Punjab Board Class 12 Maths Model Papers

Time Allowed : 3 Hours Max. Marks :80

Instructions:

MATHEMATICS

- 1. All the questions are compulsory.
- 2. The question paper consists of 16 questions divided into 4 sections A,B,C and D.
- 3. Section A comprises of 3 questions:
 - (i) Q.No.1 consists of 16 Multiple Choice Questions carrying 1 mark each.
 - (ii) Q.No.2 consists of 8 Fill in the Blank type questions with options carrying 1 mark each.
 - (iii) Q.No.3 consists of 8 True/False type questions carrying 1 mark each.
- 4. Section B comprises of 5 questions of 2 marks each.
- 5. Section C comprises of 5 questions of 4 marks each.
- 6. Section D comprises of 3 questions of 6 marks each.

Direction ratios of line given by $\frac{x-1}{3} = \frac{2y+6}{12} = \frac{1-z}{-7}$ are :

(b) < 3, -6, 7 >

(xiv)

(a) < 3,12,-7 >

- 7. There is no overall choice. However, an internal choice has been provided in three questions of 2 marks, three questions of 4 marks and three questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
- 8. Use of calculator is not permitted.

Section - A Q1 Choose the correct options in the following questions: (i) Function $f: R \to R$, f(x) = 3x - 5 is: 1 (a)one-one only (b)onto only (c)one-one and onto (d)none of these Relation given by $R = \{(1, 1), (2, 2), (1, 2), (2, 1)\}$ is 1 (a)reflexive only (b)symmetric only (c)transitive only (d) equivalence relation (iii) $\cos^{-1}\left(-\cos\frac{2\pi}{3}\right)$ is equal to : 1 (d) $\frac{\pi}{2}$ If $\begin{bmatrix} 1 & -x \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 8 \\ 4 & -3 \end{bmatrix}$ then value of x is: 1 (v) If order of matrix A is 2×3 and order of matrix is 3×5 then order of matrix B'A' is: 1 $(a)5 \times 2$ (c) 5×3 (d) 3×2 (vi) If $f(x) = \begin{cases} kx + 1, & x \le 5 \\ 3x - 5, & x > 5 \end{cases}$ is continuous then value of k is: 1 (a) $\frac{3}{5}$ (b) $\frac{5}{9}$ (vii) $\frac{d}{dx}\{\tan^{-1}(e^x)\}$ is equal to : (d) $\frac{3}{5}$ (c) $\frac{5}{2}$ 1 (a) $e^x \tan^{-1} e^x$ $(d)e^x \sec^{-1} x$ (viii) Slope of tangent to the curve $y = x^2 - 2x + 1$ at x = 3 is: 1 (a)4 (d)2(ix) $\int 3x^2 dx$ is equal to: 1 (b) $x^2 + c$ $(d)x^4 + c$ (a)x + c $\int_0^{\pi/2} \frac{\sin^{1/2} x}{\sin^{1/2} x + \cos^{1/2} x} dx$ is equal to : 1 (d) $\frac{\pi}{4}$ Degree of differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 3y = 0$ is : 1 (d) 0(xii) If $\vec{a} \cdot \vec{b} = |\vec{a} \times \vec{b}|$ then angle between vector \vec{a} and vector \vec{b} is : 1 If $\vec{a}.\vec{b}=0$ then angle between vectors \vec{a} and \vec{b} is : (xiii) 1

1

(d) < 3,6,-7 >

(xv)	Maximum value of $Z=3x+y$ for the constraints $x+y\leq 4$, $x\geq 0$, $y\geq 0$ is: (a)12 (b)16 (c)4 (d)10	1
(xvi)	If $P(A)=\frac{1}{2}$, $P(B)=\frac{3}{8}$ and $P(A\cap B)=\frac{1}{5}$ then $P(A B)$ is equal to :	
	(a) $\frac{2}{5}$ (b) $\frac{8}{15}$ (c) $\frac{2}{3}$ (d) $\frac{5}{8}$	1
	3 3	
Q2 F	Fill in the blanks from the given options	
	0, 1, $< 3, -1, 2 >$, $\frac{\pi}{2}$, 6, 2, 5, 4, $-\sin x$, $\tan x$	
(i)	Value of sin ⁻¹ (1) is	1
(ii)	If $A = [a_{ij}]_{2 imes 3}$ such that $a_{ij} = i + j$ then $a_{11} =$	1
(iii)	If $\begin{vmatrix} x & 0 \\ 7 & 1 \end{vmatrix} = \begin{vmatrix} 3 & 0 \\ 7 & 2 \end{vmatrix}$ then $x = $	1
(iv)	If $y = \cos x$ then at $x = 0$, $\frac{dy}{dx} = $	1
	$\int_0^5 dx = \underline{\qquad}$	1
(vi)	Order of the differential equation $\frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^3 + y = 0$ is	1
(vii)	Direction ratios of a line which is perpendicular to the plane $3x - y + 2z = 9$ are	1
(viii)	Probability of occurrence of impossible event =	1
Q3 S	State true or false for the following statements :	
(i)	If A is a square matrix then $(A + A')$ is a skew-symmetric matrix.	1
(ii)	If $y = 10x$ then $\frac{dy}{dx} = 0$.	1
(iii)	If $y = \tan x$ then $\frac{dy}{dx} = \sec^2 x$	1
(iv)	$\int dx = x^2 + c$	1
(v)	xdy - ydx = 0 is a variable separable type of differential equation.	1
(vi) (vii)	Scalar product of two perpendicular vectors is zero. Point $(3, -4, 2)$ lies in the plane $2x + y - z = 0$	1 1
(viii)	If $P(E) = 0.4$ then $P(not E) = 0.6$	1
	Section – B	
	Section 5	
Q4	If $A=\begin{bmatrix}2&3\\1&4\end{bmatrix}$ and $f(x)=x^2+2x+3$ then find $f(A)$.	2
Q5	Find the interval in which function $f(x) = x^2 + 2x - 7$ is increasing.	2
	OR Find the slope of the normal to the curve $y=x^3-x+1$ at the point whose x –coordinate is 2 .	2
Q6	Evaluate $\int e^x \left(\log x + \frac{1}{x}\right) dx$.	2
	OR	2
	Evaluate $\int x \sin x dx$	2
Q7	Using integration find the area bounded by the parabola $y^2 = 4x$ straight lines $x = 1, x = 4$ in the first quadrant.	2
Q8	Find the unit vector in the direction of diagonal of the parallelogram whose sides are given by the vectors	_
	$\vec{a}=2\hat{\imath}-\hat{\jmath}-3\hat{k}$, $\vec{b}=5\hat{\imath}+2\hat{\jmath}-\hat{k}$	2
	OR If $ec{a}=2\hat{\imath}+3\hat{\jmath}-5\widehat{k}$, $ec{b}=7\hat{\imath}-2\hat{\jmath}-4\widehat{k}$ then find $ec{a} imes ec{b}$.	2
		_
	Section – C	
Q9	Find the value of: $2 \tan^{-1}(1) - \cos^{-1}\left(\frac{-1}{2}\right) + 3 \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) + 2 \sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$	4

Q10 If $y = x^{\sin x} + (\sin x)^x$ then find $\frac{dy}{dx}$. 4

If $y=(\tan^{-1}x)^2$, show that $(x^2+1)^2y_2+2x(x^2+1)y_1=2$ Q11 Evaluate $\int \frac{dx}{(x-1)(x-2)(x-3)}$.

OR

Evaluate $\int \frac{\sec^2 x}{\tan^2 x - 4\tan x + 7} dx$ Q12 Find the general solution of the differential equation $x^2 dy - (x^2 + xy + y^2) dx = 0$.

4

6

6

6

6

6

Find the general solution of the differential equation $\sec^2 x \tan y \, dx - \sec^2 y \tan x \, dy = 0$.

Bag I contains 3 red and 4 white balls. Bag II contains 7 red and 5 white balls. A bag is selected at random and Q13 a ball is drawn from it, which is found to be red. Find the probability that ball is drawn from bag II.

Section - D

Q14 Solve the following system of linear equations by matrix method:

$$2x + 3y - 5z = 13$$
 , $x - y + z = -2$, $3x + 2y - z = 8$

Express $A = \begin{bmatrix} 2 & 3 & 5 \\ 0 & 2 & 9 \\ 3 & 2 & 8 \end{bmatrix}$ as the sum of a symmetric matrix and a skew-symmetric matrix.

Find the shortest distance between the lines Q15

$$\vec{r} = 6i - j + 3k + \lambda(i + 3j + 2k) \text{ and } \vec{r} = 9i + j - 4k + \mu(i - 2j + k)$$

Find the foot of perpendicular drawn from the point (2, -3, 5) on the plane 3x + 4y - 2z = 20

Solve the following linear programming problem graphically:

Maximize and minimize Z = 4x + 3y subject to the constraints

$$x+y \le 8$$
, $4x+y \ge 8$, $x-y \ge 0$, $x \ge 0$, $y \ge 0$

OR

Solve the following linear programming problem graphically:

Maximize and minimize Z = 5x + 2y - 2 subject to the constraints

$$x + y \le 10$$
, $x + y \ge 3$, $x \le 8$, $y \le 8$, $x \ge 0$, $y \ge 0$