Exercise 22(C)

1. Find AD.
(i)

Solution:

In $\triangle \mathrm{AEB}$,
$\mathrm{AE} / \mathrm{BE}=\tan 32^{\circ}$
$\mathrm{AE}=20 \times 0.6249=12.50 \mathrm{~m}$
$\mathrm{AD}=\mathrm{AE}+\mathrm{ED}=12.50+5=17.50 \mathrm{~m}$
(ii)

Solution:
In $\triangle \mathrm{ABC}$,
$\angle A C D=\angle A B C+\angle B A C$
and $\angle \mathrm{ABC}=\angle \mathrm{BAC} \quad$ [Since, $\mathrm{AC}=\mathrm{BC}$]
$\angle \mathrm{ABC}=\angle \mathrm{BAC}=48 \% 2=24^{\circ}$
Now,
$\mathrm{AD} / \mathrm{AB}=\sin 24^{\circ}$
$\mathrm{AD}=30 \times 0.4067=12.20 \mathrm{~m}$
2. In the following diagram, $A B$ is a floor-board; $P Q R S$ is a cubical box with each edge $=1 \mathrm{~m}$ and $\angle B=60^{\circ}$. Calculate the length of the board $A B$. Solution:

In $\triangle \mathrm{PSB}$,
$\mathrm{PS} / \mathrm{PB}=\sin 60^{\circ}$
$\mathrm{PB}=2 / \sqrt{ } 3=1.155 \mathrm{~m}$
In $\triangle \mathrm{APQ}$,

$\angle \mathrm{APQ}=60^{\circ}$
$\mathrm{PQ} / \mathrm{AP}=\cos 60^{\circ}$
$\mathrm{AP}=1 /(1 / 2)=2 \mathrm{~m}$
Thus,
$\mathrm{AB}=\mathrm{AP}+\mathrm{PB}=2+1.155=3.155 \mathrm{~m}$
3. Calculate BC.

Solution:
In $\triangle \mathrm{ADC}$,
$\mathrm{CD} / \mathrm{AD}=\tan 42^{\circ}$
$C D=20 \times 0.9004=18.008 \mathrm{~m}$
In $\triangle \mathrm{ADB}$,
$\mathrm{AD} / \mathrm{BD}=\tan 35^{\circ}$
$\mathrm{BD}=\mathrm{AD} / \tan 35^{\circ}=20 / 0.7002=28.563 \mathrm{~m}$
Thus, $\mathrm{BC}=\mathrm{BD}-\mathrm{CD}=10.55 \mathrm{~m}$

4. Calculate AB.

Solution:

In $\triangle \mathrm{AMOB}$, $\cos 30^{\circ}=\mathrm{AO} / \mathrm{MO}$
$\sqrt{ } 3 / 2=A O / 6$
$\mathrm{AO}=5.20 \mathrm{~m}$
In $\triangle \mathrm{BNO}$,
$\sin 47^{\circ}=\mathrm{OB} / \mathrm{NO}$
$0.73=\mathrm{OB} / 5$
$\mathrm{OB}=3.65 \mathrm{~m}$
So, $\mathrm{AB}=\mathrm{OA}+\mathrm{OB}$
$\mathrm{AB}=5.20+3.65$
$\mathrm{AB}=8.85 \mathrm{~m}$
5. The radius of a circle is given as 15 cm and chord $A B$ subtends an angle of 131° at the centre C of the circle. Using trigonometry, calculate:
(i) the length of AB ;
(ii) the distance of $A B$ from the centre C.

Solution:
Given, $\mathrm{CA}=\mathrm{CB}=15 \mathrm{~cm}$ and $\angle \mathrm{ACB}=131^{\circ}$
Construct a perpendicular CP from centre C to the chord AB .
Then, CP bisects $\angle A C B$ as well as chord $A B$.
So, $\angle \mathrm{ACP}=65.5^{\circ}$
In $\triangle \mathrm{ACP}$,
$\mathrm{AP} / \mathrm{AC}=\sin \left(65.5^{\circ}\right)$
$\mathrm{AP}=15 \times 0.91=13.65 \mathrm{~cm}$

(i) $\mathrm{AB}=2 \mathrm{AP}=2 \times 13.65=27.30 \mathrm{~cm}$
(ii) $\mathrm{CP}=\mathrm{AP} \cos \left(65.5^{\circ}\right)=15 \times 0.415=6.22 \mathrm{~cm}$
6. At a point on level ground, the angle of elevation of a vertical tower is found to be such that its tangent is $\mathbf{5 / 1 2}$. On walking 192 meters towards the tower, the tangent of the angle is found to be $3 / 4$. Find the height of the tower.
Solution:

Let's assume AB to be the vertical tower and C and D be the two points such that $\mathrm{CD}=192 \mathrm{~m}$.
And let $\angle \mathrm{ACB}=\theta$ and $\angle \mathrm{ADB}=\alpha$
Given,
$\tan \theta=5 / 12$
$\mathrm{AB} / \mathrm{BC}=5 / 12$
$\mathrm{AB}=5 / 12 \mathrm{BC}$
Also, $\tan \alpha=3 / 4$
$\mathrm{AB} / \mathrm{BD}=3 / 4$
$(5 / 12 \times \mathrm{BC}) / \mathrm{BD}=3 / 4$
$(192+\mathrm{BD}) / \mathrm{BD}=3 / 4 \times 12 / 5$
$\mathrm{BD}=240 \mathrm{~m}$
$B C=(192+240)=432 \mathrm{~m}$
By (i), $\mathrm{AB}=5 / 12 \times 432=180 \mathrm{~m}$
Therefore, the height of the tower is 180 m .
7. A vertical tower stands on a horizontal plane and is surmounted by a vertical flagstaff of height h meter. At a point on the plane, the angle of elevation of the bottom of the flagstaff is α and at the top of the flagstaff is β. Prove that the height of the tower is $h \tan \alpha /(\tan \beta-\tan \alpha)$. Solution:

Let $A B$ be the tower of height x metre, surmounted by a vertical flagstaff AD . Let C be a point on the plane such that $\angle \mathrm{ACB}=\alpha$, $\angle A C B=\beta$ and $A D=h$.
In $\triangle \mathrm{ABC}$,
$\mathrm{AB} / \mathrm{BC}=\tan \alpha$
$\mathrm{BC}=\mathrm{x} / \tan \alpha$
In $\triangle \mathrm{DBC}$,
$\mathrm{BD} / \mathrm{BC}=\tan \beta$
$\mathrm{BD}=(\mathrm{x} / \tan \alpha) \mathrm{x} \tan \beta \ldots \ldots$ [From (i)]
$(\mathrm{h}+\mathrm{x}) \tan \alpha=\mathrm{x} \tan \beta$

$\mathrm{x} \tan \beta-\mathrm{x} \tan \alpha=\mathrm{h} \tan \alpha$
Therefore, height of the tower is $\mathrm{h} \tan \alpha /(\tan \beta-\tan \alpha)$
8. With reference to the given figure, a man stands on the ground at point A, which is on the same horizontal plane as B, the foot of the vertical pole $B C$. The height of the pole is $\mathbf{1 0} \mathbf{~ m}$. The man's eye s $\mathbf{2} \mathbf{~ m}$ above the ground. He observes the angle of elevation of C, the top of the pole, as x^{0}, where $\tan x^{0}=2 / 5$. Calculate:
(i) the distance AB in metres;
(ii) angle of elevation of the top of the pole when he is standing 15 metres from the pole. Give your answer to the nearest degree.

Solution:

Let take AD to be the height of the man, $\mathrm{AD}=2 \mathrm{~m}$.
So, $C E=(10-2)=8 \mathrm{~m}$
(i) In \triangle CED,
$\mathrm{CE} / \mathrm{DE}=\tan \mathrm{x}=2 / 5$
$8 / \mathrm{DE}=2 / 5$
$\Rightarrow \mathrm{DE}=20 \mathrm{~m}$
And, as $\mathrm{AB}=\mathrm{DE}$ we get
$\mathrm{AB}=20 \mathrm{~m}$

(ii) Let A'D' be the new position of the man and θ be the angle of elevation of the top of the tower.

So, $D^{\prime} E=15 \mathrm{~m}$
In \triangle CED,
$\tan \theta=\mathrm{CE} / \mathrm{D}^{\prime} \mathrm{E}=8 / 15=0.533$
$\theta=28^{\circ}$
9. The angles of elevation of the top of a tower from two points on the ground at distances a and b meters from the base of the tower and in the same line are complementary. Prove that the height of the tower is $\sqrt{ }$ ab meter.
Solution:

Let's assume $A B$ to be the tower of height h meters.
And, let C and D be two points on the level ground such that $\mathrm{BC}=\mathrm{b}$ meters, $\mathrm{BD}=$ a meters, $\angle \mathrm{ACB}=\alpha$, $\angle \mathrm{ADB}=\beta$.
Given, $\alpha+\beta=90^{\circ}$
In $\triangle \mathrm{ABC}$,
$\mathrm{AB} / \mathrm{BC}=\tan \alpha$
$\mathrm{h} / \mathrm{b}=\tan \alpha$
In $\triangle \mathrm{ABD}$,
$\mathrm{AB} / \mathrm{BD}=\tan \beta$
$\mathrm{h} / \mathrm{a}=\tan \left(90^{\circ}-\alpha\right)=\cot \alpha$
Now, multiplying (i) by (ii), we get
$(\mathrm{h} / \mathrm{a}) \mathrm{x}(\mathrm{h} / \mathrm{b})=1$
$h^{2}=a b$
So, $\mathrm{h}=\sqrt{\mathrm{ab}}$ meter
Therefore, height of the tower is $\sqrt{ }$ ab meter.
10. From a window $A, 10 \mathrm{~m}$ above the ground the angle of elevation of the top C of a tower is x^{0}, where $\tan x^{0}=5 / 2$ and the angle of depression of the foot D of the tower is y^{0}, where $\tan y^{0}=1 / 4$. Calculate the height $C D$ of the tower in metres. Solution:

We have, $\mathrm{AB}=\mathrm{DE}=10 \mathrm{~m}$
So, in $\triangle \mathrm{ABC}$
DE/AE $=\tan y=1 / 4$
$\mathrm{AE}=4 \mathrm{DE}=4 \times 10=40 \mathrm{~m}$

In $\triangle \mathrm{ABC}$,
CE/AE $=\tan \mathrm{x}=5 / 2$
$C E=40 \times 5 / 2=100 \mathrm{~m}$
So, $\mathrm{CD}=\mathrm{DE}+\mathrm{EC}=10+100=110 \mathrm{~m}$
Therefore, the height of the tower CD is 110 m .

