Exercise 9.4 Page No: 9.24

1. Find:

- (i) 10th tent of the AP 1, 4, 7, 10....
- (ii) 18th term of the AP $\sqrt{2}$, $3\sqrt{2}$, $5\sqrt{2}$,
- (iii) nth term of the AP 13, 8, 3, -2,
- (iv) 10th term of the AP -40, -15, 10, 35,
- (v) 8th term of the AP 11, 104, 91, 78,
- (vi) 11th tenor of the AP 10.0, 10.5, 11.0, 11.2,
- (i) Given A.P. is 1, 4, 7, 10,

First term (a) = 1

Common difference (d) = Second term - First term = 4 - 1 = 3.

We know that, n^{th} term in an A.P = a + (n - 1)dThen, 10^{th} term in the A.P is 1 + (10 - 1)3

- =1+9x3
- = 1 + 27
- = 28
- $\therefore 10^{\text{th}}$ term of A. P. is 28
- (ii) Given A.P. is $\sqrt{2}$, $3\sqrt{2}$, $5\sqrt{2}$,

First term (a) = $\sqrt{2}$

 $Common\ difference = Second\ term - First\ term$

$$= 3\sqrt{2} - \sqrt{2}$$

$$\Rightarrow$$
 d = $2\sqrt{2}$

We know that, n^{th} term in an A. P. = a + (n - 1)d

Then, 18^{th} term of A. P. = $\sqrt{2} + (18 - 1)2\sqrt{2}$

- $=\sqrt{2}+17.2\sqrt{2}$
- $=\sqrt{2}(1+34)$
- $= 35\sqrt{2}$
- \therefore 18th term of A. P. is 35 $\sqrt{2}$
- (iii) Given A. P. is 13, 8, 3, -2,

First term (a) = 13

Common difference (d) = Second term first term

$$= 8 - 13 = -5$$

We know that, n^{th} term of an A.P. $a_n = a + (n - 1)d$

- = 13 + (n 1) 5
- = 13 5n + 5
- \therefore nth term of the A.P is $a_n = 18 5n$
- (iv) Given A. P. is 40, -15, 10, 35, First term (a) = -40

Common difference (d) = Second term - fast term
=
$$-15 - (-40)$$

= $40 - 15$
= 25

We know that, n^{th} term of an A.P. $a_n=a+(n-1)d$ Then, 10^{th} term of A. P. $a_{10}=-40+(10-1)25$

$$=$$
 $-40 + 9.25$

$$=$$
 $-40 + 225$

= 185

∴ 10th term of the A. P. is 185

(v) Given sequence is 117, 104, 91, 78,

First term (a) = 117

Common difference (d) = Second term - first term

$$= 104 - 117$$

= -13

We know that, n^{th} term = a + (n - 1)d

Then, 8^{th} term = a + (8 - 1)d

$$= 117 + 7(-13)$$

$$= 117 - 91$$

= 26

∴ 8th term of the A. P. is 26

(vi) Given A. P is 10.0, 10.5, 11.0, 11.5,

First term (a) = 10.0

Common difference (d) = Second term - first term

$$= 10.5 - 10.0 = 0.5$$

We know that, n^{th} term $a_n = a + (n - 1)d$

Then, 11^{th} term $a_{11} = 10.0 + (11 - 1)0.5$

$$= 10.0 + 10 \times 0.5$$

$$= 10.0 + 5$$

$$=15.0$$

∴ 11th term of the A. P. is 15.0

(vii) Given A. P is 3/4, 5/4, 7/4, 9/4,

First term (a) = 3/4

Common difference (d) = Second term - first term

$$= 5/4 - 3/4$$

$$= 2/4$$

We know that, n^{th} term $a_n = a + (n - 1)d$

Then, 9^{th} term $a_9 = a + (9 - 1)d$

$$=\frac{3}{4}+8.\frac{2}{4}$$

$$=\frac{3}{4}+\frac{16}{4}$$

$$=\frac{19}{4}$$

 \therefore 9th term of the A. P. is 19/4.

- 2.(i) Which term of the AP 3, 8, 13, is 248?
- (ii) Which term of the AP 84, 80, 76, ... is 0?
- (iii) Which term of the AP 4. 9, 14, is 254?
- (iv) Which term of the AP 21. 42, 63, 84, ... is 420?
- (v) Which term of the AP 121, 117. 113, ... is its first negative term? Solution:
- (i) Given A.P. is 3, 8, 13,

First term (a) = 3

Common difference (d) = Second term - first term

$$= 8 - 3$$

= 5

We know that, n^{th} term $(a_n) = a + (n-1)d$

And, given n^{th} term $a_n = 248$

$$248 = 3 + (n - 1)5$$

$$248 = -2 + 5n$$

$$5n = 250$$

$$n = 250/5 = 50$$

 \therefore 50th term in the A.P is 248.

(ii) Given A. P is 84, 80, 76,

First term (a) = 84

Common difference (d) = a_2 - a

$$= 80 - 84$$

$$= -4$$

We know that, n^{th} term $(a_n) = a + (n - 1)d$

And, given nth term is 0

$$0 = 84 + (n - 1) - 4$$

$$84 = +4(n - 1)$$

$$n - 1 = 84/4 = 21$$

$$n = 21 + 1 = 22$$

- $\therefore 22^{nd}$ term in the A.P is 0.
- (iii) Given A. P 4, 9, 14,

First term (a) = 4 Common difference (d) = $a_2 - a_1$ = 9 - 4 = 5 We know that, n^{th} term $(a_n) = a + (n - 1)d$ And, given n^{th} term is 254 4 + (n - 1)5 = 254 $(n - 1) \cdot 5 = 250$ n - 1 = 250/5 = 50n = 51

 \therefore 51th term in the A.P is 254.

- 3.(i) Is 68 a term of the A.P. 7, 10, 13,...? (ii) Is 302 a term of the A.P. 3, 8, 13,? (iii) Is -150 a term of the A.P. 11, 8, 5, 2, ...? Solutions:
- (i) Given, A.P. 7, 10, 13,... Here, a = 7 and $d = a_2 - a_1 = 10 - 7 = 3$

We know that, n^{th} term $a_n = a + (n - 1)d$ Required to check n^{th} term $a_n = 68$ a + (n - 1)d = 687 + (n - 1)3 = 68

7 + 3n - 3 = 68

3n + 4 = 68

3n = 64

 \Rightarrow n = 64/3, which is not a whole number.

Therefore, 68 is not a term in the A.P.

(ii) Given, A.P. 3, 8, 13,...

Here, a = 3 and $d = a_2 - a_1 = 8 - 3 = 5$

We know that, n^{th} term $a_n = a + (n - 1)d$

Required to check n^{th} term $a_n = 302$

a + (n - 1)d = 302

3 + (n - 1)5 = 302

3 + 5n - 5 = 302

5n - 2 = 302

5n = 304

 \Rightarrow n = 304/5, which is not a whole number.

Therefore, 302 is not a term in the A.P.

(iii) Given, A.P. 11, 8, 5, 2, ...

Here, a = 11 and $d = a_2 - a_1 = 8 - 11 = -3$

We know that, n^{th} term $a_n = a + (n - 1)d$

Required to check n^{th} term $a_n = -150$

a + (n - 1)d = -150

11 + (n - 1)(-3) = -150

11 - 3n + 3 = -150

3n = 150 + 14

3n = 164

 \Rightarrow n = 164/3, which is not a whole number.

Therefore, -150 is not a term in the A.P.

4. How many terms are there in the A.P.?

(i) 7, 10, 13,, 43

(ii) -1, -5/6, -2/3, -1/2, ..., 10/3

(iii) 7, 13, 19, ..., 205

(iv) $18, 15\frac{1}{2}, 13, \dots, -47$

Solution:

(i) Given, A.P. 7, 10, 13,, 43

Here, a = 7 and $d = a_2 - a_1 = 10 - 7 = 3$

We know that, n^{th} term $a_n = a + (n - 1)d$

And, given n^{th} term $a_n = 43$

$$a + (n - 1)d = 43$$

 $7 + (n - 1)(3) = 43$
 $7 + 3n - 3 = 43$
 $3n = 43 - 4$
 $3n = 39$
 $\Rightarrow n = 13$

Therefore, there are 13 terms in the given A.P.

- (ii) Given, A.P. -1, -5/6, -2/3, -1/2, ..., 10/3 Here, a = -1 and $d = a_2 - a_1 = -5/6 - (-1) = 1/6$ We know that, n^{th} term $a_n = a + (n - 1)d$ And, given n^{th} term $a_n = 10/3$ a + (n - 1)d = 10/3 -1 + (n - 1)(1/6) = 10/3 -1 + n/6 - 1/6 = 10/3 n/6 = 10/3 + 1 + 1/6 n/6 = (20 + 6 + 1)/6 n = (20 + 6 + 1) $\Rightarrow n = 27$ Therefore, there are 27 terms in the given A.P.
- (iii) Given, A.P. 7, 13, 19, ..., 205 Here, a = 7 and $d = a_2 - a_1 = 13 - 7 = 6$ We know that, n^{th} term $a_n = a + (n - 1)d$ And, given n^{th} term $a_n = 205$ a + (n - 1)d = 205 7 + (n - 1)(6) = 205 7 + 6n - 6 = 205 6n = 205 - 1 n = 204/6 $\Rightarrow n = 34$ Therefore, there are 34 terms in the given A.P.
- (iv) Given, A.P. 18, $15\frac{1}{2}$, 13,, -47 Here, a = 7 and $d = a_2 - a_1 = 15\frac{1}{2} - 18 = 5/2$ We know that, n^{th} term $a_n = a + (n - 1)d$ And, given n^{th} term $a_n = -47$ a + (n - 1)d = 43 18 + (n - 1)(-5/2) = -47 18 - 5n/2 + 5/2 = -47 36 - 5n + 5 = -94 5n = 94 + 36 + 5 5n = 135 $\Rightarrow n = 27$ Therefore, there are 27 terms in the given A.I.

Therefore, there are 27 terms in the given A.P.

5. The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.

Solution:

Given,

$$a = 5$$
 and $d = 3$
We know that, n^{th} term $a_n = a + (n - 1)d$
So, for the given A.P. $a_n = 5 + (n - 1)3 = 3n + 2$
Also given, last term = 80
 $\Rightarrow 3n + 2 = 80$
 $3n = 78$
 $n = 78/3 = 26$
Therefore, there are 26 terms in the A.P.

6. The 6^{th} and 17^{th} terms of an A.P. are 19 and 41 respectively, find the 40^{th} term. Solution:

Given,
$$a_6 = 19$$
 and $a_{17} = 41$
We know that, n^{th} term $a_n = a + (n - 1)d$
So, $a_6 = a + (6-1)d$
 $\Rightarrow a + 5d = 19$ (i)
Similarity, $a_{17} = a + (17 - 1)d$
 $\Rightarrow a + 16d = 41$ (ii)
Solving (i) and (ii), (ii) – (i) \Rightarrow
 $a + 16d - (a + 5d) = 41 - 19$
 $11d = 22$
 $\Rightarrow d = 2$
Using d in (i), we get $a + 5(2) = 19$
 $a = 19 - 10 = 9$
Now, the 40^{th} term is given by $a_{40} = 9 + (40 - 1)2 = 9 + 78 = 87$
Therefore the 40^{th} term is 87.

7. If 9^{th} term of an A.P. is zero, prove its 29^{th} term is double the 19^{th} term. Solution:

Given,
$$a_9=0$$
 We know that, n^{th} term $a_n=a+(n-1)d$ So, $a+(9-1)d=0\Rightarrow a+8d=0$ (i) Now,

$$29^{th}$$
 term is given by $a_{29} = a + (29 - 1)d$
 $\Rightarrow a_{29} = a + 28d$
And, $a_{29} = (a + 8d) + 20d$ [using (i)]
 $\Rightarrow a_{29} = 20d$ (ii)

Similarly, 19^{th} term is given by $a_{19} = a + (19 - 1)d$ $\Rightarrow a_{19} = a + 18d$ And, $a_{19} = (a + 8d) + 10d$ [using (i)] $\Rightarrow a_{19} = 10d$ (iii)

On comparing (ii) and (iii), it's clearly seen that $a_{29} = 2(a_{19})$

Therefore, 29th term is double the 19th term.

8. If 10 times the 10^{th} term of an A.P. is equal to 15 times the 15^{th} term, show that 25^{th} term of the A.P. is zero.

Solution:

Given,

10 times the 10th term of an A.P. is equal to 15 times the 15th term.

We know that, n^{th} term $a_n = a + (n - 1)d$

$$\Rightarrow 10(a_{10}) = 15(a_{15})$$

$$10(a + (10 - 1)d) = 15(a + (15 - 1)d)$$

$$10(a + 9d) = 15(a + 14d)$$

$$10a + 90d = 15a + 210d$$

$$5a + 120d = 0$$

$$5(a+24d)=0$$

$$a + 24d = 0$$

$$a + (25 - 1)d = 0$$

$$\Rightarrow a_{25} = 0$$

Therefore, the 25th term of the A.P. is zero.

9. The 10^{th} and 18^{th} terms of an A.P. are 41 and 73 respectively. Find 26^{th} term. Solution:

Given,

$$A_{10} = 41$$
 and $a_{18} = 73$

We know that, n^{th} term $a_n = a + (n - 1)d$

So.

$$a_{10} = a + (10 - 1)d$$

$$\Rightarrow$$
 a + 9d = 41 (i)

Similarity,

$$a_{18} = a + (18 - 1)d$$

$$\Rightarrow$$
 a + 17d = 73 (ii)

Solving (i) and (ii),

(ii) – (i)
$$\Rightarrow$$

 $a + 17d - (a + 9d) = 73 - 41$
 $8d = 32$
 $\Rightarrow d = 4$
Using d in (i), we get
 $a + 9(4) = 41$
 $a = 41 - 36 = 5$

Now, the 26^{th} term is given by $a_{26} = 5 + (26 - 1)4 = 5 + 100 = 105$ Therefore the 26^{th} term is 105.

10. In a certain A.P. the 24^{th} term is twice the 10^{th} term. Prove that the 72^{nd} term is twice the 34^{th} term.

Solution:

Given, 24th term is twice the 10th term. We know that, n^{th} term $a_n = a + (n - 1)d$ $\Rightarrow a_{24} = 2(a_{10})$ a + (24 - 1)d = 2(a + (10 - 1)d)a + 23d = 2(a + 9d)a + 23d = 2a + 18da = 5d (1)Now, the 72nd term can be expressed as $a_{72} = a + (72 - 1)d$ = a + 71d= a + 5d + 66d= a + a + 66d[using (1)] = 2(a + 33d)= 2(a + (34 - 1)d) $= 2(a_{34})$ \Rightarrow a₇₂ = 2(a₃₄) Hence, the 72nd term is twice the 34th term of the given A.P.

11. The 26^{th} , 11^{th} and the last term of an A.P. are 0, 3 and -1/5, respectively. Find the common difference and the number of terms. Solution:

Given,
$$a_{26} = 0$$
, $a_{11} = 3$ and a_n (last term) = -1/5 of an A.P. We know that, n^{th} term $a_n = a + (n - 1)d$ Then, $a_{26} = a + (26 - 1)d$ $\Rightarrow a + 25d = 0$ (1)

And.

$$a_{11} = a + (11 - 1)d$$

 $\Rightarrow a + 10d = 3 \dots (2)$

Solving (1) and (2),

$$(1) - (2) \Rightarrow$$

$$a + 25d - (a + 10d) = 0 - 3$$

$$15d = -3$$

$$\Rightarrow$$
 d = -1/5

Using d in (1), we get

$$a + 25(-1/5) = 0$$

$$a = 5$$

Now, given that the last term $a_n = -1/5$

$$\Rightarrow$$
 5 + (n - 1)(-1/5) = -1/5

$$5 + -n/5 + 1/5 = -1/5$$

$$25 - n + 1 = -1$$

$$n = 27$$

Therefore, the A.P has 27 terms and its common difference is -1/5.

12. If the n^{th} term of the A.P. 9, 7, 5, is same as the n^{th} term of the A.P. 15, 12, 9, ... find n. Solution:

Given,

$$A.P_1 = 9, 7, 5, \dots$$
 and $A.P_2 = 15, 12, 9, \dots$

And, we know that, n^{th} term $a_n = a + (n - 1)d$

For $A.P_1$,

$$a = 9$$
, $d = Second term - first term = $9 - 7 = -2$$

And, its
$$n^{th}$$
 term $a_n = 9 + (n - 1)(-2) = 9 - 2n + 2$

$$a_n = 11 - 2n(i)$$

Similarly, for A.P₂

$$a = 15$$
, $d = Second term - first term = $12 - 15 = -3$$

And, its
$$n^{th}$$
 term $a_n = 15 + (n - 1)(-3) = 15 - 3n + 3$

$$a_n = 18 - 3n \dots (ii)$$

According to the question, its given that

$$n^{th}$$
 term of the A.P₁ = n^{th} term of the A.P₂

$$\Rightarrow$$
 11 – 2n = 18 - 3n

$$n = 7$$

Therefore, the 7^{th} term of the both the A.Ps are equal.

13. Find the 12th term from the end of the following arithmetic progressions:

- (i) 3, 5, 7, 9, 201
- (ii) 3,8,13, ...,253
- (iii) 1, 4, 7, 10, ...,88

Solution:

In order the find the 12^{th} term for the end of an A.P. which has n terms, its done by simply finding the $((n-12)+1)^{th}$ of the A.P

And we know, n^{th} term $a_n = a + (n - 1)d$

(i) Given A.P =
$$3, 5, 7, 9, \dots 201$$

Here,
$$a = 3$$
 and $d = (5 - 3) = 2$

Now, find the number of terms when the last term is known i.e, 201

$$a_n = 3 + (n - 1)2 = 201$$

$$3 + 2n - 2 = 201$$

$$2n = 200$$

$$n = 100$$

Hence, the A.P has 100 terms.

So, the 12^{th} term from the end is same as $(100 - 12 + 1)^{th}$ of the A.P which is the 89^{th} term.

$$\Rightarrow a_{89} = 3 + (89 - 1)2$$
$$= 3 + 88(2)$$
$$= 3 + 176$$

= 179

Therefore, the 12th term from the end of the A.P is 179.

(ii) Given A.P =
$$3,8,13, \dots, 253$$

Here,
$$a = 3$$
 and $d = (8 - 3) = 5$

Now, find the number of terms when the last term is known i.e, 253

$$a_n = 3 + (n - 1)5 = 253$$

$$3 + 5n - 5 = 253$$

$$5n = 253 + 2 = 255$$

$$n = 255/5$$

$$n = 51$$

Hence, the A.P has 51 terms.

So, the 12^{th} term from the end is same as $(51 - 12 + 1)^{th}$ of the A.P which is the 40^{th} term.

$$\Rightarrow a_{40} = 3 + (40 - 1)5$$

$$= 3 + 39(5)$$

$$= 3 + 195$$

$$= 198$$

Therefore, the 12th term from the end of the A.P is 198.

(iii) Given A.P = 1, 4, 7, 10, ..., 88

Here,
$$a = 1$$
 and $d = (4 - 1) = 3$

Now, find the number of terms when the last term is known i.e, 88

$$a_n = 1 + (n - 1)3 = 88$$

$$1 + 3n - 3 = 88$$

$$3n = 90$$

$$n = 30$$

Hence, the A.P has 30 terms.

So, the 12^{th} term from the end is same as $(30-12+1)^{th}$ of the A.P which is the 19^{th} term.

$$\Rightarrow a_{89} = 1 + (19 - 1)3$$

$$= 1 + 18(3)$$

$$= 1 + 54$$

$$= 55$$

Therefore, the 12th term from the end of the A.P is 55.

14. The 4^{th} term of an A.P. is three times the first and the 7^{th} term exceeds twice the third term by 1. Find the first term and the common difference. Solution:

Let's consider the first term and the common difference of the A.P to be a and d respectively.

Then, we know that $a_n = a + (n - 1)d$

Given conditions,

4th term of an A.P. is three times the first

Expressing this by equation we have,

$$\Rightarrow$$
 a₄ = 3(a)

$$a + (4 - 1)d = 3a$$

$$3d = 2a \Rightarrow a = 3d/2...(i)$$

And,

7th term exceeds twice the third term by 1

$$\Rightarrow$$
 a₇ = 2(a₃) + 1

$$a + (7-1)d = 2(a + (3-1)d) + 1$$

$$a + 6d = 2a + 4d + 1$$

$$a - 2d + 1 = 0 \dots (ii)$$

Using (i) in (ii), we have

$$3d/2 - 2d + 1 = 0$$

$$3d - 4d + 2 = 0$$

$$d = 2$$

So, putting
$$d = 2$$
 in (i), we get a

$$\Rightarrow$$
 a = 3

Therefore, the first term is 3 and the common difference is 2.

15. Find the second term and the n^{th} term of an A.P. whose 6^{th} term is 12 and the 8^{th} term is 22. Solution:

$$a_6 = 12$$
 and $a_8 = 22$

We know that
$$a_n = a + (n - 1)d$$

$$a_6 = a + (6-1)d = a + 5d = 12 \dots (i)$$

And,

$$a_8 = a + (8-1)d = a + 7d = 22 \dots (ii)$$

Solving (i) and (ii), we have

$$(ii) - (i) \Rightarrow$$

$$a + 7d - (a + 5d) = 22 - 12$$

$$2d = 10$$

$$d = 5$$

Putting d in (i) we get,

$$a + 5(5) = 12$$

$$a + 3(3) - 1$$

 $a = 12 - 25$

$$a = -13$$

Thus, for the A.P: a = -13 and d = 5

So, the n^{th} term is given by $a_n = a + (n-1)d$

$$a_n = -13 + (n-1)5 = -13 + 5n - 5$$

$$\Rightarrow a_n = 5n - 18$$

Hence, the second term is given by $a_2 = 5(2) - 18 = 10 - 18 = -8$

16. How many numbers of two digit are divisible by 3? Solution:

The first 2 digit number divisible by 3 is 12. And, the last 2 digit number divisible by 3 is 99.

So, this forms an A.P.

Where, a = 12 and d = 3

Finding the number of terms in this A.P

$$\Rightarrow$$
 99 = 12 + (n-1)3

$$99 = 12 + 3n - 3$$

$$90 = 3n$$

$$n = 90/3 = 30$$

Therefore, there are 30 two digit numbers divisible by 3.

17. An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find $32^{\rm nd}$ term.

Solution:

Given, an A.P of 60 terms

And,
$$a = 7$$
 and $a_{60} = 125$

We know that
$$a_n = a + (n - 1)d$$

$$\Rightarrow$$
 a₆₀ = 7 + (60 - 1)d = 125

$$7 + 59d = 125$$

$$59d = 118$$

$$d = 2$$

$$a_{32} = 7 + (32 - 1)2 = 7 + 62 = 69$$

$$\Rightarrow$$
 a₃₂ = 69

18. The sum of 4^{th} and 8^{th} terms of an A.P. is 24 and the sum of the 6^{th} and 10^{th} terms is 34. Find the first term and the common difference of the A.P. Solution:

Given, in an A.P The sum of 4^{th} and 8^{th} terms of an A.P. is 24 $\Rightarrow a_4 + a_8 = 24$ And, we know that $a_n = a + (n - 1)d$ [a + (4-1)d] + [a + (8-1)d] = 242a + 10d = 24 $a + 5d = 12 \dots$ (i)

Also given that, the sum of the 6^{th} and 10^{th} terms is 34 $\Rightarrow a_6 + a_{10} = 34$ [a + 5d] + [a + 9d] = 342a + 14d = 34a + 7d = 17 (ii)

Subtracting (i) form (ii), we have a + 7d - (a + 5d) = 17 - 12 2d = 5 d = 5/2Using d in (i) we get, a + 5(5/2) = 12 a = 12 - 25/2a = -1/2

Therefore, the first term is -1/2 and the common difference is 5/2.

19. The first term of an A.P. is 5 and its 100^{th} term is -292. Find the 50^{th} term of this A.P. Solution:

Given, an A.P whose a = 5 and $a_{100} = -292$ We know that $a_n = a + (n - 1)d$ $a_{100} = 5 + 99d = -292$ 99d = -297 d = -3Hence, the 50^{th} term is $a_{50} = a + 49d = 5 + 49(-3) = 5 - 147 = -142$

20. Find $a_{30} - a_{20}$ for the A.P.

(i) -9, -14, -19, -24

(ii) $a, a+d, a+2d, a+3d, \dots$

Solution:

We know that
$$a_n = a + (n - 1)d$$

So, $a_{30} - a_{20} = (a + 29d) - (a + 19) = 10d$

- (i) Given A.P. -9, -14, -19, -24 Here, a = -9 and d = -14 - (-9) = = -14 + 9 = -5So, $a_{30} - a_{20} = 10d$ = 10(-5)= -50
- (ii) Given A.P. a, a+d, a+2d, a+3d, So, $a_{30} - a_{20} = (a + 29d) - (a + 19d)$ =10d

21. Write the expression a_n-a_k for the A.P. $a,\,a+d,\,a+2d,\,\ldots$. Hence, find the common difference of the A.P. for which

- (i) 11th term is 5 and 13th term is 79.
- (ii) $a_{10} a_5 = 200$
- (iii) 20^{th} term is 10 more than the 18^{th} term. Solution:

Given A.P. a,
$$a+d$$
, $a+2d$,
So, $a_n = a + (n-1)d = a + nd -d$
And, $a_k = a + (k-1)d = a + kd - d$
 $a_n - a_k = (a + nd - d) - (a + kd - d)$
 $= (n - k)d$

- (i) Given 11^{th} term is 5 and 13^{th} term is 79, Here n = 13 and k = 11, $a_{13} - a_{11} = (13 - 11)d = 2d$ $\Rightarrow 79 - 5 = 2d$ d = 74/2 = 37
- (ii) Given, $a_{10} a_5 = 200$ $\Rightarrow (10 - 5)d = 200$ 5d = 200d = 40
- (iii) Given, 20^{th} term is 10 more than the 18^{th} term. $\Rightarrow a_{20} - a_{18} = 10$ (20 - 18)d = 10 2d = 10 d = 5

22. Find n if the given value of x is the nth term of the given A.P.

- (i) 25, 50, 75, 100, ; x = 1000
- (ii) -1, -3, -5, -7, ...; x = -151
- (iii) $5\frac{1}{2}$, 11, $16\frac{1}{2}$, 22,; x = 550
- (iv) 1, 21/11, 31/11, 41/11, ...; x = 171/11

Solution:

- (i) Given A.P. 25, 50, 75, 100,, 1000 Here, a = 25 d = 50 - 25 = 25Last term (nth term) = 1000 We know that $a_n = a + (n - 1)d$ $\Rightarrow 1000 = 25 + (n-1)25$ 1000 = 25 + 25n - 25 n = 1000/25n = 40
- (ii) Given A.P. -1, -3, -5, -7,, -151 Here, a = -1 d = -3 - (-1) = -2Last term $(n^{th}$ term) = -151 We know that $a_n = a + (n - 1)d$ $\Rightarrow -151 = -1 + (n-1)(-2)$ -151 = -1 - 2n + 2 n = 152/2n = 76
- (iii) Given A.P. $5\frac{1}{2}$, 11, $16\frac{1}{2}$, 22, ..., 550Here, $a = 5\frac{1}{2}$ $d = 11 - (5\frac{1}{2}) = 5\frac{1}{2} = 11\frac{1}{2}$ Last term (n^{th} term) = 550We know that $a_n = a + (n - 1)d$ $\Rightarrow 550 = 5\frac{1}{2} + (n-1)(11\frac{1}{2})$ $550 \times 2 = 11 + 11n - 11$ 1100 = 11nn = 100
- (iv) Given A.P. 1, 21/11, 31/11, 41/11, 171/11Here, a = 1 d = 21/11 - 1 = 10/11Last term (n^{th} term) = 171/11We know that $a_n = a + (n - 1)d$ $\Rightarrow 171/11 = 1 + (n-1)10/11$ 171 = 11 + 10n - 10 n = 170/10n = 17

23. The eighth term of an A.P is half of its second term and the eleventh term exceeds one third of its fourth term by 1. Find the 15^{th} term. Solution:

Given, an A.P in which,

```
a_8 = 1/2(a_2)
a_{11} = 1/3(a_4) + 1
We know that a_n = a + (n - 1)d
\Rightarrow a<sub>8</sub> = 1/2(a_2)
a + 7d = 1/2(a + d)
2a + 14d = a + d
a + 13d = 0 \dots (i)
And, a_{11} = 1/3(a_4) + 1
a + 10d = 1/3(a + 3d) + 1
3a + 30d = a + 3d + 3
2a + 27d = 3 \dots (ii)
Solving (i) and (ii), by (ii) -2x(i) \Rightarrow
2a + 27d - 2(a + 13d) = 3 - 0
d = 3
Putting d in (i) we get,
a + 13(3) = 0
a = -39
Thus, the 15<sup>th</sup> term a_{15} = -39 + 14(3) = -39 + 42 = 3
```

24. Find the arithmetic progression whose third term is 16 and the seventh term exceeds its fifth term by 12. Solution:

Given, in an A.P $a_3 = 16$ and $a_7 = a_5 + 12$ We know that $a_n = a + (n - 1)d$ $\Rightarrow a + 2d = 16.....(i)$ And, a + 6d = a + 4d + 12 2d = 12 $\Rightarrow d = 6$ Using d in (i), we have a + 2(6) = 16a = 16 - 12 = 4

Hence, the A.P is 4, 10, 16, 22,

25. The 7th term of an A.P. is 32 and its 13th term is 62. Find the A.P. Solution:

Given,
$$a_7 = 32$$
 and $a_{13} = 62$

From
$$a_n$$
 - $a_k = (a + nd - d) - (a + kd - d)$
= $(n - k)d$

$$a_{13} - a_7 = (13 - 7)d = 62 - 32 = 30$$

 $6d = 30$
 $d = 5$

$$a_7 = a + (7 - 1)5 = 32$$

$$a + 30 = 32$$

$$a = 2$$

Hence, the A.P is 2, 7, 12, 17,

26. Which term of the A.P. 3, 10, 17, will be 84 more than its 13th term? Solution:

Given, A.P. 3, 10, 17,

Here, a = 3 and d = 10 - 3 = 7According the question,

$$a_n = a_{13} + 84$$

Using
$$a_n = a + (n - 1)d$$
,

$$3 + (n-1)7 = 3 + (13-1)7 + 84$$

$$3 + 7n - 7 = 3 + 84 + 84$$

$$7n = 168 + 7$$

$$n = 175/7$$

$$n = 25$$

Therefore, it the 25th term which is 84 more than its 13th term.

27. Two arithmetic progressions have the same common difference. The difference between their 100^{th} terms is 100, what is the difference between their 1000^{th} terms? Solution:

Let the two A.Ps be A.P₁ and A.P₂

For A.P₁ the first term = a and the common difference = d

And for $A.P_2$ the first term = b and the common difference = d

So, from the question we have

$$a_{100} - b_{100} = 100$$

$$(a + 99d) - (b + 99d) = 100$$

$$a - b = 100$$

Now, the difference between their 1000th terms is,

$$(a + 999d) - (b + 999d) = a - b = 100$$

Therefore, the difference between their 1000th terms is also 100.