

1. Name the greatest and the smallest sides in the following triangles: (a) $\triangle ABC$, $\angle A = 56^{\circ}$, $\angle B = 64^{\circ}$ and $\angle C = 60^{\circ}$ (b) $\triangle DEF$, $\angle D = 32^{\circ}$, $\angle E = 56^{\circ}$ and $\angle F = 92^{\circ}$ (c) $\triangle XYZ$, $\angle X = 76^{\circ}$, $\angle Y = 84^{\circ}$ Solution: (a) In the given $\triangle ABC$, The greatest angle is $\angle B$ and the opposite side to the $\angle B$ is AC Therefore, The greatest side is AC The smallest angle in the $\triangle ABC$ is $\angle A$ and the opposite side to the $\angle A$ is BC Therefore. The smallest side is BC (b) In the given $\triangle DEF$, The greatest angle is $\angle F$ and the opposite side to the $\angle F$ is DE Therefore, The greatest side is DE The smallest angle in the $\triangle DEF$ is $\angle D$ and the opposite side to the $\angle D$ is EF Therefore, The smallest side is EF (c) In $\triangle XYZ$, $\angle X + \angle Y + \angle Z = 180^{\circ}$ $76^{\circ} + 84^{\circ} + \angle Z = 180^{\circ}$ $160^{\circ} + \angle Z = 180^{\circ}$ $\angle Z = 180^{\circ} - 160^{\circ}$ We get, $\angle Z = 20^{\circ}$ Therefore, $\angle X = 76^{\circ}, \angle Y = 84^{\circ}, \angle Z = 20^{\circ}$ In the given $\triangle XYZ$, The greatest angle is $\angle Y$ and the opposite side to the $\angle Y$ is XZ Therefore, The greatest side is XZ The smallest angle in the $\triangle XYZ$ is $\angle Z$ and the opposite side to the $\angle Z$ is XY Therefore. The smallest side is XY

2. Arrange the sides of the following triangles in an ascending order:

(a) $\triangle ABC$, $\angle A = 45^{\circ}$, $\angle B = 65^{\circ}$ (b) $\triangle DEF$, $\angle D = 38^{\circ}$, $\angle E = 58^{\circ}$ **Solution:** (a) In $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$ $45^0 + 65^0 + \angle C = 180^0$ $110^{\circ} + \angle C = 180^{\circ}$ $\angle C = 180^{\circ} - 110^{\circ}$ We get, $\angle C = 70^{\circ}$ Hence. $\angle A = 45^{\circ}, \angle B = 65^{\circ}, \angle C = 70^{\circ}$ $45^{\circ} < 65^{\circ} < 70^{\circ}$ Hence. Ascending order of the angles in the given triangle is, $\angle A < \angle B < \angle C$ Therefore, Ascending order of sides in triangle is, BC, AC, AB (b) In $\triangle DEF$, $\angle D + \angle E + \angle F = 180^{\circ}$ $38^{\circ} + 58^{\circ} + \angle F = 180^{\circ}$ $96^{\circ} + \angle F = 180^{\circ}$ $\angle F = 180^{\circ} - 96^{\circ}$ We get, $\angle F = 84^{\circ}$ Hence, $\angle D = 38^{\circ}, \angle E = 58^{\circ}, \angle F = 84^{\circ}$ $38^0 < 58^0 < 84^0$ Hence. Ascending order of the angles in the given triangle is, $\angle D < \angle E < \angle F$ Therefore, Ascending order of sides in triangle is, EF, DF, DE

```
3. Name the smallest angle in each of these triangles:
(i) In △ABC, AB = 6.2 cm, BC = 5.6 cm and AC = 4.2 cm
```


(ii) In \triangle PQR, PQ = 8.3 cm, QR = 5.4 cm and PR = 7.2 cm (iii) In \triangle XYZ, XY = 6.2 cm, XY = 6.8 cm and YZ = 5 cm Solution:

(i) We know that,
In a triangle, the angle opposite to the smallest side is the smallest In △ABC,
AC = 4.2 cm is the smallest side
Hence,
∠B is the smallest angle

(ii) We know that, In a triangle, the angle opposite to the smallest side is the smallest In $\triangle PQR$, QR = 5.4 cm is the smallest side Hence, $\angle P$ is the smallest angle

(iii) We know that, In a triangle, the angle opposite to the smallest side is the smallest In $\triangle XYZ$, YZ = 5 cm is the smallest side Therefore, $\angle X$ is the smallest angle

4. In a triangle ABC, BC = AC and $\angle A = 35^{\circ}$. Which is the smallest side of the triangle?

Solution: In $\triangle ABC$,

BC = AC(given) $\angle A = \angle B = 35^{\circ}$ [angles opposite to the two equal sides are equal] Let $\angle C = x^0$ In $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$ $35^0 + 35^0 + x^0 = 180^0$ $70^0 + x^0 = 180^0$ $x^0 = 180^0 - 70^0$ We get, $x^0 = 110^0$ Hence. $\angle C = x^0 = 110^0$ Therefore, Angles in a triangle are $\angle A = \angle B = 35^{\circ}$ and $\angle C = 110^{\circ}$ In $\triangle ABC$, The greatest angle is $\angle C$ Here, the smallest angles are $\angle A$ and $\angle B$ Hence, Smallest sides are BC and AC

5. In \triangle ABC, the exterior \angle PBC > exterior \angle QCB. Prove that AB> AC.

Solution:

In the given triangle, Given that, $\angle PBC > \angle QCB$ (1) $\angle PBC + \angle ABC = 180^{\circ}$ (linear pair angles) $\angle PBC = 180^{\circ} - \angle ABC$ (2) Similarly, $\angle QCB = 180^{\circ} - \angle ACB$ (3)

Now, From (2) and (3), we get, $180^{\circ} - \angle ABC > 180^{\circ} - \angle ACB$ $- \angle ABC > - \angle ACB$ Therefore, $\angle ABC < \angle ACB$ or $\angle ACB > \angle ABC$ We know that, In a triangle, the greater angle has the longer side opposite to it Therefore, AB > ACHence proved

6. \triangle ABC is isosceles with AB = AC. If BC is extended at D, then prove that AD > AB.

 $\angle ABC > \angle CDA$ Therefore, AD > ABHence, proved

7. Prove that the perimeter of a triangle is greater than the sum of its three medians. Solution:

8. Prove that the hypotenuse is the longest side in a right angled triangle. Solution:

Let $\triangle ABC$ be a right angled triangle in which the right angle is at B By angle sum property of a triangle,

 $\angle A + \angle B + \angle C = 180^{\circ}$ $\angle A + 90^{0} + \angle C = 180^{0}$ We get, $\angle A + \angle C = 90^{\circ}$ Hence. The other two angles must be acute i.e less than 90° Therefore, $\angle B$ is the largest angle in $\triangle ABC$ $\angle B > \angle A$ and $\angle B > \angle C$ AC > BC and AC > AB: In any triangle, the side opposite to the greater angle is longer Hence. AC is the largest side in $\triangle ABC$ But, AC is the hypotenuse of $\triangle ABC$ Therefore, Hypotenuse is the longest side in a right angled triangle Hence, proved

9. D is a point on the side of the BC of \triangle ABC. Prove that the perimeter of \triangle ABC is greater than twice of AD. Solution:

10. For any quadrilateral, prove that its perimeter is greater than the sum of its diagonals.

Given

B BYJU'S

FRANK Solutions Class 9 Maths Chapter 13 Inequalities in Triangles

PQRS is a quadrilateral PR and QS are the diagonals of quadrilateral To prove: PQ + QR + SR + PS > PR + QSProof: In \triangle PQR, PQ + QR > PR(Sum of two sides of a triangle is greater than the third side) Similarly, In $\triangle PSR$. PS + SR > PRIn $\triangle PQS$, PS + PQ > QS and In $\triangle ORS$, QR + SR > QSNow, We have, PQ + QR > PRPS + SR > PRPS + PQ > QSQR + SR > QSAfter adding all the above inequalities, we get, PQ + QR + PS + SR + PS + PQ + QR + SR > PR + PR + QS + QS2PQ + 2QR + 2PS + 2SR > 2PR + 2QS2 (PQ + QR + PS + SR) > 2 (PR + QS)We get, PQ + QR + PS + SR > PR + QSHence, proved

11. ABCD is a quadrilateral in which the diagonals AC and BD intersect at O. Prove that AB + BC + CD + AD < 2 (AC + BD)

Solution: We know that,

Sum of two sides of a triangle is greater than the third side Hence,

In $\triangle AOB$,(1) OA + OB > ABIn $\triangle BOC$,(2) OB + OC > BCIn $\triangle COD$,(3) OC + OD > CDIn $\triangle AOD$(4) OA + OD > ADNow. Adding equations (1) (2) and (3) and (4), we get, 2(OA + OB + OC + OD) > AB + BC + CD + AD2[(OA + OC) + (OB + OD)] > AB + BC + CD + ADWe get, 2(AC + BD) > AB + BC + CD + AD: OA + OC = AC and OB + OD = BDTherefore, AB + BC + CD + AD < 2 (AC + BD)Hence, proved

12. In $\triangle ABC$, P, Q and R are points on AB, BC and AC respectively. Prove that AB + BC + AC > PQ + QR + PR.

Solution:

We know that, Sum of two sides of a triangle is greater than the third side Hence,

In $\triangle APR$, AP + AR > PR.....(1) In $\triangle BPQ$,(2) BQ + PB > PQIn $\triangle QCR$, QC + CR > QR.....(3) Now. Adding equations (1), (2) and (3), we get, AP + AR + BQ + PB + QC + CR > PR + PQ + QR(AP + PB) + (BQ + QC) + (CR + AR) > PR + PQ + QRWe get, AB + BC + AC > PQ + QR + PRHence, proved

13. In △PQR, PR > PQ and T is a point on PR such that PT = PQ. Prove that QR > TR.

14. ABCD is a trapezium. Prove that:

15. In \triangle ABC, BC produced to D, such that, AC = CD; \angle BAD = 125⁰ and \angle ACD = 105⁰. Show that BC > CD.

А 125 <u>105</u>⁰ В D С **Solution:** In $\triangle ACD$, AC = CD... (given) \dots (\triangle ACD is an isosceles triangle) $\angle CDA = \angle DAC$ Let $\angle CDA = \angle DAC = x^0$ $\angle CDA + \angle DAC + \angle ACD = 180^{\circ}$ $x^0 + x^0 + 105^0 = 180^0$ $2x^0 + 105^0 = 180^0$ $2x^0 = 180^0 - 105^0$ We get, $2x^0 = 75^0$ $x = (75^0 / 2)$ We get, $x = 37.5^{\circ}$ \angle CDA = \angle DAC = x^0 = 37.5^o . (1) $\angle DAB = \angle DAC + \angle BAC$ $125^{\circ} = 37.5^{\circ} + \angle BAC$ {from equation (1)} $125^{\circ} - 37.5^{\circ} = \angle BAC$ $87.5^{\circ} = \angle BAC$ Also, $\angle BCA + \angle ACD = 180^{\circ}$ $\angle BCA + 105^{\circ} = 180^{\circ}$ We get, $\angle BCA = 75^{\circ}$ Now, In ∆BAC, $\angle ACB + \angle BAC + \angle ABC = 180^{\circ}$ $75^{\circ} + 87.5^{\circ} + \angle ABC = 180^{\circ}$

 $\angle ABC = 180^{\circ} - 75^{\circ} - 87.5^{\circ}$ We get, $\angle ABC = 17.5^{\circ}$ Since, $87.5^{\circ} > 17.5^{\circ}$ Hence, $\angle BAC > \angle ABC$ BC > $\angle AC$ Therefore, BC > CD (Since AC = CD) Hence, proved

