Exercise 8.6

1. Determine the nature of the roots of the following quadratic equations:

Important Notes:

- A quadratic equation is in the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
- To find the nature of roots, first find determinant "D"
- $\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}$
- If $\mathrm{D}>0$, equation has real and distinct roots
- If $\mathrm{D}<0$, equation has no real roots
- If $\mathrm{D}=0$, equation has 1 root
(i) $2 \mathrm{x}^{2}-3 \mathrm{x}+5=0$

Solution:

Here, $a=2, b=-3, c=5$
D $=\mathrm{b}^{2}-4 \mathrm{ac}$
$=(-3)^{2}-4(2)(5)$
$=9-40$
$=-31<0$
It's seen that $\mathrm{D}<0$ and hence, the given equation does not have any real roots.
(ii) $2 x^{2}-6 x+3=0$

Solution:
Here, $a=2, b=-6, c=3$
$\mathrm{D}=(-6)^{2}-4(2)(3)$
$=36-24$
$=12>0$
It's seen that $\mathrm{D}>0$ and hence, the given equation have real and distinct roots.
(iii) $(3 / 5) x^{2}-(2 / 3)+1=0$

Solution:
Here, $a=3 / 5, b=-2 / 3, c=1$
D $=(-2 / 3)^{2}-4(3 / 5)(1)$
$=4 / 9-12 / 5$
$=-88 / 45<0$
It's seen that $\mathrm{D}<0$ and hence, the given equation does not have any real roots.
(iv) $3 x^{2}-4 \sqrt{ } 3 x+4=0$

Solution:

Here, $a=3, b=-4 \sqrt{ } 3, c=4$
D $=(-4 \sqrt{ } 3)^{2}-4(3)(4)$
$=48-48$

$$
=0
$$

It's seen that $\mathrm{D}=0$ and hence, the given equation has only 1 real and equal root.
(v) $3 x^{2}-2 \sqrt{ } 6 x+2=0$

Solution:

$$
\begin{aligned}
& \text { Here, } a=3, b=-2 \sqrt{ } 6, c=2 \\
& \begin{aligned}
D & =(-2 \sqrt{6})^{2}-4(3)(2) \\
& =24-24 \\
& =0
\end{aligned}
\end{aligned}
$$

It's seen that $\mathrm{D}=0$ and hence, the given equation has only 1 real and equal root.
2. Find the values of k for which the roots are real and equal in each of the following equations: (i) $k x^{2}+4 x+1=0$

Solution:

The given equation $k x^{2}+4 x+1=0$ is in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=\mathrm{k}, \mathrm{b}=4, \mathrm{c}=1$
For the equation to have real and equal roots, the condition is

$$
\begin{array}{ll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0 \\
\Rightarrow & 4^{2}-4(\mathrm{k})(1)=0 \\
\Rightarrow & 16-4 \mathrm{k}=0 \\
\Rightarrow & \mathrm{k}=4
\end{array}
$$

The value of k is 4 .
(ii) $\mathbf{k x}^{2}-2 \sqrt{ } 5 x+4=0$

Solution:

The given equation $k x^{2}-2 \sqrt{ } 5 x+4=0$ is in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=\mathrm{k}, \mathrm{b}=-2 \sqrt{ } 5, \mathrm{c}=4$
For the equation to have real and equal roots, the condition is

$$
\begin{array}{ll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0 \\
\Rightarrow & (-2 \sqrt{ } 5)^{2}-4(\mathrm{k})(4)=0 \\
\Rightarrow & 20-16 \mathrm{k}=0 \\
\Rightarrow \quad & \mathrm{k}=5 / 4
\end{array}
$$

The value of k is $5 / 4$.
(iii) $3 \mathrm{x}^{2}-5 \mathrm{x}+2 \mathrm{k}=0$

Solution:

The given equation $3 x^{2}-5 x+2 k=0$ is in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=3, \mathrm{~b}=-5, \mathrm{c}=2 \mathrm{k}$
For the equation to have real and equal roots, the condition is

$$
\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0
$$

$\Rightarrow \quad(-5)^{2}-4(3)(2 \mathrm{k})=0$
$\Rightarrow \quad 25-24 \mathrm{k}=0$
$\Rightarrow \quad \mathrm{k}=25 / 24$
The value of k is $25 / 24$.
(iv) $4 x^{2}+k x+9=0$

Solution:

The given equation $4 x^{2}+k x+9=0$ is in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=4, \mathrm{~b}=\mathrm{k}, \mathrm{c}=9$
For the equation to have real and equal roots, the condition is

$$
\begin{array}{ll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0 \\
\Rightarrow & \mathrm{k}^{2}-4(4)(9)=0 \\
\Rightarrow & \mathrm{k}^{2}-144=0 \\
\Rightarrow & \mathrm{k}^{2}= \pm 12
\end{array}
$$

The value of k is 12 or -12 .
(v) $2 \mathrm{kx}^{2}-40 \mathrm{x}+25=0$

Solution:

The given equation $2 \mathrm{kx}^{2}-40 \mathrm{x}+25=0$ is in the form of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
Where $\mathrm{a}=2 \mathrm{k}, \mathrm{b}=-40, \mathrm{c}=25$
For the equation to have real and equal roots, the condition is

$$
\begin{array}{ll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0 \\
\Rightarrow & (-40)^{2}-4(2 \mathrm{k})(25)=0 \\
\Rightarrow & 1600-200 \mathrm{k}=0 \\
\Rightarrow & \mathrm{k}=8
\end{array}
$$

The value of k is 8 .
(vi) $9 x^{2}-24 x+k=0$

Solution:

The given equation $9 x^{2}-24 x+k=0$ is in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=9, \mathrm{~b}=-24, \mathrm{c}=\mathrm{k}$
For the equation to have real and equal roots, the condition is

$$
\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0
$$

$\Rightarrow \quad(-24)^{2}-4(9)(\mathrm{k})=0$
$\Rightarrow \quad 576-36 \mathrm{k}=0$
$\Rightarrow \quad \mathrm{k}=16$
The value of k is 16 .
(vii) $4 \mathbf{x}^{2}-3 k x+1=0$

Solution:

The given equation $4 \mathrm{x}^{2}-3 \mathrm{kx}+1=0$ is in the form of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
Where $a=4, b=-3 k, c=1$
For the equation to have real and equal roots, the condition is

$$
\begin{array}{ll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0 \\
\Rightarrow & (-3 \mathrm{k})^{2}-4(4)(1)=0 \\
\Rightarrow & 9 \mathrm{k}^{2}-16=0 \\
\Rightarrow \quad & \mathrm{k}= \pm 4 / 3
\end{array}
$$

The value of k is $\pm 4 / 3$.
(viii) $x^{2}-2(5+2 k) x+3(7+10 k)=0$

Solution:

The given equation $x^{2}-2(5+2 k) x+3(7+10 k)=0$ is in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=1, \mathrm{~b}=-2(5+2 \mathrm{k}), \mathrm{c}=3(7+10 \mathrm{k})$
For the equation to have real and equal roots, the condition is

$$
\begin{array}{ll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0 \\
\Rightarrow & (-2(5+2 \mathrm{k}))^{2}-4(1)(3(7+10 \mathrm{k}))=0 \\
\Rightarrow & 4(5+2 \mathrm{k})^{2}-12(7+10 \mathrm{k})=0 \\
\Rightarrow & 25+4 \mathrm{k}^{2}+20 \mathrm{k}-21-30 \mathrm{k}=0 \\
\Rightarrow & 4 \mathrm{k}^{2}-10 \mathrm{k}+4=0 \\
\Rightarrow & \left.2 \mathrm{k}^{2}-5 \mathrm{k}+2=0 \quad \text { [dividing by } 2\right]
\end{array}
$$

Now, solving for k by factorization we have
$\Rightarrow 2 \mathrm{k}^{2}-4 \mathrm{k}-\mathrm{k}+2=0$
$\Rightarrow 2 \mathrm{k}(\mathrm{k}-2)-1(\mathrm{k}-2)=0$
$\Rightarrow(\mathrm{k}-2)(2 \mathrm{k}-1)=0$,
$\mathrm{k}=2$ and $\mathrm{k}=1 / 2$,
So, the value of k can either be 2 or $1 / 2$
(ix) $(3 k+1) x^{2}+2(k+1) x+k=0$

Solution:

The given equation $(3 k+1) x^{2}+2(k+1) x+k=0$ is in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=(3 \mathrm{k}+1), \mathrm{b}=2(\mathrm{k}+1), \mathrm{c}=\mathrm{k}$
For the equation to have real and equal roots, the condition is

$$
D=b^{2}-4 a c=0
$$

$\Rightarrow \quad(2(\mathrm{k}+1))^{2}-4(3 \mathrm{k}+1)(\mathrm{k})=0$
$\Rightarrow \quad 4(\mathrm{k}+1)^{2}-4\left(3 \mathrm{k}^{2}+\mathrm{k}\right)=0$
$\Rightarrow \quad(\mathrm{k}+1)^{2}-\mathrm{k}(3 \mathrm{k}+1)=0$
$\Rightarrow \quad 2 \mathrm{k}^{2}-\mathrm{k}-1=0$
Now, solving for k by factorization we have
$\Rightarrow 2 \mathrm{k}^{2}-2 \mathrm{k}+\mathrm{k}-1=0$
$\Rightarrow 2 \mathrm{k}(\mathrm{k}-1)+1(\mathrm{k}-1)=0$
$\Rightarrow(\mathrm{k}-1)(2 \mathrm{k}+1)=0$,
$\mathrm{k}=1$ and $\mathrm{k}=-1 / 2$,
So, the value of k can either be 1 or $-1 / 2$
(x) $\mathbf{k x}^{2}+\mathrm{kx}+1=-4 \mathrm{x}^{2}-\mathrm{x}$

Solution:

The given equation $k x^{2}+k x+1=-4 x^{2}-x$
This can be rewritten as,
$(k+4) x^{2}+(k+1) x+1=0$
Now, this in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=(\mathrm{k}+4), \mathrm{b}=(\mathrm{k}+1), \mathrm{c}=1$
For the equation to have real and equal roots, the condition is

$$
\begin{array}{ll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0 \\
\Rightarrow & (\mathrm{k}+1)^{2}-4(\mathrm{k}+4)(1)=0 \\
\Rightarrow & (\mathrm{k}+1)^{2}-4 \mathrm{k}-16=0 \\
\Rightarrow & \mathrm{k}^{2}+2 \mathrm{k}+1-4 \mathrm{k}-16=0 \\
\Rightarrow & \mathrm{k}^{2}-2 \mathrm{k}-15=0
\end{array}
$$

Now, solving for k by factorization we have
$\Rightarrow \mathrm{k}^{2}-5 \mathrm{k}+3 \mathrm{k}-15=0$
$\Rightarrow \mathrm{k}(\mathrm{k}-5)+3(\mathrm{k}-5)=0$
$\Rightarrow(\mathrm{k}+3)(\mathrm{k}-5)=0$,
$\mathrm{k}=-3$ and $\mathrm{k}=5$,
So, the value of k can either be -3 or 5 .
(xi) $(k+1) x^{2}+2(k+3) x+(k+8)=0$

Solution:

The given equation $(k+1) x^{2}+2(k+3) x+(k+8)=0$ is in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=(\mathrm{k}+1), \mathrm{b}=2(\mathrm{k}+3), \mathrm{c}=(\mathrm{k}+8)$
For the equation to have real and equal roots, the condition is

$$
\begin{array}{ll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0 \\
\Rightarrow & (2(\mathrm{k}+3))^{2}-4(\mathrm{k}+1)(\mathrm{k}+8)=0 \\
\Rightarrow & 4(\mathrm{k}+3)^{2}-4\left(\mathrm{k}^{2}+9 \mathrm{k}+8\right)=0 \\
\Rightarrow & (\mathrm{k}+3)^{2}-\left(\mathrm{k}^{2}+9 \mathrm{k}+8\right)=0 \\
\Rightarrow & \mathrm{k}^{2}+6 \mathrm{k}+9-\mathrm{k}^{2}-9 \mathrm{k}-8=0 \\
\Rightarrow & -3 \mathrm{k}+1=0 \\
\Rightarrow & \mathrm{k}=1 / 3
\end{array}
$$

So, the value of k is $1 / 3$.
(xii) $\mathbf{x}^{2}-2 k x+7 k-12=0$

Solution:

The given equation $\mathrm{x}^{2}-2 \mathrm{kx}+7 \mathrm{k}-12=0$ is in the form of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
Where $\mathrm{a}=1, \mathrm{~b}=-2 \mathrm{k}, \mathrm{c}=7 \mathrm{k}-12$
For the equation to have real and equal roots, the condition is

$$
\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0
$$

$\Rightarrow \quad(-2 \mathrm{k})^{2}-4(1)(7 \mathrm{k}-12)=0$
$\Rightarrow \quad 4 \mathrm{k}^{2}-4(7 \mathrm{k}-12)=0$
$\Rightarrow \quad \mathrm{k}^{2}-7 \mathrm{k}+12=0$
Now, solving for k by factorization we have
$\Rightarrow \mathrm{k}^{2}-4 \mathrm{k}-3 \mathrm{k}+12=0$
$\Rightarrow(\mathrm{k}-4)(\mathrm{k}-3)=0$,
$\mathrm{k}=4$ and $\mathrm{k}=3$,
So, the value of k can either be 4 or 3 .
(xiii) $(k+1) x^{2}-2(3 k+1) x+8 k+1=0$

Solution:

The given equation $(k+1) x^{2}-2(3 k+1) x+8 k+1=0$ is in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=(\mathrm{k}+1), \mathrm{b}=-2(3 \mathrm{k}+1), \mathrm{c}=8 \mathrm{k}+1$
For the equation to have real and equal roots, the condition is

$$
\begin{array}{ll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0 \\
\Rightarrow & (-2(3 \mathrm{k}+1))^{2}-4(\mathrm{k}+1)(8 \mathrm{k}+1)=0 \\
\Rightarrow & 4(3 \mathrm{k}+1)^{2}-4(\mathrm{k}+1)(8 \mathrm{k}+1)=0 \\
\Rightarrow & (3 \mathrm{k}+1)^{2}-(\mathrm{k}+1)(8 \mathrm{k}+1)=0 \\
\Rightarrow & 9 \mathrm{k}^{2}+6 \mathrm{k}+1-\left(8 \mathrm{k}^{2}+9 \mathrm{k}+1\right)=0 \\
\Rightarrow & 9 \mathrm{k}^{2}+6 \mathrm{k}+1-8 \mathrm{k}^{2}-9 \mathrm{k}-1=0 \\
\Rightarrow & \mathrm{k}^{2}-3 \mathrm{k}=0 \\
\Rightarrow & \mathrm{k}(\mathrm{k}-3)=0
\end{array}
$$

Either $\mathrm{k}=0 \quad$ Or, $\mathrm{k}-3=0 \quad \Rightarrow \mathrm{k}=3$,
So, the value of k can either be 0 or 3
(xiv) $5 \mathrm{x}^{2}-4 \mathrm{x}+2+\mathrm{k}\left(4 \mathrm{x}^{2}-2 \mathrm{x}+1\right)=0$

Solution:

The given equation $5 x^{2}-4 x+2+k\left(4 x^{2}-2 x+1\right)=0$
This can be rewritten as,
$\mathrm{x}^{2}(5+4 \mathrm{k})-\mathrm{x}(4+2 \mathrm{k})+2-\mathrm{k}=0$
Now, this in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=(4 \mathrm{k}+5), \mathrm{b}=-(2 \mathrm{k}+4), \mathrm{c}=2-\mathrm{k}$
For the equation to have real and equal roots, the condition is

$$
\begin{array}{ll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0 \\
\Rightarrow & (-(2 \mathrm{k}+4))^{2}-4(4 \mathrm{k}+5)(2-\mathrm{k})=0 \\
\Rightarrow & (2 \mathrm{k}+4)^{2}-4(4 \mathrm{k}+5)(2-\mathrm{k})=0 \\
\Rightarrow & 16+4 \mathrm{k}^{2}+16 \mathrm{k}-4\left(10-5 \mathrm{k}+8 \mathrm{k}-4 \mathrm{k}^{2}\right)=0 \\
\Rightarrow & 16+4 \mathrm{k}^{2}+16 \mathrm{k}-40+20 \mathrm{k}-32 \mathrm{k}+16 \mathrm{k}^{2}=0 \\
\Rightarrow & 20 \mathrm{k}^{2}+4 \mathrm{k}-24=0 \\
\Rightarrow & 5 \mathrm{k}^{2}+\mathrm{k}-6=0
\end{array}
$$

Now, solving for k by factorization we have

$$
\begin{array}{ll}
\Rightarrow & 5 \mathrm{k}^{2}+6 \mathrm{k}-5 \mathrm{k}-6=0 \\
\Rightarrow & 5 \mathrm{k}(\mathrm{k}-1)+6(\mathrm{k}-1)=0 \\
\Rightarrow & (\mathrm{k}-1)(5 \mathrm{k}+6)=0,
\end{array}
$$

$\mathrm{k}=1$ and $\mathrm{k}=-6 / 5$,
So, the value of k can either be 1 or $-6 / 5$.
$(x v)(4-k) x^{2}+(2 k+4) x+(8 k+1)=0$
Solution:

R D Sharma Solutions For Class 10 Maths Chapter 8 Quadratic Equations

The given equation $(4-k) x^{2}+(2 k+4) x+(8 k+1)=0$ is in the form of $a x^{2}+b x+c=0$ Where $\mathrm{a}=(4-\mathrm{k}), \mathrm{b}=(2 \mathrm{k}+4), \mathrm{c}=(8 \mathrm{k}+1)$
For the equation to have real and equal roots, the condition is

$$
\begin{array}{ll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0 \\
\Rightarrow & (2 \mathrm{k}+4)^{2}-4(4-\mathrm{k})(8 \mathrm{k}+1)=0 \\
\Rightarrow & 4 \mathrm{k}^{2}+16 \mathrm{k}+16-4\left(-8 \mathrm{k}^{2}+32 \mathrm{k}+4-\mathrm{k}\right)=0 \\
\Rightarrow & 4 \mathrm{k}^{2}+16 \mathrm{k}+16+32 \mathrm{k}^{2}-124 \mathrm{k}-16=0 \\
\Rightarrow & 36 \mathrm{k}^{2}-108 \mathrm{k}=0
\end{array}
$$

Taking common,
$\Rightarrow \quad 9 \mathrm{k}(\mathrm{k}-3)=0$
Now, either $9 \mathrm{k}=0 \quad \Rightarrow \mathrm{k}=0$ or $\mathrm{k}-3=0 \quad \Rightarrow \mathrm{k}=3$,
So, the value of k can either be 0 or 3 .
$(x v i)(2 k+1) x^{2}+2(k+3) x+(k+5)=0$

Solution:

The given equation $(2 k+1) x^{2}+2(k+3) x+(k+5)=0$ is in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=(2 \mathrm{k}+1), \mathrm{b}=2(\mathrm{k}+3), \mathrm{c}=(\mathrm{k}+5)$
For the equation to have real and equal roots, the condition is

$$
\begin{array}{ll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0 \\
\Rightarrow & (2(\mathrm{k}+3))^{2}-4(2 \mathrm{k}+1)(\mathrm{k}+5)=0 \\
\Rightarrow & 4(\mathrm{k}+3)^{2}-4\left(2 \mathrm{k}^{2}+11 \mathrm{k}+5\right)=0 \\
\Rightarrow & (\mathrm{k}+3)^{2}-\left(2 \mathrm{k}^{2}+11 \mathrm{k}+5\right)=0 \text { [dividing by } 4 \text { both sides] } \\
\Rightarrow & \mathrm{k}^{2}+5 \mathrm{k}-4=0
\end{array}
$$

Now, solving for k by completing the square we have
$\Rightarrow \mathrm{k}^{2}+2 \times(5 / 2) \times \mathrm{k}+(5 / 2)^{2}=4+(5 / 2)^{2}$
$\Rightarrow(\mathrm{k}+5 / 2)^{2}=4+25 / 4=\sqrt{ } 41 / 4$
$\Rightarrow \mathrm{k}+(5 / 2)= \pm \sqrt{4} 1 / 2$
$\Rightarrow \mathrm{k}=(\sqrt{ } 41-5) / 2$ or $-(\sqrt{ } 41+5) / 2$
So, the value of k can either be $(\sqrt{ } 41-5) / 2$ or $-(\sqrt{ } 41+5) / 2$
(xvii) $4 x^{2}-2(k+1) x+(k+4)=0$

Solution:

The given equation $4 x^{2}-2(k+1) x+(k+4)=0$ is in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=4, \mathrm{~b}=-2(\mathrm{k}+1), \mathrm{c}=(\mathrm{k}+4)$
For the equation to have real and equal roots, the condition is

$$
\begin{array}{ll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0 \\
\Rightarrow & (-2(\mathrm{k}+1))^{2}-4(4)(\mathrm{k}+4)=0 \\
\Rightarrow & 4(\mathrm{k}+1)^{2}-16(\mathrm{k}+4)=0 \\
\Rightarrow & (\mathrm{k}+1)^{2}-4(\mathrm{k}+4)=0 \\
\Rightarrow & \mathrm{k}^{2}-2 \mathrm{k}-15=0
\end{array}
$$

Now, solving for k by factorization we have
$\Rightarrow \mathrm{k}^{2}-5 \mathrm{k}+3 \mathrm{k}-15=0$
$\Rightarrow \mathrm{k}(\mathrm{k}-5)+3(\mathrm{k}-5)=0$
$\Rightarrow(\mathrm{k}-5)(\mathrm{k}+3)=0$,
$\mathrm{k}=5$ and $\mathrm{k}=-3$,
So, the value of k can either be 5 or -3 .
3. In the following, determine the set of values of k for which the given quadratic equation has real roots:
(i) $2 \mathrm{x}^{2}+3 \mathrm{x}+\mathrm{k}=0$

Solution:
Given,

$$
2 x^{2}+3 x+k=0
$$

It's of the form of $a x^{2}+b x+c=0$
Where, $a=2, b=3, c=k$
For the given quadratic equation to have real roots $D=b^{2}-4 a c \geq 0$
D $=9-4(2)(k) \geq 0$
$\Rightarrow 9-8 \mathrm{k} \geq 0$
$\Rightarrow \mathrm{k} \leq 9 / 8$
The value of k should not exceed $9 / 8$ to have real roots.
(ii) $2 x^{2}+x+k=0$

Solution:

Given,
$2 \mathrm{x}^{2}+\mathrm{x}+\mathrm{k}=0$
It's of the form of $a x^{2}+b x+c=0$
Where, $\mathrm{a}=2, \mathrm{~b}=1, \mathrm{c}=\mathrm{k}$
For the given quadratic equation to have real roots $D=b^{2}-4 a c \geq 0$
$\mathrm{D}=1^{2}-4(2)(\mathrm{k}) \geq 0$
$\Rightarrow 1-8 \mathrm{k} \geq 0$
$\Rightarrow \mathrm{k} \leq 1 / 8$
The value of k should not exceed $1 / 8$ to have real roots.
(iii) $2 \mathrm{x}^{2}-5 \mathrm{x}-\mathrm{k}=0$

Solution:

Given,
$2 x^{2}-5 x-k=0$
It's of the form of $a x^{2}+b x+c=0$
Where, $a=2, b=-5, c=-k$
For the given quadratic equation to have real roots $D=b^{2}-4 a c \geq 0$
$\mathrm{D}=(-5)^{2}-4(2)(-k) \geq 0$
$\Rightarrow 25+8 \mathrm{k} \geq 0$
$\Rightarrow \mathrm{k} \geq-25 / 8$
The value of k should be lesser than $-25 / 8$ to have real roots.
(iv) $\mathbf{k x}^{2}+\mathbf{6 x}+1=0$

Solution:
Given,
$\mathrm{kx}^{2}+6 \mathrm{x}+1=0$
It's of the form of $a x^{2}+b x+c=0$
Where, $a=k, b=6, c=1$
For the given quadratic equation to have real roots $D=b^{2}-4 a c \geq 0$
$D=6^{2}-4(k)(1) \geq 0$
$\Rightarrow 36-4 \mathrm{k} \geq 0$
The given equation will have real roots if,
$\Rightarrow 36 \geq 4 \mathrm{k}$
$\Rightarrow 36 / 4 \geq \mathrm{k}$
$\Rightarrow 9 \geq \mathrm{k}$
$\mathrm{k} \leq 9$
The value of k should not exceed 9 to have real roots.
(v) $3 \mathrm{x}^{2}+2 \mathrm{x}+\mathrm{k}=0$

Solution:
Given,
$3 x^{2}+2 x+k=0$
It's of the form of $a x^{2}+b x+c=0$
Where, $a=3, b=2, c=k$
For the given quadratic equation to have real roots $D=b^{2}-4 a c \geq 0$
$\mathrm{D}=(2)^{2}-4(3)(\mathrm{k}) \geq 0$
$\Rightarrow 4-12 \mathrm{k} \geq 0$
$\Rightarrow 4 \geq 12 \mathrm{k}$
$\Rightarrow \mathrm{k} \leq 1 / 3$
The value of k should not exceed $1 / 3$ to have real roots.
4. Find the values of k for which the following equations have real and equal roots
(i) $x^{2}-2(k+1) x+k^{2}=0$

Solution:

Given,
$x^{2}-2(k+1) x+k^{2}=0$
It's of the form of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
Where, $a=1, b=-2(k+1), c=k^{2}$
For the given quadratic equation to have real roots $D=b^{2}-4 a c=0$
$\mathrm{D}=(-2(\mathrm{k}+1))^{2}-4(1)\left(\mathrm{k}^{2}\right)=0$

$$
\mathrm{k}+4-4 \mathrm{k}^{2}=0
$$

$8 \mathrm{k}+4=0$
$\mathrm{k}=-4 / 8$
$\Rightarrow \mathrm{k}=-1 / 2$
The value of k should $-1 / 2$ to have real and equal roots.
(ii) $k^{2} x^{2}-2(2 k-1) x+4=0$

Solution:

Given,

$$
\mathrm{k}^{2} \mathrm{x}^{2}-2(2 \mathrm{k}-1) \mathrm{x}+4=0
$$

It's of the form of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
Where, $a=k^{2}, b=-2(2 k-1), c=4$
For the given quadratic equation to have real roots $D=b^{2}-4 a c=0$
$\mathrm{D}=(-2(2 \mathrm{k}-1))^{2}-4(4)\left(\mathrm{k}^{2}\right)=0$
$\Rightarrow 4 \mathrm{k}^{2}-4 \mathrm{k}+1-4 \mathrm{k}^{2}=0 \quad$ [dividing by 4 both sides]
$\Rightarrow-4 \mathrm{k}+1=0$
$\Rightarrow \mathrm{k}=1 / 4$
The value of k should $1 / 4$ to have real and equal roots.
(iii) $(k+1) x^{2}-2(k-1) x+1=0$

Solution:

Given,

$$
(k+1) x^{2}-2(k-1) x+1=0
$$

It's of the form of $a x^{2}+b x+c=0$
Where, $a=(k+1), b=-2(k-1), c=1$
For the given quadratic equation to have real roots $D=b^{2}-4 a c=0$
$D=(-2(k-1))^{2}-4(1)(k+1)=0$
$\Rightarrow 4 \mathrm{k}^{2}-2 \mathrm{k}+1-\mathrm{k}-1=0 \quad$ [dividing by 4 both sides]
$\Rightarrow \mathrm{k}^{2}-3 \mathrm{k}=0$
$\Rightarrow \mathrm{k}(\mathrm{k}-3)=0$
$\Rightarrow \mathrm{k}=0$ or $\mathrm{k}=3$
The value of k can be 0 or 3 to have real and equal roots.
5. Find the values of k for which the following equations have real roots
(i) $2 \mathrm{x}^{2}+\mathrm{kx}+3=0$

Solution:

Given,
$2 x^{2}+k x+3=0$
It's of the form of $a x^{2}+b x+c=0$
Where, $a=2, b=k, c=3$
For the given quadratic equation to have real roots $D=b^{2}-4 a c \geq 0$
$\mathrm{D}=(\mathrm{k})^{2}-4(3)(2) \geq 0$
$\Rightarrow \mathrm{k}^{2}-24 \geq 0$
$\Rightarrow \mathrm{k}^{2} \geq 24$
$\Rightarrow \mathrm{k} \geq 2 \sqrt{ } 6$ and $\mathrm{k} \leq-2 \sqrt{ } 6 \quad$ [After taking square root on both sides]
The value of k can be represented as $(\infty, 2 \sqrt{ } 6] U[-2 \sqrt{ } 6,-\infty)$
(ii) $k x(x-2)+6=0$

Solution:

Given,

$$
\mathrm{kx}(\mathrm{x}-2)+6=0
$$

It can be rewritten as,
$\mathrm{kx}^{2}-2 \mathrm{kx}+6=0$
It's of the form of $a x^{2}+b x+c=0$
Where, $a=k, b=-2 k, c=6$
For the given quadratic equation to have real roots $D=b^{2}-4 a c \geq 0$
$\mathrm{D}=(-2 \mathrm{k})^{2}-4(\mathrm{k})(6) \geq 0$
$\Rightarrow 4 \mathrm{k}^{2}-24 \mathrm{k} \geq 0$
$\Rightarrow 4 \mathrm{k}(\mathrm{k}-6) \geq 0$
$\Rightarrow \mathrm{k} \geq 0$ and $\mathrm{k} \geq 6$
$\Rightarrow \mathrm{k} \geq 6$
The value of k should be greater than or equal to 6 to have real roots.
(iii) $\mathbf{x}^{2}-4 k x+k=0$

Solution:

Given,
$\mathrm{x}^{2}-4 \mathrm{kx}+\mathrm{k}=0$
It's of the form of $a^{2}+b x+c=0$
Where, $a=1, b=-4 k, c=k$
For the given quadratic equation to have real roots $D=b^{2}-4 a c \geq 0$
D $=(-4 \mathrm{k})^{2}-4(1)(k) \geq 0$
$\Rightarrow 16 \mathrm{k}^{2}-4 \mathrm{k} \geq 0$
$\Rightarrow 4 \mathrm{k}(4 \mathrm{k}-1) \geq 0$
$\Rightarrow \mathrm{k} \geq 0$ and $\mathrm{k} \geq 1 / 4$
$\Rightarrow \mathrm{k} \geq 1 / 4$
The value of k should be greater than or equal to $1 / 4$ to have real roots.
(iv) $k x(x-2 \sqrt{5})+10=0$

Solution:

Given,
$k x(x-2 \sqrt{ } 5)+10=0$
It can be rewritten as,
$\mathrm{kx}^{2}-2 \sqrt{ } 5 \mathrm{kx}+10=0$
It's of the form of $a x^{2}+b x+c=0$
Where, $a=k, b=-2 \sqrt{ } 5 k, c=10$
For the given quadratic equation to have real roots $D=b^{2}-4 a c \geq 0$
$\mathrm{D}=(-2 \sqrt{ } 5 \mathrm{k})^{2}-4(\mathrm{k})(10) \geq 0$
$\Rightarrow 20 \mathrm{k}^{2}-40 \mathrm{k} \geq 0$
$\Rightarrow 20 \mathrm{k}(\mathrm{k}-2) \geq 0$
$\Rightarrow \mathrm{k} \geq 0$ and $\mathrm{k} \geq 2$
$\Rightarrow \mathrm{k} \geq 2$
The value of k should be greater than or equal to 2 to have real roots.
(v) $k x(x-3)+9=0$

Solution:

Given,
$\mathrm{kx}(\mathrm{x}-3)+9=0$
It can be rewritten as,
$\mathrm{kx}^{2}-3 \mathrm{kx}+9=0$
It's of the form of $a x^{2}+b x+c=0$
Where, $a=k, b=-3 k, c=9$
For the given quadratic equation to have real roots $D=b^{2}-4 a c \geq 0$
$\mathrm{D}=(-3 \mathrm{k})^{2}-4(\mathrm{k})(9) \geq 0$
$\Rightarrow 9 \mathrm{k}^{2}-36 \mathrm{k} \geq 0$
$\Rightarrow 9 \mathrm{k}(\mathrm{k}-4) \geq 0$
$\Rightarrow \mathrm{k} \geq 0$ and $\mathrm{k} \geq 4$
$\Rightarrow \mathrm{k} \geq 4$
The value of k should be greater than or equal to 4 to have real roots.
(vi) $4 \mathbf{x}^{2}+k x+3=0$

Solution:

Given,
$4 x^{2}+k x+3=0$
It's of the form of $a x^{2}+b x+c=0$
Where, $a=4, b=k, c=3$
For the given quadratic equation to have real roots $D=b^{2}-4 a c \geq 0$
$\mathrm{D}=(\mathrm{k})^{2}-4(4)(3) \geq 0$
$\Rightarrow \mathrm{k}^{2}-48 \geq 0$
$\Rightarrow \mathrm{k}^{2} \geq 48$
$\Rightarrow k \geq 4 \sqrt{ } 3$ and $k \leq-4 \sqrt{ } 3 \quad$ [After taking square root on both sides]
The value of k can be represented as $(\infty, 4 \sqrt{ } 3] U[-4 \sqrt{ } 3,-\infty)$
6. Find the values of k for which the given quadratic equation has real and distinct roots.
(i) $k x^{2}+2 x+1=0$

Solution:
Given,
$\mathrm{kx}^{2}+2 \mathrm{x}+1=0$
It's of the form of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
Where, $a=k, b=2, c=1$
For the given quadratic equation to have real roots $D=b^{2}-4 a c>0$
$\mathrm{D}=(2)^{2}-4(1)(\mathrm{k})>0$
$\Rightarrow 4-4 \mathrm{k}>0$
$\Rightarrow 4 \mathrm{k}<4$
$\Rightarrow \mathrm{k}<1$
The value of k should be lesser than 1 to have real and distinct roots.
(ii) $k x^{2}+6 x+1=0$

Solution:

Given,
$k x^{2}+6 \mathrm{x}+1=0$
It's of the form of $a x^{2}+b x+c=0$
Where, $a=k, b=6, c=1$
For the given quadratic equation to have real roots $D=b^{2}-4 a c>0$
$\mathrm{D}=(6)^{2}-4(1)(\mathrm{k})>0$
$\Rightarrow 36-4 \mathrm{k}>0$
$\Rightarrow 4 \mathrm{k}<36$
$\Rightarrow \mathrm{k}<9$
The value of k should be lesser than 9 to have real and distinct roots.
7. For what value of $k,(4-k) x^{2}+(2 k+4) x+(8 k+1)=0$, is a perfect square. Solution:

Given,
$(4-k) x^{2}+(2 k+4) x+(8 k+1)=0$
It is in the form of $a x^{2}+b x+c=0$
Where, $\mathrm{a}=4-\mathrm{k}, \mathrm{b}=2 \mathrm{k}+4, \mathrm{c}=8 \mathrm{k}+1$
Calculating the discriminant, $\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}$
$=(2 \mathrm{k}+4)^{2}-4(4-\mathrm{k})(8 \mathrm{k}+1)$
$=4 \mathrm{k}^{2}+16+4 \mathrm{k}-4\left(32+4-8 \mathrm{k}^{2}-\mathrm{k}\right)$
$=4\left(\mathrm{k}^{2}+4+\mathrm{k}-32-4+8 \mathrm{k}^{2}+\mathrm{k}\right)$
$=4\left(9 \mathrm{k}^{2}-27 \mathrm{k}\right)$
As the given equation is a perfect square, then $\mathrm{D}=0$
$\Rightarrow \quad 4\left(9 \mathrm{k}^{2}-27 \mathrm{k}\right)=0$
$\Rightarrow \quad\left(9 \mathrm{k}^{2}-27 \mathrm{k}\right)=0$
$\Rightarrow \quad 3 \mathrm{k}(\mathrm{k}-3)=0$
Thus, $3 \mathrm{k}=0 \quad \Rightarrow \mathrm{k}=0$ Or, $\mathrm{k}-3=0 \quad \Rightarrow \mathrm{k}=3$
Hence, the value of k should be 0 or 3 for the given to be perfect square.
8. Find the least positive value of k for which the equation $x^{2}+k x+4=0$ has real roots.

Solution:

Given,
$\mathrm{x}^{2}+\mathrm{kx}+4=0$
It's of the form of $a x^{2}+b x+c=0$
Where, $\mathrm{a}=1, \mathrm{~b}=\mathrm{k}, \mathrm{c}=4$
For the given quadratic equation to have real roots $D=b^{2}-4 a c \geq 0$
D $=(k)^{2}-4(1)(4) \geq 0$
$\Rightarrow \mathrm{k}^{2}-16 \geq 0$
$\Rightarrow \mathrm{k} \geq 4$ and $\mathrm{k} \leq-4$
Considering the least positive value, we have
$\Rightarrow \mathrm{k}=4$
Thus, the least value of k is 4 for the given equation to have real roots.

R D Sharma Solutions For Class 10 Maths Chapter 8 Quadratic Equations

9. Find the values of k for which the quadratic equation $(3 k+1) x^{2}+2(k+1) x+1=0$ has equal roots. Also, find the roots.

Solution:

The given equation $(3 k+1) x^{2}+2(k+1) x+1=0$ is in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=(3 \mathrm{k}+1), \mathrm{b}=2(\mathrm{k}+1), \mathrm{c}=1$
For the equation to have real and equal roots, the condition is

$$
\begin{array}{ll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0 \\
\Rightarrow & (2(\mathrm{k}+1))^{2}-4(3 \mathrm{k}+1)(1)=0 \\
\Rightarrow & (\mathrm{k}+1)^{2}-(3 \mathrm{k}+1)=0 \\
\Rightarrow & \mathrm{k}^{2}+2 \mathrm{k}+1-3 \mathrm{k}-1=0 \\
\Rightarrow & \mathrm{k}^{2}-\mathrm{k}=0 \\
\Rightarrow & \mathrm{k}(\mathrm{k}-1)=0
\end{array}
$$

$$
\Rightarrow \quad(\mathrm{k}+1)^{2}-(3 \mathrm{k}+1)=0 \quad \text { [After dividing by } 4 \text { both sides] }
$$

Either $\mathrm{k}=0 \quad$ Or, $\mathrm{k}-3=0 \quad \Rightarrow \mathrm{k}=1$,
So, the value of k can either be 0 or 1
Now, using $\mathrm{k}=0$ in the given quadratic equation we get

$$
\begin{aligned}
& (3(0)+1) \mathrm{x}^{2}+2(0+1) \mathrm{x}+1=0 \\
& \mathrm{x}^{2}+2 \mathrm{x}+1=0 \\
& \Rightarrow(\mathrm{x}+1)^{2}=0
\end{aligned}
$$

Thus, $x=-1$ is the root of the given quadratic equation.
Next, on using $\mathrm{k}=1$ in the given quadratic equation we get

$$
\begin{aligned}
& (3(1)+1) \mathrm{x}^{2}+2(1+1) \mathrm{x}+1=0 \\
& 4 \mathrm{x}^{2}+4 \mathrm{x}+1=0 \\
& \Rightarrow(2 \mathrm{x}+1)^{2}=0
\end{aligned}
$$

Thus, $2 x=-1 \Rightarrow x=-1 / 2$ is the root of the given quadratic equation.
10. Find the values of p for which the quadratic equation $(2 p+1) x^{2}-(7 p+2) x+(7 p-3)=0$ has equal roots. Also, find the roots.

Solution:

The given equation $(2 p+1) x^{2}-(7 p+2) x+(7 p-3)=0$ is in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=(2 \mathrm{p}+1), \mathrm{b}=-(7 \mathrm{p}+2), \mathrm{c}=(7 \mathrm{p}-3)$
For the equation to have real and equal roots, the condition is

$$
\begin{array}{ll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0 \\
\Rightarrow & (-(7 \mathrm{p}+2))^{2}-4(2 \mathrm{p}+1)(7 \mathrm{p}-3)=0 \\
\Rightarrow & (7 \mathrm{p}+2)^{2}-4\left(14 \mathrm{p}^{2}+\mathrm{p}-3\right)=0 \\
\Rightarrow & 49 \mathrm{p}^{2}+28 \mathrm{p}+4-56 \mathrm{p}^{2}-4 \mathrm{p}+12=0 \\
\Rightarrow & -7 \mathrm{p}^{2}+24 \mathrm{p}+16=0 \\
\text { Solving for } \mathrm{p} \text { by factorization, } \\
\Rightarrow & -7 \mathrm{p}^{2}+28 \mathrm{p}-4 \mathrm{p}+16=0 \\
\Rightarrow & -7 \mathrm{p}(\mathrm{p}-4)-4(\mathrm{p}-4)=0 \\
\Rightarrow & (\mathrm{p}-4)(-7 \mathrm{p}-4)=0
\end{array}
$$

Either $\mathrm{p}-4=0 \Rightarrow \mathrm{p}=4 \quad$ Or, $7 \mathrm{p}+4=0 \Rightarrow \mathrm{p}=-4 / 7$,
So, the value of k can either be 4 or $-4 / 7$

Now, using $\mathrm{k}=4$ in the given quadratic equation we get

$$
\begin{aligned}
& (2(4)+1) x^{2}-(7(4)+2) \mathrm{x}+(7(4)-3)=0 \\
& 9 \mathrm{x}^{2}-30 \mathrm{x}+25=0 \\
& \Rightarrow(3 \mathrm{x}-5)^{2}=0
\end{aligned}
$$

Thus, $x=5 / 3$ is the root of the given quadratic equation.
Next, on using $\mathrm{k}=1$ in the given quadratic equation we get

$$
\begin{aligned}
& (2(-4 / 7)+1) \mathrm{x}^{2}-(7(-4 / 7)+2) \mathrm{x}+(7(-4 / 7)-3)=0 \\
& \mathrm{x}^{2}-14 \mathrm{x}+49=0 \\
& \Rightarrow(\mathrm{x}-7)^{2}=0
\end{aligned}
$$

Thus, $x-7=0 \quad \Rightarrow x=7$ is the root of the given quadratic equation.
11. If -5 is a root of the quadratic equation $2 x^{2}+p x-15=0$ and the quadratic equation $p\left(x^{2}+x\right)+$ $k=0$ has equal roots, find the value of k.

Solution:

Given,
-5 is as root of $2 \mathrm{x}^{2}+\mathrm{px}-15=0$
So, on substituting $x=-5$ the LHS will become zero and satisfy the equation.

$$
\begin{array}{ll}
\Rightarrow & 2(-5)^{2}+\mathrm{p}(-5)-15=0 \\
\Rightarrow & 50-5 \mathrm{p}-15=0 \\
\Rightarrow & 35=5 \mathrm{p} \\
\Rightarrow & \mathrm{p}=7
\end{array}
$$

Now, substituting the value of p in the second equation we have

$$
\begin{array}{ll}
& (7)\left(\mathrm{x}^{2}+\mathrm{x}\right)+\mathrm{k}=0 \\
\Rightarrow \quad & 7 \mathrm{x}^{2}+7 \mathrm{x}+\mathrm{k}=0
\end{array}
$$

It's given that the above equation has equal roots.
Thus the discriminant, $\mathrm{D}=0$
The equation $7 x^{2}+7 x+k=0$ is in the form of $a x^{2}+b x+c=0$
Where $\mathrm{a}=7, \mathrm{~b}=7, \mathrm{c}=\mathrm{k}$

$$
\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}
$$

$\Rightarrow \quad 7^{2}-4(7)(\mathrm{k})=0$
$\Rightarrow \quad 49-28 \mathrm{k}=0$
$\Rightarrow \quad \mathrm{k}=49 / 28=7 / 4$
Therefore, the value of k is $7 / 4$.
12. If 2 is a root of the quadratic equation $3 x^{2}+p x-8=0$ and the quadratic equation $4 x^{2}-2 p x+k$ $=0$ has equal roots, find the value of k.

Solution:

Given,
2 is as root of $3 x^{2}+p x-8=0$
So, on substituting $x=2$ the LHS will become zero and satisfy the equation.

$$
\Rightarrow \quad 3(2)^{2}+\mathrm{p}(2)-8=0
$$

$$
\begin{array}{ll}
\Rightarrow & 12+2 p-8=0 \\
\Rightarrow & 4+2 p=0 \\
\Rightarrow & p=-2
\end{array}
$$

Now, substituting the value of p in the second equation we have

$$
\begin{array}{ll}
& 4 x^{2}-2(-2) x+k=0 \\
\Rightarrow \quad & 4 x^{2}+4 x+k=0
\end{array}
$$

It's given that the above equation has equal roots.
Thus the discriminant, $\mathrm{D}=0$
The equation $4 x^{2}+4 x+k=0$ is in the form of $a x^{2}+b x+c=0$
Where $a=4, b=4, c=k$

$$
\left.\begin{array}{lll}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac} \\
\Rightarrow & 4^{2}-4(4)(\mathrm{k})=0 \\
\Rightarrow & 16-16 \mathrm{k}=0 \\
\Rightarrow & \mathrm{k}=1
\end{array} \quad \text { [dividing by } 16 \text { both sides] }\right]
$$

Therefore, the value of k is 1 .

