\mathbf{1 0 - 2 0}$	$\mathbf{2 0}-\mathbf{3 0}$	$\mathbf{3 0}-\mathbf{4 0}$	$\mathbf{4 0}-\mathbf{5 0}$
Frequency:	$\mathbf{9}$	$\mathbf{1 2}$	$\mathbf{1 5}$	$\mathbf{1 0}$	$\mathbf{1 4}$

Solution:

Let's consider the assumed mean $(\mathrm{A})=25$

Class interval	Mid - value x_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-25$	$\mathrm{u}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-25\right) / 10$	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$0-10$	5	-20	-2	9	-18
$10-20$	15	-10	-1	12	-12
$20-30$	25	0	0	15	0
$30-40$	35	10	1	10	10
$40-50$	45	20	2	14	28
				$\mathrm{~N}=60$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=8$

From the table it's seen that,

$$
\begin{aligned}
& \mathrm{A}=25 \text { and } \mathrm{h}=10 \\
& \begin{aligned}
\text { Mean } & =\mathrm{A}+\mathrm{h} \times\left(\Sigma \mathrm{f}_{\mathrm{i}} u_{i} / \mathrm{N}\right) \\
& =25+10 \times(8 / 60) \\
& =25+4 / 3 \\
& =79 / 3=26.333
\end{aligned}
\end{aligned}
$$

10.

Class interval:	$\mathbf{0 - 8}$	$\mathbf{8 - 1 6}$	$16-24$	$24-32$	$32-40$
Frequency:	5	9	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{8}$

Solution:

Let's consider the assumed mean $(A)=20$

Class interval	Mid - value x_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-20$	$\mathrm{u}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-20\right) / 8$	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$0-8$	4	-16	-2	5	-10
$8-16$	12	-4	-1	9	-9
$16-24$	20	0	0	10	0
$24-32$	28	4	1	8	8
$32-40$	36	16	2	8	16
				$\mathrm{~N}=40$	$\Sigma \mathrm{f}_{\mathrm{i}} u_{i}=5$

From the table it's seen that,

$$
\mathrm{A}=20 \text { and } \mathrm{h}=8
$$

Mean $=\mathrm{A}+\mathrm{hx}\left(\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / \mathrm{N}\right)$

$$
\begin{aligned}
& =20+8 \times(5 / 40) \\
& =20+1 \\
& =21
\end{aligned}
$$

11.

Class interval:	$\mathbf{0 - 8}$	$\mathbf{8 - 1 6}$	$\mathbf{1 6 - 2 4}$	$\mathbf{2 4 - 3 2}$	$\mathbf{3 2 - 4 0}$
Frequency:	5	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$

Solution:

Let's consider the assumed mean $(\mathrm{A})=20$

Class interval	Mid - value x_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-20$	$\mathrm{u}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-20\right) / 8$	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$0-8$	4	-16	-2	5	-12
$8-16$	12	-8	-1	6	-8
$16-24$	20	0	0	4	0
$24-32$	28	8	1	3	9
$32-40$	36	16	2	2	14
				$\mathrm{~N}=20$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-9$

From the table it's seen that,

$$
\begin{aligned}
& \mathrm{A}=20 \text { and } \mathrm{h}=8 \\
& \text { Mean }=\mathrm{A}+\mathrm{h} \times\left(\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / \mathrm{N}\right) \\
&=20+6 \times(-9 / 20) \\
&=20-72 / 20 \\
&=20-3.6 \\
&=16.4
\end{aligned}
$$

12.

Class interval:	$\mathbf{1 0 - 3 0}$	$\mathbf{3 0 - 5 0}$	$50-70$	$70-90$	$90-110$	$110-130$
Frequency:	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{2 0}$	$\mathbf{3}$	2

Solution:

Let's consider the assumed mean $(A)=60$

Class interval	Mid - value x_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-60$	$\mathrm{u}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-60\right) / 20$	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$10-30$	20	-40	-2	5	-10
$30-50$	40	-20	-1	8	-8
$50-70$	60	0	0	12	0
$70-90$	80	20	1	20	20
$90-110$	100	40	2	3	6
$110-130$	120	60	3	2	6
				$\mathrm{~N}=50$	$\Sigma \mathrm{fi}_{\mathrm{i}}=14$

From the table it's seen that,

$$
\begin{aligned}
& \mathrm{A}=60 \text { and } \mathrm{h}=20 \\
& \begin{aligned}
\text { Mean } & =\mathrm{A}+\mathrm{hx}\left(\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{i} / \mathrm{N}\right) \\
& =60+20 \times(14 / 50) \\
& =60+28 / 5 \\
& =60+5.6 \\
& =65.6
\end{aligned}
\end{aligned}
$$

13.

Class interval:	$25-35$	$\mathbf{3 5 - 4 5}$	$45-55$	$55-65$	$65-75$
Frequency:	6	10	8	12	4

Solution:

Let's consider the assumed mean $(A)=50$

Class interval	Mid - value x_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-50$	$\mathrm{u}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-50\right) / 10$	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$25-35$	30	-20	-2	6	-12
$35-45$	40	-10	-1	10	-10
$45-55$	50	0	0	8	0
$55-65$	60	10	1	12	12
$65-75$	70	20	2	4	8
			$\mathrm{~N}=40$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-2$	

From the table it's seen that,

$$
\begin{aligned}
& \mathrm{A}=50 \text { and } \mathrm{h}=10 \\
& \text { Mean }=\mathrm{A}+\mathrm{h} \times\left(\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / \mathrm{N}\right) \\
&=50+10 \times(-2 / 40) \\
&=50-0.5 \\
&=49.5
\end{aligned}
$$

14.

Class interval:	$25-29$	$30-34$	$35-39$	$40-44$	$45-49$	$50-54$	$55-59$
Frequency:	14	22	16	6	5	3	4

Solution:

Let's consider the assumed mean $(\mathrm{A})=42$

Class interval	Mid - value x_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-42$	$\mathrm{u}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-42\right) / 5$	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$25-29$	27	-15	-3	14	-42
$30-34$	32	-10	-2	22	-44

$35-39$	37	-5	-1	16	-16
$40-44$	42	0	0	6	0
$45-49$	47	5	1	5	5
$50-54$	52	10	2	3	6
$55-59$	57	15	3	4	12
			$\mathrm{~N}=70$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-79$	

From the table it's seen that,

$$
\begin{aligned}
& \mathrm{A}=42 \text { and } \mathrm{h}=5 \\
& \begin{aligned}
\text { Mean } & =\mathrm{A}+\mathrm{h} \times\left(\Sigma \mathrm{f}_{\mathrm{i}} u_{\mathrm{i}} / \mathrm{N}\right) \\
& =42+5 \times(-79 / 70) \\
& =42-79 / 14 \\
& =42-5.643 \\
& =36.357
\end{aligned}
\end{aligned}
$$

Exercise 7.4

1. Following are the lives in hours of 15 pieces of the components of aircraft engine. Find the median:
715, 724, 725, 710, 729, 745, 694, 699, 696, 712, 734, 728, 716, 705, 719.

Solution:

Arranging the given data in ascending order, we have
$694,696,699,705,710,712,715,716,719,721,725,728,729,734,745$
As the number of terms is an old number i.e., $\mathrm{N}=15$
We use the following procedure to find the median.

$$
\begin{aligned}
\text { Median } & =(\mathrm{N}+1) / 2^{\text {th }} \text { term } \\
& =(15+1) / 2^{\text {th }} \text { term } \\
& =8^{\text {th }} \text { term }
\end{aligned}
$$

So, the $8^{\text {th }}$ term in the arranged order of the given data should be the median.
Therefore, 716 is the median of the data.
2. The following is the distribution of height of students of a certain class in a certain city:

Height (in cm):	$160-162$	$163-165$	$166-168$	$169-171$	$172-174$
No of students:	15	118	142	127	18

Find the median height.

Solution:

Class interval (exclusive)	Class interval (inclusive)	Class interval frequency	Cumulative frequency
$160-162$	$159.5-162.5$	15	15
$163-165$	$162.5-165.5$	118	$133(\mathrm{~F})$
$166-168$	$165.5-168.5$	$142(\mathrm{f})$	275
$169-171$	$168.5-171.5$	127	402
$172-174$	$171.5-174.5$	18	420
		$\mathrm{~N}=420$	

Here, we have $\mathrm{N}=420$,
So, $\quad \mathrm{N} / 2=420 / 2=210$
The cumulative frequency just greater than $\mathrm{N} / 2$ is 275 then $165.5-168.5$ is the median class such, that $\mathrm{L}=165.5, \mathrm{f}=142, \mathrm{~F}=133$ and $\mathrm{h}=(168.5-165.5)=3$

$$
\begin{aligned}
& \text { Medain }=\mathrm{L}+\frac{\frac{\mathrm{N}}{2}-\mathrm{F}}{\mathrm{f}} \times \mathrm{h} \\
& =165.5+\frac{210-133}{142} \times 3 \\
& =165.5+\frac{77}{142} \times 3 \\
& =165.5+\frac{231}{142} \\
& =165.5+1.63 \\
& =167.13
\end{aligned}
$$

3. Following is the distribution of I.Q of 100 students. Find the median I.Q.

I.Q:	$55-64$	$65-74$	$75-84$	$85-94$	$95-104$	$105-114$	$115-124$	$125-134$	$135-144$
No of students:	1	2	9	22	33	22	8	2	1

Solution:

Class interval (exclusive)	Class interval (inclusive)	Class interval frequency	Cumulative frequency
$55-64$	$54.5-64-5$	1	1
$65-74$	$64.5-74.5$	2	3
$75-84$	$74.5-84.5$	9	12
$85-94$	$84.5-94.5$	22	$34(\mathrm{~F})$
$95-104$	$94.5-104.5$	$33(\mathrm{f})$	67
$105-114$	$104.5-114.5$	22	89
$115-124$	$114.5-124.5$	8	97
$125-134$	$124.5-134.5$	2	98
$135-144$	$134.5-144.5$	1	100
		$\mathrm{~N}=100$	

Here, we have $\mathrm{N}=100$,
So, $\quad \mathrm{N} / 2=100 / 2=50$
The cumulative frequency just greater than $\mathrm{N} / 2$ is 67 then the median class is $(94.5-104.5)$ such that L $=94.5, \mathrm{~F}=33, \mathrm{~h}=(104.5-94.5)=10$

$$
\begin{aligned}
& \text { Median }=\mathrm{L}+\frac{\frac{\mathrm{N}}{2}-\mathrm{F}}{\mathrm{f}} \times \mathrm{h} \\
& =94.5+\frac{50-34}{33} \times 10 \\
& =94.5+4.85 \\
& =99.35
\end{aligned}
$$

4. Calculate the median from the following data:

Rent (in Rs):	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$	$65-75$	$75-85$	$85-95$
No of houses:	8	10	15	25	40	20	15	7

Solution:

Class interval	Frequency	Cumulative frequency
$15-25$	8	8
$25-35$	10	18
$35-45$	15	33
$45-55$	25	$58(\mathrm{~F})$
$55-65$	$40(\mathrm{f})$	98
$65-75$	20	118
$75-85$	15	133
$85-95$	7	140
	$\mathrm{~N}=140$	

Here, we have $\mathrm{N}=140$,
So, $\quad \mathrm{N} / 2=140 / 2=70$
The cumulative frequency just greater than $\mathrm{N} / 2$ is 98 then median class is $55-65$ such that $\mathrm{L}=55, \mathrm{f}=$ $40, \mathrm{~F}=58, \mathrm{~h}=65-55=10$

$$
\begin{aligned}
& \text { Median }=\mathrm{L}+\frac{\frac{\mathrm{N}}{2}-\mathrm{F}}{\mathrm{f}} \times \mathrm{h} \\
& =55+\frac{70-58}{40} \times 10 \\
& =55+3=58
\end{aligned}
$$

5. Calculate the median from the following data:

Marks below:	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$85-95$
No of tudents:	15	35	60	84	96	127	198	250

Solution:

Marks below	No. of students	Class interval	Frequency	Cumulative frequency
10	15	$0-10$	15	15
20	35	$10-20$	20	35
30	60	$20-30$	25	60
40	84	$30-40$	24	84
50	96	$40-50$	12	$96(\mathrm{~F})$
60	127	$50-60$	$31(\mathrm{f})$	127
70	198	$60-70$	71	198
80	250	$70-80$	52	250
			$\mathrm{~N}=250$	

Here, we have $\mathrm{N}=250$,
So, $\quad N / 2=250 / 2=125$
The cumulative frequency just greater than $\mathrm{N} / 2$ is 127 then median class is $50-60$ such that $\mathrm{L}=50, \mathrm{f}=$ $31, \mathrm{~F}=96, \mathrm{~h}=60-50=10$

$$
\begin{aligned}
& \text { Median }=\mathrm{L}+\frac{\frac{\mathrm{N}}{2}-\mathrm{F}}{\mathrm{f}} \times \mathrm{h} \\
& =50+\frac{125-96}{31} \times 10 \\
& =50+9.35 \\
& =59.35
\end{aligned}
$$

6. Calculate the missing frequency from the following distribution, it being given that the median of the distribution is 24 .

Age in years:	$\mathbf{0 - 1 0}$	$10-20$	$20-30$	$\mathbf{3 0}-40$	$40-50$
No of persons:	5	25	$?$	18	7

Solution:

Let the unknown frequency be taken as x ,

Class interval	Frequency	Cumulative frequency
$0-10$	5	5
$10-20$	25	$30(\mathrm{~F})$
$20-30$	$\mathrm{x}(\mathrm{f})$	$30+\mathrm{x}$
$30-40$	18	$48+\mathrm{x}$
$40-50$	7	$55+\mathrm{x}$
	$\mathrm{N}=170$	

It's given that
Median $=24$
Then, median class $=20-30 ; L=20, h=30-20=10, f=x, F=30$

$$
\begin{aligned}
& \text { Median }=\mathrm{L}+\frac{\frac{\mathrm{N}}{2}-\mathrm{F}}{\mathrm{f}} \times \mathrm{h} \\
& 24=20+\frac{\frac{55+\mathrm{x}}{2}-30}{\mathrm{x}} \times 10 \\
& 24-20=\frac{\frac{55+\mathrm{x}}{2}-30}{\mathrm{x}} \times 10 \\
& 4 \mathrm{x}=\left(\frac{55+\mathrm{x}}{2}-30\right) \times 10 \\
& 4 x=275+5 \mathrm{x}-300 \\
& 4 \mathrm{x}-5 \mathrm{x}=-25 \\
& -x=-25 \\
& x=25
\end{aligned}
$$

Therefore, the Missing frequency $=25$
7. The following table gives the frequency distribution of married women by age at marriage.

Age (in years)	Frequency	Age (in years)	Frequency
$\mathbf{1 5 - 1 9}$	53	$\mathbf{4 0}-\mathbf{4 4}$	$\mathbf{9}$
$20-24$	$\mathbf{1 4 0}$	$\mathbf{4 5}-\mathbf{4 9}$	$\mathbf{5}$
$\mathbf{2 5}-29$	$\mathbf{9 8}$	$\mathbf{4 5}-\mathbf{4 9}$	$\mathbf{3}$
$\mathbf{3 0}-\mathbf{3 4}$	$\mathbf{3 2}$	$\mathbf{5 5}-\mathbf{5 9}$	$\mathbf{3}$
$\mathbf{3 5 - 3 9}$	$\mathbf{1 2}$	$\mathbf{6 0}$ and above	$\mathbf{2}$

Calculate the median and interpret the results.

Solution:

Class interval (exclusive)	Class interval (inclusive)	Frequency	Cumulative frequency
$15-19$	$14.5-19.5$	53	$53(\mathrm{~F})$
$20-24$	$19.5-24.5$	$140(\mathrm{f})$	193
$25-29$	$24.5-29.5$	98	291
$30-34$	$29.5-34.5$	32	323
$35-39$	$34.5-39.5$	12	335
$40-44$	$39.5-44.5$	9	344
$45-49$	$44.5-49.5$	5	349
$50-54$	$49.5-54.5$	3	352
$55-54$	$54.5-59.5$	3	355
60 and above	59.5 and above	2	357
		$\mathrm{~N}=357$	

Here, we have $\mathrm{N}=357$,
So, $\quad \mathrm{N} / 2=357 / 2=178.5$
The cumulative frequency just greater than $\mathrm{N} / 2$ is 193 , so then the median class is $(19.5-24.5)$ such that $\mathrm{l}=19.5, \mathrm{f}=140, \mathrm{~F}=53, \mathrm{~h}=25.5-19.5=5$

$$
\begin{aligned}
& \text { Median }=1+\frac{\frac{\mathrm{N}}{2}-\mathrm{F}}{\mathrm{f}} \times \mathrm{h} \\
& \text { Median }=19.5+\frac{178.5-53}{140} \times 5 \\
& \text { Median }=23.98
\end{aligned}
$$

Which means nearly half the women were married between the ages of 15 and 25
8. The following table gives the distribution of the life time of 400 neon lamps:

Life time: (in hours)	Number of lamps
$1500-2000$	14
$2000-2500$	56
$2500-3000$	60
$3000-3500$	$\mathbf{8 6}$
$3500-4000$	$\mathbf{7 4}$
$4000-4500$	62
$4500-5000$	48

Find the median life.

Solution:

Life time	Number of lamps fi	Cumulative frequency (cf)
$1500-2000$	14	14
$2000-2500$	56	70
$2500-3000$	60	$130(\mathrm{~F})$
$3000-3500$	$86(\mathrm{f})$	216
$3500-4000$	74	290
$4000-4500$	62	352
$4500-5000$	48	400
	$\mathrm{~N}=400$	

It's seen that, the cumulative frequency just greater than $n / 2(400 / 2=200)$ is 216 and it belongs to the class interval $3000-3500$ which becomes the Median class $=3000-3500$
Lower limits (1) of median class $=3000$ and,
Frequency (f) of median class $=86$
Cumulative frequency (cf) of class preceding median class $=130$
And, the Class size $(\mathrm{h})=500$
Thus, calculating the median by the formula, we get

$$
\begin{aligned}
& \text { Median }=\mathrm{l}+\left(\frac{\frac{\mathrm{n}}{2}-\mathrm{cf}}{\mathrm{f}}\right) \times \mathrm{h} \\
& =3000+\left(\frac{200-130}{86}\right) \times 500 \\
& =3000+(35000 / 86) \\
& =3406.98
\end{aligned}
$$

Thus, the median life time of lamps is 3406.98 hours

9. The distribution below gives the weight of 30 students in a class. Find the median weight of

 students:| Weight
 (in kg): | $40-45$ | $45-50$ | $50-55$ | $55-60$ | $60-65$ | $65-70$ | $70-75$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No of
 students: | 2 | 3 | 8 | 6 | 6 | 3 | 2 |

Solution:

Weight (in kg)	Number of students fi	Cumulative frequency (cf)
$40-45$	2	2

$45-50$	3	5
$50-55$	8	13
$55-60$	6	19
$60-65$	6	25
$65-70$	3	28
$70-75$	2	30

It's seen that, the cumulative frequency just greater than $\mathrm{n} / 2$ (i.e. $30 / 2=15$) is 19 , belongs to class interval 55-60.

So, it's chosen that
Median class $=55-60$
Lower limit (1) of median class $=55$
Frequency (f) of median class $=6$
Cumulative frequency (cf) $=13$
And, Class size (h) $=5$
Thus, calculating the median by the formula, we get

$$
\begin{aligned}
& \text { Median }=1+\left(\frac{\frac{n}{2}-c f}{f}\right) \times \mathrm{h} \\
& \left.=55+\left(\frac{15-13}{6}\right) \times 5\right) \\
& =55+10 / 6=56.666
\end{aligned}
$$

So, the median weight is 56.67 kg .
10. Find the missing frequencies and the median for the following distribution if the mean is 1.46

No. of accidents:	0	1	2	3	4	5	Total
Frequencies (no. of days):	46	$?$	$?$	25	10	5	200

Solution:

No. of accidents (x)	No. of days (f)	fx
0	46	0
1	x	x
2	y	2 y
3	25	75
4	10	40
5	5	25
	$\mathrm{~N}=200$	Sum $=\mathrm{x}+2 \mathrm{y}+140$

It's given that, $\mathrm{N}=200$
$\Rightarrow \quad 46+\mathrm{x}+\mathrm{y}+25+10+5=200$
$\Rightarrow \quad x+y=200-46-25-10-5$
$\Rightarrow \quad x+y=114$---- (i)
And also given, Mean $=1.46$
$\Rightarrow \quad$ Sum $/ N=1.46$
$\Rightarrow \quad(\mathrm{x}+2 \mathrm{y}+140) / 200=1.46$
$\Rightarrow \quad x+2 y=292-140$
$\Rightarrow \quad x+2 y=152----$ (ii)
Subtract equation (i) from equation (ii), we get
$x+2 y-x-y=152-114$
$\Rightarrow \quad y=38$
Now, on putting the value of y in equation (i), we find $\mathrm{x}=114-38=76$
Thus, the table become:

No. of accidents (x)	No. of days (f)	Cumulative frequency
0	46	46
1	76	122
2	38	160
3	25	185
4	10	195
5	5	200
	$\mathrm{~N}=200$	

It's seen that,
$\mathrm{N}=200 \mathrm{~N} / 2=200 / 2=100$
So, the cumulative frequency just more than $\mathrm{N} / 2$ is 122
Therefore, the median is 1 .

Exercise 7.5

1. Find the mode of the following data:
(i) $3,5,7,4,5,3,5,6,8,9,5,3,5,3,6,9,7,4$
(ii) $3,3,7,4,5,3,5,6,8,9,5,3,5,3,6,9,7,4$
(iii) 15, 8, 26, 25, 24, 15, 18, 20, 24, 15, 19, 15

Solution:

(i)

Value (x)	3	4	5	6	7	8	9
Frequency (f)	4	2	5	2	2	1	2

Thus, the mode $=5$ since it occurs the maximum number of times.
(ii)

Value (x)	3	4	5	6	7	8	9
Frequency (f)	5	2	4	2	2	1	2

Thus, the mode $=3$ since it occurs the maximum number of times.
(iii)

Value (x)	8	15	18	19	20	24	25
Frequency (f)	1	4	1	1	1	2	1

Thus, the mode $=15$ since it occurs the maximum number of times.
2. The shirt size worn by a group of 200 persons, who bought the shirt from a store, are as follows:

Shirt size:	37	38	39	40	41	42	43	44
Number of persons:	15	25	39	41	36	17	15	12

Find the model shirt size worn by the group.

Solution:

Shirt size:	37	38	39	40	41	42	43	44
Number of persons:	15	25	39	41	36	17	15	12

From the data its observed that,

Model shirt size $=40$ since it was the size which occurred for the maximum number of times.

3. Find the mode of the following distribution.

(i)

Class interval:	$\mathbf{0 - 1 0}$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Frequency:	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{1 2}$	$\mathbf{2 8}$	$\mathbf{2 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$

Solution:

Class interval:	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Frequency:	5	8	7	12	28	20	10	10

It's seen that the maximum frequency is 28 .
So, the corresponding class i.e., $40-50$ is the modal class.
And,

$$
\mathrm{l}=40, \mathrm{~h}=5040=10, \mathrm{f}=28, \mathrm{f}_{1}=12, \mathrm{f}_{2}=20
$$

Using the formula for finding mode, we get

$$
\begin{aligned}
& \text { Mode }=\mathrm{l}+\frac{\mathrm{f}-\mathrm{f}_{1}}{2 \mathrm{f}-\mathrm{f}_{1}-\mathrm{f}_{2}} \times \mathrm{h} \\
& =40+\frac{28-12}{2 \times 28-12-20} \times 10 \\
& =40+160 / 24 \\
& =40+6.67 \\
& =46.67
\end{aligned}
$$

(ii)

Class interval	$\mathbf{1 0}-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
Frequency	$\mathbf{3 0}$	$\mathbf{4 5}$	75	$\mathbf{3 5}$	25	$\mathbf{1 5}$

Solution:

Class interval	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
Frequency	30	45	75	35	25	15

It's seen that the maximum frequency is 75 .
So, the corresponding class i.e., 20-25 is the modal class.
And,

$$
\mathrm{l}=20, \mathrm{~h}=25-20=5, \mathrm{f}=75, \mathrm{f}_{1}=45, \mathrm{f}_{2}=35
$$

Using the formula for finding mode, we get

$$
\begin{aligned}
& \text { Mode }=\mathrm{l}+\frac{\mathrm{f}-\mathrm{f}_{1}}{2 \mathrm{f}-\mathrm{f}_{1}-\mathrm{f}_{2}} \times \mathrm{h} \\
& =20+\frac{75-45}{2 \times 75-45-35} \times 5 \\
& =20+150 / 70 \\
& =20+2.14 \\
& =22.14
\end{aligned}
$$

(iii)

Class interval	$\mathbf{2 5 - 3 0}$	$\mathbf{3 0 - 3 5}$	$\mathbf{3 5 - 4 0}$	$40-45$	$45-50$	$50-55$
Frequency	$\mathbf{2 5}$	$\mathbf{3 4}$	$\mathbf{5 0}$	$\mathbf{4 2}$	$\mathbf{3 8}$	$\mathbf{1 4}$

Solution:

Class interval	$25-30$	$30-35$	$35-40$	$40-45$	$45-50$	$50-55$
Frequency	25	34	50	42	38	14

It's seen that the maximum frequency is 50 .
So, the corresponding class i.e., 35-40 is the modal class.
And,

$$
\mathrm{l}=35, \mathrm{~h}=40-35=5, \mathrm{f}=50, \mathrm{f}_{1}=34, \mathrm{f}_{2}=42
$$

Using the formula for finding mode, we get

$$
\begin{aligned}
& \text { Mode }=\mathrm{l}+\frac{\mathrm{f}-\mathrm{f}_{1}}{2 \mathrm{f}-\mathrm{f}_{1}-\mathrm{f}_{2}} \times \mathrm{h} \\
& =35+\frac{50-34}{2 \times 50-34-42} \times 5 \\
& =35+80 / 24 \\
& =35+3.33 \\
& =38.33
\end{aligned}
$$

4. Compare the modal ages of two groups of students appearing for an entrance test:

Age in years	$\mathbf{1 6 - 1 8}$	$\mathbf{1 8}-\mathbf{2 0}$	$\mathbf{2 0}-\mathbf{2 2}$	$\mathbf{2 2}-\mathbf{2 4}$	$\mathbf{2 4 - 2 6}$
Group A	$\mathbf{5 0}$	$\mathbf{7 8}$	$\mathbf{4 6}$	$\mathbf{2 8}$	$\mathbf{2 3}$
Group B	$\mathbf{5 4}$	$\mathbf{8 9}$	$\mathbf{4 0}$	$\mathbf{2 5}$	$\mathbf{1 7}$

Solution:

Age in years	$16-18$	$18-20$	$20-22$	$22-24$	$24-26$

Group A	50	78	46	28	23
Group B	54	89	40	25	17

For Group A:
It's seen that the maximum frequency is 78.
So, the corresponding class $18-20$ is the model class.
And,

$$
1=18, \mathrm{~h}=20-18=2, \mathrm{f}=78, \mathrm{f}_{1}=50, \mathrm{f}_{2}=46
$$

Using the formula for finding mode, we get

$$
\begin{aligned}
& \text { Mode }=\mathrm{l}+\frac{\mathrm{f}-\mathrm{f}_{1}}{2 \mathrm{f}-\mathrm{f}_{1}-\mathrm{f}_{2}} \times \mathrm{h} \\
& =18+\frac{78-50}{2 \times 78-50-46} \times 2 \\
& =18+56 / 60 \\
& =18+0.93 \\
& =18.93 \text { years }
\end{aligned}
$$

For group B:
It's seen that the maximum frequency is 89
So, the corresponding class $18-20$ is the modal class.
And,

$$
1=18, \mathrm{~h}=20-18=2, \mathrm{f}=89, \mathrm{f}_{1}=54, \mathrm{f}_{2}=40
$$

Using the formula for finding mode, we get

$$
\begin{aligned}
\text { Mode } & =\mathrm{l}+\frac{\mathrm{f}-\mathrm{f}_{1}}{2 \mathrm{f}-\mathrm{f}_{1}-\mathrm{f}_{2}} \times \mathrm{h} \\
& =18+\frac{89-54}{2 \times 89-54-40} \times 2 \\
& =18+70 / 84 \\
& =18+0.83 \\
& =18.83 \text { years }
\end{aligned}
$$

Therefore, the modal age of the Group A is higher than that of Group B.
5. The marks in science of 80 students of class X are given below. Find the mode of the marks obtained by the students in science.

Marks	$\mathbf{0}-\mathbf{1 0}$	$\mathbf{1 0}-\mathbf{2 0}$	$\mathbf{2 0}-\mathbf{3 0}$	$\mathbf{3 0}-\mathbf{4 0}$	$\mathbf{4 0}-\mathbf{5 0}$	$\mathbf{5 0}-\mathbf{6 0}$	$\mathbf{6 0}-\mathbf{7 0}$	$\mathbf{7 0}-\mathbf{8 0}$	$\mathbf{8 0}-\mathbf{9 0}$	$\mathbf{9 0}-\mathbf{1 0 0}$
Frequency	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{1 6}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{2 0}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{1}$

Solution:

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
Frequency	3	5	16	12	13	20	5	4	1	1

It's seen that the maximum frequency is 20.
So, the corresponding class $50-60$ is the modal class.
And,

$$
\mathrm{l}=50, \mathrm{~h}=60-50=10, \mathrm{f}=20, \mathrm{f}_{1}=13, \mathrm{f}_{2}=5
$$

Using the formula for finding mode, we get

$$
\begin{aligned}
& \text { Mode }=\mathrm{l}+\frac{\mathrm{f}-\mathrm{f}_{1}}{2 \mathrm{f}-\mathrm{f}_{1}-\mathrm{f}_{2}} \times \mathrm{h} \\
& =50+\frac{20-13}{2 \times 20-13-5} \times 10 \\
& =50+70 / 22 \\
& =50+3.18 \\
& =53.18
\end{aligned}
$$

6. The following is the distribution of height of students of a certain class in a city:

Height (in cm):	$160-162$	$163-165$	$166-168$	$169-171$	$172-174$
No of students:	15	118	142	127	18

Find the average height of maximum number of students.

Solution:

Heights(exclusive)	$160-162$	$163-165$	$166-168$	$169-171$	$172-174$
Heights (inclusive)	$159.5-162.5$	$162.5-165.5$	$165.5-168.5$	$168.5-171.5$	$171.5-174.5$
No of students	15	118	142	127	18

It's seen that the maximum frequency is 142 .
So, the corresponding class $165.5-168.5$ is the modal class.
And,

$$
\mathrm{l}=165.5, \mathrm{~h}=168.5-165.5=3, \mathrm{f}=142, \mathrm{f}_{1}=118, \mathrm{f}_{2}=127
$$

Using the formula for finding mode, we get

$$
\begin{aligned}
& \text { Mode }=\mathrm{l}+\frac{\mathrm{f}-\mathrm{f}_{1}}{2 \mathrm{f}-\mathrm{f}_{1}-\mathrm{f}_{2}} \times \mathrm{h} \\
& =165.5+\frac{142-118}{2 \times 142-118-127} \times 3 \\
& =165.5+72 / 39 \\
& =165.5+1.85 \\
& =167.35 \mathrm{~cm}
\end{aligned}
$$

7. The following table shows the ages of the patients admitted in a hospital during a year:

Ages (in years):	$5-15$	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$
No of students:	6	11	21	23	14	5

Find the mode and the mean of the data given above. Compare and interpret the two measures of central tendency.

Solution:

To find the mean:
For the given data let the assumed mean $(\mathrm{A})=30$

Age (in years)	Number of patients f_{i}	Class marks x_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-275$	fidi
$5-15$	6	10	-20	-120
$15-25$	11	20	-10	-110
$25-35$	21	30	0	0
$35-45$	23	40	10	230
$45-55$	14	50	20	280
$55-65$	5	60	30	150
	$\mathrm{~N}=80$			$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}=430$

It's observed from the table that $\Sigma \mathrm{f}_{\mathrm{i}}=\mathrm{N}=80$ and $\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}=430$.
Using the formula for mean,

$$
\begin{aligned}
\text { Mean }(\overline{\mathrm{x}}) & =\mathrm{A}+\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}} \\
& =30+430 / 80 \\
& =30+5.375 \\
& =35.375 \\
& =35.38
\end{aligned}
$$

Thus, the mean of this data is 35.38 . It can also be interpreted as that on an average the age of a patients admitted to hospital was 35.38 years.

It is also observed that maximum class frequency is 23 and it belongs to class interval $35-45$
So, modal class is $35-45$ with the Lower limit (1) of modal class $=35$
And, Frequency (f) of modal class $=23$
Class size (h) $=10$
Frequency $\left(f_{1}\right)$ of class preceding the modal class $=21$
Frequency (f_{2}) of class succeeding the modal class $=14$

$$
\begin{aligned}
\text { Mode } & =\mathrm{l}+\frac{\mathrm{f}-\mathrm{f}_{1}}{2 \mathrm{f}-\mathrm{f}_{1}-\mathrm{f}_{2}} \times \mathrm{h} \\
& =35+\frac{23-21}{2 \times 23-21-14} \times 10 \\
& =35+\frac{2}{46-35} \times 10 \\
& =35+1.81=36.8
\end{aligned}
$$

Therefore, the mode is 36.8 . This represents that maximum number of patients admitted in hospital were of 36.8 years.

Hence, it's seen that mode is greater than the mean.
8. The following data gives the information on the observed lifetimes (in hours) of $\mathbf{2 2 5}$ electrical components:

Lifetimes (in hours):	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
No. of components:	10	35	52	61	38	29

Determine the modal lifetimes of the components.

Solution:

From the data given as above its observed that maximum class frequency is 61 which belongs to class interval 60-80.
So, modal class limit (l) of modal class $=60$
Frequency (f) of modal class $=61$
Frequency $\left(f_{1}\right)$ of class preceding the modal class $=52$
Frequency $\left(\mathrm{f}_{2}\right)$ of class succeeding the modal class $=38$
Class size (h) $=20$
Using the formula for find mode, we have

$$
\begin{aligned}
\text { Mode } & =\mathrm{l}+\frac{\mathrm{f}-\mathrm{f}_{1}}{2 \mathrm{f}-\mathrm{f}_{1}-\mathrm{f}_{2}} \times \mathrm{h} \\
& =60+\frac{61-52}{2 \times 61-52-38} \times 20 \\
& =60+\frac{9}{122-90} \times 20 \\
& =60+\frac{9 \times 20}{32} \\
& =60+\frac{90}{16} \\
& =60+5.625=65.625
\end{aligned}
$$

Thus, the modal lifetime of electrical components is 65.625 hours
9. The following table gives the daily income of 50 workers of a factory:

Daily income	$100-120$	$120-140$	$140-160$	$160-180$	$180-200$
Number of workers	$\mathbf{1 2}$	14	8	6	10

Find the mean, mode and median of the above data.
Solution:

Class interval	Mid value (x)	Frequency (f)	fx	Cumulative frequency
$100-120$	110	12	1320	12
$120-140$	130	14	1820	26
$140-160$	150	8	1200	34
$160-180$	170	6	1000	40
$180-200$	190	10	1900	50
		$\mathrm{~N}=50$	$\Sigma \mathrm{fx}=7260$	

We know that,

$$
\begin{aligned}
\text { Mean } & =\Sigma \mathrm{fx} / \mathrm{N} \\
& =7260 / 50 \\
& =145.2
\end{aligned}
$$

Then,

We have, $\mathrm{N}=50$

$$
\Rightarrow \quad \mathrm{N} / 2=50 / 2=25
$$

So, the cumulative frequency just greater than N/2 is 26 , then the median class is $120-140$
Such that $\mathrm{l}=120, \mathrm{~h}=140-120=20, \mathrm{f}=14, \mathrm{~F}=12$

$$
\begin{aligned}
& \text { Median }=\mathrm{l}+\frac{\frac{\mathrm{N}}{2}-\mathrm{F}}{\mathrm{f}} \times \mathrm{h} \\
& =120+\frac{25-12}{14} \times 20 \\
& =120+260 / 14 \\
& =120+18.57 \\
& =138.57
\end{aligned}
$$

From the data, its observed that maximum frequency is 14 , so the corresponding class $120-140$ is the modal class
And,

$$
\begin{aligned}
\mathrm{l}=120, & \mathrm{~h}=140-120=20, \mathrm{f}=14, \mathrm{f}_{1}=12, \mathrm{f}_{2}=8 \\
& \text { Mode }=\mathrm{l}+\frac{\mathrm{f}-\mathrm{f}_{1}}{2 \mathrm{f}-\mathrm{f}_{1}-\mathrm{f}_{2}} \times \mathrm{h} \\
& =120+\frac{14-12}{2 \times 14-12-8 \times 20} \\
& =120+\frac{40}{8} \\
& =120+5 \\
= & 125
\end{aligned}
$$

Therefore, mean $=145.2$, median $=138.57$ and mode $=125$

Exercise 7.6

1. Draw an ogive by less than the method for the following data:

No. of rooms	1	2	3	4	5	6	7	8	9	10
No. of houses	4	9	22	28	24	12	8	6	5	2

Solution:

No. of rooms	No. of houses	Cumulative Frequency
Less than or equal to 1	4	4
Less than or equal to 2	9	13
Less than or equal to 3	22	35
Less than or equal to 4	28	63
Less than or equal to 5	24	87
Less than or equal to 6	12	99
Less than or equal to 7	8	107
Less than or equal to 8	6	113
Less than or equal to 9	5	118
Less than or equal to 10	2	120

It's required to plot the points $(1,4),(2,13),(3,35),(4,63),(5,87),(6,99),(7,107),(8,113),(9$, $118),(10,120)$, by taking upper class limit over the x-axis and cumulative frequency over the y-axis.

2. The marks scored by $\mathbf{7 5 0}$ students in an examination are given in the form of a frequency distribution table:

Marks	No. of Students
$600-640$	16

R D Sharma Solutions For Class 10 Maths Chapter 7 Statistics

$\mathbf{6 4 0}-\mathbf{6 8 0}$	$\mathbf{4 5}$
$\mathbf{6 8 0}-\mathbf{7 2 0}$	$\mathbf{1 5 6}$
$\mathbf{7 2 0}-\mathbf{7 6 0}$	$\mathbf{2 8 4}$
$\mathbf{7 6 0}-\mathbf{8 0 0}$	$\mathbf{1 7 2}$
$\mathbf{8 0 0}-\mathbf{8 4 0}$	$\mathbf{5 9}$
$\mathbf{8 4 0}-\mathbf{8 8 0}$	$\mathbf{1 8}$

Prepare a cumulative frequency distribution table by less than method and draw an ogive.

Solution:

Marks	No. of Students	Marks Less than	Cumulative Frequency
$600-640$	16	640	16
$640-680$	45	680	61
$680-720$	156	720	217
$720-760$	284	760	501
$760-800$	172	800	673
$800-840$	59	840	732
$840-880$	18	880	750

Plot the points $(640,16),(680,61),(720,217),(760,501),(800,673),(840,732),(880,750)$ by taking upper class limit over the x -axis and cumulative frequency over the y -axis.

Cumulative frequency

3. Draw an Ogive to represent the following frequency distribution:

Class-interval	$0-4$	$5-9$	$10-14$	$15-19$	$20-24$
No. of students	2	6	10	5	3

Solution:

Since the given frequency distribution is not continuous we will have to first make it continuous and then prepare the cumulative frequency:

Class-interval	No. of Students	Less than	Cumulative frequency
$0.5-4.5$	2	4.5	2
$4.5-9.5$	6	9.5	8
$9.5-14.5$	10	14.5	18
$14.5-19.5$	5	19.5	23
$19.5-24.5$	3	24.5	26

Plot the points $(4.5,2),(9.5,8),(14.5,18),(19.5,23),(24.5,26)$ by taking the upper class limit over the x -axis and cumulative frequency over the y -axis.

4. The monthly profits (in Rs) of 100 shops are distributed as follows:

Profit per shop	No of shops:
$\mathbf{0}-\mathbf{5 0}$	$\mathbf{1 2}$
$50-100$	$\mathbf{1 8}$
$100-150$	27
$150-200$	20
$200-250$	17
$250-300$	6

Draw the frequency polygon for it.

Solution:

Doing for the less than method, we have

Profit per shop	Mid-value	No of shops:
Less than 0	0	0
Less than $0-50$	25	12
Less than $50-100$	75	18

Less than $100-150$	125	27
Less than $150-200$	175	20
Less than $200-250$	225	17
Less than $250-300$	275	6
Above 300	300	0

By plotting the respectively coordinates we can get the frequency polygon.
Frequency Polygon

5. The following distribution gives the daily income of 50 workers of a factory:

Daily income (in Rs):	No of workers:
$100-120$	$\mathbf{1 2}$
$120-140$	$\mathbf{1 4}$
$140-160$	$\mathbf{8}$
$160-180$	$\mathbf{6}$
$\mathbf{1 8 0}-\mathbf{2 0 0}$	$\mathbf{1 0}$

Convert the above distribution to a 'less than' type cumulative frequency distribution and draw its ogive.

Solution:

Firstly, we prepare the cumulative frequency table by less than method as given below:

Daily income	Cumulative frequency
Less than 120	12
Less than 140	26
Less than 160	34
Less than 180	40
Less than 200	50

Now we mark on x-axis upper class limit, y-axis cumulative frequencies. Thus we plot the point (120, $12),(140,26),(160,34),(180,40),(200,50)$.

