Exercise 7(B)

1. Find the fourth proportional to:
(i) $1.5,4.5$ and 3.5 (ii) $3 \mathrm{a}, 6 \mathrm{a}^{2}$ and $2 \mathrm{ab}^{2}$

Solution:
(i) Let's assume the fourth proportional to $1.5,4.5$ and 3.5 be x. 1.5:
$4.5=3.5$: x
$1.5 \times \mathrm{x}=3.5 \times 4.5$
$\mathrm{x}=(3.5 \times 4.5) / 1.5$
$\mathrm{x}=10.5$
(ii) Let's assume the fourth proportional to $3 \mathrm{a}, 6 \mathrm{a}^{2}$ and $2 \mathrm{ab}^{2}$ be x .

$$
\begin{aligned}
& 3 a: 6 a^{2}=2 a b^{2}: x \\
& 3 a \times x=2 a b^{2} \times 6 a^{2} \\
& 3 a \times x=12 a^{3} b^{2} \\
& x=4 a^{2} b^{2}
\end{aligned}
$$

2. Find the third proportional to:
$2 \frac{2}{3}$
and 4
(ii) a - b and $\mathbf{a}^{\mathbf{2}}-\mathbf{b}^{\mathbf{2}}$

Solution:
(i) Let's take the third proportional to $2 \frac{2}{3}$ and 4 be x .
So, $2 \frac{2}{3}$ $, 4, \mathrm{x}$ are in continued proportion.
8/3: $4=4$: x
$(8 / 3) / 4=4 / x$
$\mathrm{x}=16 \times 3 / 8=6$
(ii) Let's take the third proportional to $\mathrm{a}-\mathrm{b}$ and $\mathrm{a}^{2}-\mathrm{b}^{2}$ be x .

So, $\mathrm{a}-\mathrm{b}, \mathrm{a}^{2}-\mathrm{b}^{2}$, x are in continued proportion.
$a-b: a^{2}-b^{2}=a^{2}-b^{2}: x$

$$
\begin{aligned}
& \frac{a-b}{a^{2}-b^{2}}=\frac{a^{2}-b^{2}}{x} \\
& x=\frac{\left(a^{2}-b^{2}\right)^{2}}{a-b} \\
& x=\frac{(a+b)(a-b)\left(a^{2}-b^{2}\right)}{a-b} \\
& x=(a+b)\left(a^{2}-b^{2}\right)
\end{aligned}
$$

3. Find the mean proportional between:
(i) $6+3 \sqrt{ } 3$ and $8-4 \sqrt{ } 3$
(ii) $\mathbf{a}-\mathrm{b}$ and $\mathbf{a}^{\mathbf{3}}-\mathbf{a}^{2} b$

Solution:

(i) Let the mean proportional between $6+3 \sqrt{3}$ and $8-4 \sqrt{3}$ be x.

So, $6+3 \sqrt{ } 3$, x and $8-4 \sqrt{ } 3$ are in continued proportion.

$$
\begin{aligned}
& 6+3 \sqrt{ } 3: x=x: 8-4 \sqrt{ } 3 \\
& x \times x=(6+3 \sqrt{ } 3)(8-4 \sqrt{ } 3) \\
& x^{2}=48+24 \sqrt{ } 3-24 \sqrt{3}-36 \\
& x^{2}=12 \\
& x=2 \sqrt{3}
\end{aligned}
$$

(ii) Let the mean proportional between $a-b$ and $a^{3}-a^{2} b$ be x.

$$
\begin{aligned}
& a-b, x, a^{3}-a^{2} b \text { are in continued proportion. } \\
& a-b: x=x: a^{3}-a^{2} b \\
& x \times x=(a-b)\left(a^{3}-a^{2} b\right) \\
& x^{2}=(a-b) a^{2}(a-b)=[a(a-b)]^{2} \\
& x=a(a-b)
\end{aligned}
$$

4. If $x+5$ is the mean proportional between $x+2$ and $x+9$; find the value of x. Solution:

Given, $\mathrm{x}+5$ is the mean proportional between $\mathrm{x}+2$ and $\mathrm{x}+9$.
So, $(x+2),(x+5)$ and $(x+9)$ are in continued proportion.
$(x+2):(x+5)=(x+5):(x+9)$
$(x+2) /(x+5)=(x+5) /(x+9)$
$(x+5)^{2}=(x+2)(x+9)$
$x^{2}+25+10 x=x^{2}+2 x+9 x+18$
$25-18=11 x-10 x$
$\mathrm{x}=7$
5. If $x^{2}, 4$ and 9 are in continued proportion, find x.

Solution:
Given, $x^{2}, 4$ and 9 are in continued proportion
So, we have
$x^{2} / 4=4 / 9$
$x^{2}=16 / 9$
Thus, $x=4 / 3$
6. What least number must be added to each of the numbers $6,15,20$ and 43 to make them proportional?

Solution:

Let assume the number added to be x .
So, $(6+x):(15+x)::(20+x):(43+x)$
$(6+x) /(15+x)=(20+x) /(43+x)$
$(6+x)(43+x)=(20+x)(43+x)$

$$
\begin{aligned}
& 258+6 x+43 x+x^{2}=300+20 x=15 x+x^{2} \\
& 49 x-35 x=300-258 \\
& 14 x=42 \\
& x=3
\end{aligned}
$$

Therefore, the required number which should be added is 3 .

7. (i) If $\mathbf{a}, \mathrm{b}, \mathrm{c}$ are in continued proportion,

Solution:

Show that: $\frac{a^{2}+b^{2}}{b(a+c)}=\frac{b(a+c)}{b^{2}+c^{2}}$
Given,
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in continued proportion.
So, we have
$\mathrm{a} / \mathrm{b}=\mathrm{b} / \mathrm{c}$
$\Rightarrow b^{2}=a c$
Now,

$$
\begin{aligned}
&\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)=\left(a^{2}+a c\right)\left(a c+c^{2}\right) \quad\left[A s ~ b^{2}=a c\right] \\
&=a(a+c) c(a+c) \\
&=a c(a+c)^{2} \\
&=b^{2}(a+c)^{2} \\
&\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)=[b(a+c)][b(a+c)] \\
& \text { Thus, L.H.S }=\text { R.H.S }
\end{aligned}
$$

$\frac{a^{2}+b^{2}}{b(a+c)}=\frac{b(a+c)}{b^{2}+c^{2}}$

- Hence Proved
(ii) If a, b, c are in continued proportion and $a(b-c)=2 b$, prove that: $a-c=2(a+b) / a$

Solution:

Given,
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in continued proportion.
So, we have
$\mathrm{a} / \mathrm{b}=\mathrm{b} / \mathrm{c}$
$\Rightarrow \mathrm{b}^{2}=\mathrm{ac}$
And, given $a(b-c)=2 b$
$\mathrm{ab}-\mathrm{ac}=2 \mathrm{~b}$
$a b-b^{2}=2 b$
$a b=2 b+b^{2}$
$\mathrm{ab}=\mathrm{b}(2+\mathrm{b})$
$\mathrm{a}=\mathrm{b}+2$
$a-b=2$
Now, taking the L.H.S we have
$\begin{aligned} \text { L.H.S } & =a-c \\ & =a(a-c) / a \quad \text { [Multiply and divide by } a]\end{aligned}$
$=\mathrm{a}^{2}-\mathrm{ac} / \mathrm{a}$
$=a^{2}-b^{2} / a$
$=(a-b)(a+b) / a$
$=2(a+b) / a$
$=$ R.H.S

- Hence Proved
(iii) If $\mathbf{a} / \mathbf{b}=\mathbf{c} / \mathbf{d}$, show that: $\frac{a^{3} c+a c^{3}}{b^{3} d+b d^{3}}=\frac{(a+c)^{4}}{(b+d)^{4}}$

Solution:

Let's take $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}=\mathrm{k}$
So, $\mathrm{a}=\mathrm{bk}$ and $\mathrm{c}=\mathrm{dk}$
Taking L.H.S,

$$
\begin{aligned}
\text { L.H.S. } & =\frac{a^{3} c+a c^{3}}{b^{3} d+b d^{3}}=\frac{a c\left(a^{2}+c^{2}\right)}{b d\left(b^{2}+d^{2}\right)} \\
& =\frac{(b k \times d k)\left(b^{2} k^{2}+d^{2} k^{2}\right)}{b d\left(b^{2}+d^{2}\right)} \\
& =\frac{k^{2} \times k^{2}\left(b^{2}+d^{2}\right)}{\left(b^{2}+d^{2}\right)}=k^{4}
\end{aligned}
$$

Now, taking the R.H.S

$$
\text { R.H.S. }=\frac{(a+c)^{4}}{(b+d)^{4}}=\frac{(b k+d k)^{4}}{(b+d)^{4}}=\left[\frac{k(b+d)}{b+d}\right]^{4}=k^{4}
$$

Thus, L.H.S = R.H.S

- Hence Proved

8. What least number must be subtracted from each of the numbers 7,17 and 47 so that the remainders are in continued proportion?
Solution:
Let's assume the number subtracted to be x .
So, we have
$(7-x):(17-x)::(17-x):(47-x)$
$\frac{7-x}{17-x}=\frac{17-x}{47-x}$
$(7-x)(17-x)=(17-x)^{2}$
$329-47 \mathrm{x}-7 \mathrm{x}+\mathrm{x}^{2}=289-34 \mathrm{x}+\mathrm{x}^{2}$
$329-289=-34 x+54 x$
$20 \mathrm{x}=40$
x $=2$
Therefore, the required number which must be subtracted is 2 .
