Exercise 5(B)

1. Without solving, comment upon the nature of roots of each of the following equations:
(i) $7 \mathrm{x}^{2}-9 \mathrm{x}+2=0$
(ii) $6 x^{2}-13 x+4=0$
(iii) $25 \mathrm{x}^{2}-10 \mathrm{x}+1=0$
(iv) $x^{2}+2 \sqrt{ } 3 x-9=0$
(v) $x^{2}-a x-b^{2}=0$
(vi) $2 x^{2}+8 x+9=0$

Solution:

(i) Given quadratic equation, $7 \mathrm{x}^{2}-9 \mathrm{x}+2=0$

Here, $a=7, b=-9$ and $c=2$
So, the Discriminant $(D)=b^{2}-4 a c$

$$
\begin{aligned}
\mathrm{D} & =(-9)^{2}-4(7)(2) \\
& =81-56 \\
& =25
\end{aligned}
$$

As $\mathrm{D}>0$, the roots of the equation is real and unequal.
(ii) Given quadratic equation, $6 x^{2}-13 x+4=0$

Here, $a=6, b=-13$ and $c=4$
So, the Discriminant $(D)=b^{2}-4 a c$

$$
\begin{aligned}
\mathrm{D} & =(-13)^{2}-4(6)(4) \\
& =169-96 \\
& =73
\end{aligned}
$$

As $\mathrm{D}>0$, the roots of the equation is real and unequal.
(iii) Given quadratic equation, $25 \mathrm{x}^{2}-10 \mathrm{x}+1=0$

Here, $a=25, b=-10$ and $c=1$
So, the Discriminant $(D)=b^{2}-4 a c$
$\mathrm{D}=(-10)^{2}-4(25)(1)$

$$
=100-100
$$

$$
=0
$$

As $\mathrm{D}=0$, the roots of the equation is real and equal.
(iv) Given quadratic equation, $x^{2}+2 \sqrt{ } 3 x-9=0$

Here, $\mathrm{a}=1, \mathrm{~b}=2 \sqrt{ } 3$ and $\mathrm{c}=-9$
So, the Discriminant $(D)=b^{2}-4 a c$

$$
\begin{aligned}
\mathrm{D} & =(2 \sqrt{3})^{2}-4(1)(-9) \\
& =12+36 \\
& =48
\end{aligned}
$$

As $\mathrm{D}>0$, the roots of the equation is real and unequal.
(v) Given quadratic equation, $\mathrm{x}^{2}-\mathrm{ax}-\mathrm{b}^{2}=0$

Here, $a=1, b=-a$ and $c=-b^{2}$
So, the Discriminant $(D)=b^{2}-4 a c$
$D=(a)^{2}-4(1)\left(-b^{2}\right)$

$$
=a^{2}+4 b^{2}
$$

$a^{2}+4 b^{2}$ is always positive value.

Thus $\mathrm{D}>0$, and the roots of the equation is real and unequal
(vi) Given quadratic equation, $2 \mathrm{x}^{2}+8 \mathrm{x}+9=0$

Here, $\mathrm{a}=2, \mathrm{~b}=8$ and $\mathrm{c}=9$
So, the Discriminant $(D)=b^{2}-4 a c$

$$
\begin{aligned}
\mathrm{D} & =(8)^{2}-4(2)(9) \\
& =64-72 \\
& =-8
\end{aligned}
$$

As $\mathrm{D}<0$, the equation has no roots.
2. Find the value of ' p ', if the following quadratic equations has equal roots:
(i) $4 x^{2}-(p-2) x+1=0$
(ii) $x^{2}+(p-3) x+p=0$

Solution:
(i) $\quad 4 \mathrm{x}^{2}-(\mathrm{p}-2) \mathrm{x}+1=0$

Here, $a=4, b=-(p-2), c=1$
Given that the roots are equal,
So, Discriminant $=0 \Rightarrow b^{2}-4 a c=0$
$D=(-(p-2))^{2}-4(4)(1)=0$
$\Rightarrow \mathrm{p}^{2}+4-4 \mathrm{p}-16=0$
$\Rightarrow \mathrm{p}^{2}-4 \mathrm{p}-12=0$
$\Rightarrow \mathrm{p}^{2}-6 \mathrm{p}+2 \mathrm{p}-12=0$
$\Rightarrow \mathrm{p}(\mathrm{p}-6)+2(\mathrm{p}-6)=0$
$\Rightarrow(\mathrm{p}+2)(\mathrm{p}-6)=0$
$\Rightarrow \mathrm{p}+2=0$ or $\mathrm{p}-6=0$
Hence, $\mathrm{p}=-2$ or $\mathrm{p}=6$
(ii) $\mathrm{x}^{2}+(\mathrm{p}-3) \mathrm{x}+\mathrm{p}=0$

Here, $a=1, b=(p-3), c=p$
Given that the roots are equal,
So, Discriminant $=0 \Rightarrow b^{2}-4 a c=0$
$D=(p-3)^{2}-4(1)(p)=0$
$\Rightarrow \mathrm{p}^{2}+9-6 \mathrm{p}-4 \mathrm{p}=0$
$\Rightarrow \mathrm{p}^{2}-10 \mathrm{p}+9=0$
$\Rightarrow \mathrm{p}^{2}-9 \mathrm{p}-\mathrm{p}+9=0$
$\Rightarrow \mathrm{p}(\mathrm{p}-9)-1(\mathrm{p}-9)=0$
$\Rightarrow(\mathrm{p}-9)(\mathrm{p}-1)=0$
$\Rightarrow \mathrm{p}-9=0$ or $\mathrm{p}-1=0$
Hence, $\mathrm{p}=9$ or $\mathrm{p}=1$

