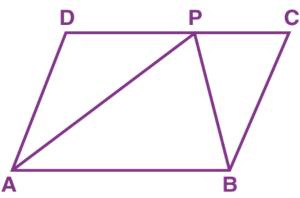


1. ABCD is a parallelogram having an area of 60 cm². P is a point on CD. Calculate the area of \triangle APB. Solution:

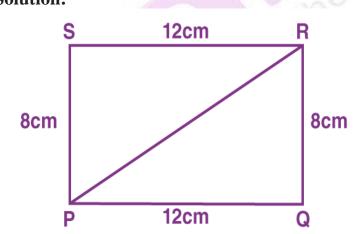


Area ($\triangle APB$) = (1/2) x area (parallelogram ABCD)

(The area of a triangle is half that of a parallelogram on the same base and between the same parallels)

Area ($\triangle APB$) = (1/2) x 60 cm² We get, Area ($\triangle APB$) = 30 cm²

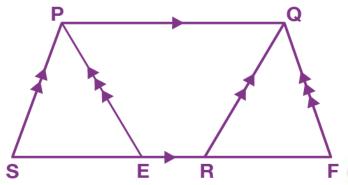
2. PQRS is a rectangle in which PQ = 12 cm and PS = 8 cm. Calculate the area of $\triangle PRS$. Solution:



Given PQRS is a rectangle Hence, PQ = SR SR = 12 cm PS = 8 cm Area (\triangle PRS) = (1/2) x base x height

Area (\triangle PRS) = (1/2) x SR x PS Area (\triangle PRS) = (1/2) x 12 x 8 We get, Area (\triangle PRS) = 48 cm²

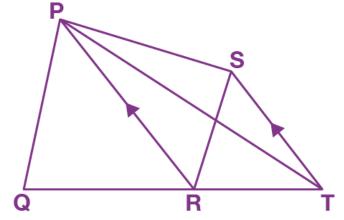
3. In the given figure area of || gm PQRS is 30 cm². Find the height of || gm PQFE if PQ = 6 cm.



Solution:

Area (|| gm PQRS) = Area (|| gm PQFE) (|| gm on same base PQ and between same parallel lines) Therefore, Area (|| gm PQFE) = 30 cm^2 Base x Height = 30 6 x Height = 30Height = (30 / 6)We get, Height = 5 cmHence, the height of a parallelogram PQFE is 5 cm

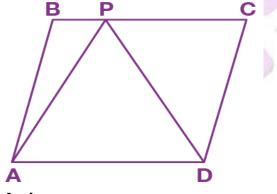
4. In the given figure, ST || PR. Prove that: area of quadrilateral PQRS = area of \triangle PQT



Solution:

Area $(\Delta PSR) = Area (\Delta PTR)$ (Triangles on the same base PR and between the same parallel lines PR and ST) Adding Area (ΔPQR) on both sides We get, Area $(\Delta PSR) + Area (\Delta PQR) = Area (\Delta PTR) + Area (\Delta PQR)$ Area (Quadrilateral PQRS) = Area (ΔPQT) Hence, proved

5. In the figure, ABCD is a parallelogram and APD is an equilateral triangle of side 8 cm. Calculate the area of parallelogram ABCD.



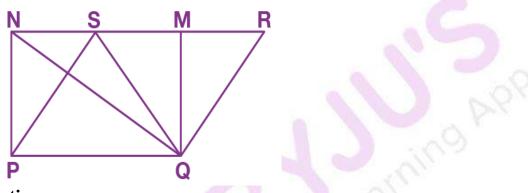
Solution:

Area $(\triangle APD) = (\sqrt{3}s^2) / 4$ Area $(\triangle APD) = (\sqrt{3} \times 8^2) / 4$ Area $(\triangle APD) = (\sqrt{3} \times 64) / 4$ Area $(\triangle APD) = (\sqrt{3} \times 16)$ On further calculation, we get, Area $(\triangle APD) = 16\sqrt{3}$ cm² Area $(\triangle APD) = (1/2) \times area$ (parallelogram ABCD) The area of a triangle is half that of a parallelogram on the same base and between the

same parallels) Area (parallelogram ABCD) = 2 x area (\triangle APD) Area (parallelogram ABCD) = 2 x 16 $\sqrt{3}$ cm² We get, Area (parallelogram ABCD) = $32\sqrt{3}$ cm²

6. In the figure, if the area of ||gm PQRS is 84 cm². Find the area of

- (i) || gm PQMN
- (ii) $\triangle PQS$
- (iii) △PQN



Solution:

(i) Area of a rectangle and area of a parallelogram on the same base is equal Here,

For rectangle PQMN, base is PQ

For parallelogram PQRS, base is PQ

Hence,

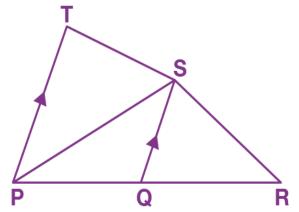
Area of rectangle PQMN = Area of parallelogram PQRS Area of rectangle PQMN = 84 cm^2

(ii) Area ($\triangle PQS$) = (1/2) x area (parallelogram PQRS) Area ($\triangle PQS$) = (1/2) x 84 cm² We get, Area ($\triangle PQS$) = 42 cm²

(iii) Area ($\triangle PQN$) = (1/2) x area (rectangle PQMN) Area ($\triangle PQN$) = (1/2) x 84 cm² We get, Area ($\triangle PQN$) = 42 cm²

7. In the figure, PQR is a straight line. SQ is parallel to TP. Prove that the

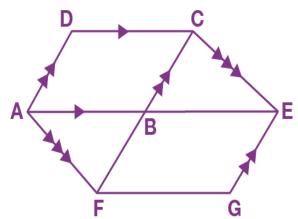
quadrilateral PQST is equal in area to the \triangle PSR.

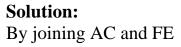


Solution:

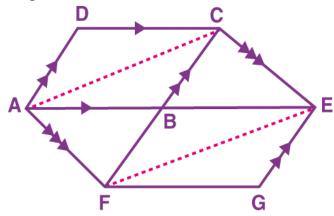
In quadrilateral PQST, Area ($\triangle PQS$) = (1/2) x area (quadrilateral PQST) Area (quadrilateral PQST) = 2 x area ($\triangle PQS$)(i) In $\triangle PSR$, Area ($\triangle PSR$) = area ($\triangle PQS$) + area ($\triangle QSR$) Since QS is median as QS || TP Hence, Area ($\triangle PQS$) = Area ($\triangle QSR$) Area ($\triangle PSR$) = 2 x area ($\triangle PQS$)(ii) From equations (i) and(ii) Area (quadrilateral PQST) = Area ($\triangle PSR$) Hence proved

8. In the given figure, if AB || DC || FG and AE is a straight line. Also, AD || FC. Prove that: area of || gm ABCD = area of ||gm BFGE



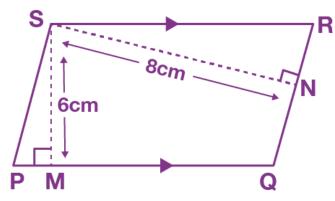


We get,



 \triangle AFC and \triangle AFE are on the same base AF and between the same parallels AF and CE Area (\triangle AFC) = Area (\triangle AFE) Area (\triangle ABF) + Area (\triangle ABC) = Area (\triangle ABF) + Area (\triangle BFE) We get, Area (\triangle ABC) = Area (\triangle BFE) (1/2) Area (parallelogram ABCD) = (1/2) Area (parallelogram BFGE) Area (parallelogram ABCD) = Area (parallelogram BFGE) Hence, proved

9. In the given figure, the perimeter of parallelogram PQRS is 42 cm. Find the lengths of PQ and PS.

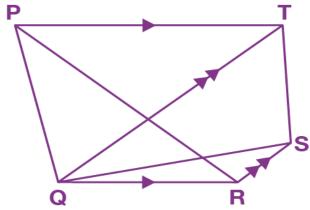


Solution:

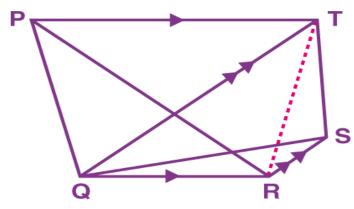
Area of || gm PQRS = PQ x 6 Also, Area of || gm PQRS = PS x 8 Therefore, PQ x 6 = PS x 8 PQ = (8PS) / 6

We get, PQ = (4PS) / 3.....(i) Perimeter of \parallel gm PQRS = PQ + QR + RS + PS 42 = 2PQ + 2PS(Opposite sides of a parallelogram are equal) 21 = PQ + PSSubstituting the value of PQ from equation (i), we get, (4PS / 3) + PS = 21 $\{(4PS + 3PS) / 3\} = 21$ 7PS = 63We get, PS = 9 cmNow. Substituting the value of PS in equation (i), we get, PQ = (4PS) / 3PQ = (4 x 9) / 3We get, PQ = 12 cmTherefore, PQ = 12 cm and PS = 9 cm

10. In the given figure, PT || QR and QT || RS. Show that: area of $\triangle PQR$ = area of $\triangle TQS$.



Solution: By joining TR, we get,



 \triangle PQR and \triangle QTR are on the same base QR and between the same parallel lines QR and PT

Therefore,

Area $(\triangle PQR)$ = Area $(\triangle QTR)$ (i)

 \triangle QTR and \triangle TQS are on the same base QT and between the same parallel lines QT and RS

Therefore,

Area (ΔQTR) = Area (ΔTQS) (ii)

From equations (i) and (ii), we get,

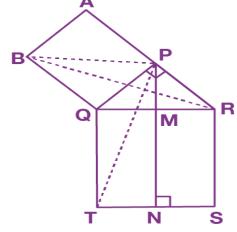
Area ($\triangle PQR$) = Area ($\triangle TQS$)

Hence proved

11. In the given figure, $\triangle PQR$ is right – angled at P. PABQ and QRST are squares on the side PQ and hypotenuse QR. If PN \perp TS, show that:

(a) $\triangle QRB \cong \triangle PQT$

(b) Area of square PABQ = area of rectangle QTNM.



Solution: $\angle BQR = \angle BQP + \angle PQR$

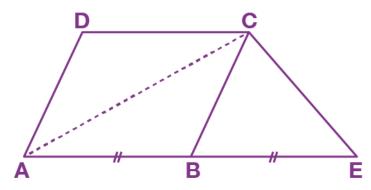
 $\angle BQR = 90^{0} + \angle PQR$ $\angle PQT = \angle TQR + \angle PQR$ $\angle PQT = 90^{0} + \angle PQR$ Hence, $\angle BQR = \angle PQT \qquad \dots (i)$

(a) In \triangle QRB and \triangle PQT, BQ = PQ (sides of a square PABQ) QR = QT (sides of a square QRST) \angle BQR = \angle PQT {From (i)} Therefore, \triangle QRB $\cong \triangle$ PQT (By SAS congruence criterion) Area (\triangle BQR) = Area (\triangle PQT) (ii)

(b) \triangle PQT and rectangle QTNM are on the same base QT and between the same parallel lines QT and PN Hence, Area (\triangle PQT) = (1/2) Area (rectangle QTNM) Area (rectangle QTNM) = 2 x Area (\triangle PQT) Area (rectangle QTNM) = 2 x Area (\triangle BQR) {from (ii)} (iii)

 \triangle BQR and square PABQ are on the same base BQ and between the same parallel lines BQ and AR Therefore, 2 x Area (\triangle BQR) = Area (square PABQ) (iv) From equations (iii) and (iv), we get, Area (square PABQ) = Area (rectangle QTNM) Hence proved

12. In the figure, AB = BE. Prove that the area of triangle ACE is equal in area to the parallelogram ABCD.

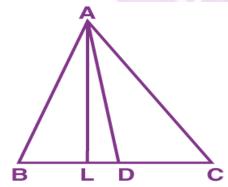


Solution:

In parallelogram ABCD, Area $(\triangle ABC) = (1/2) \times Area (parallelogram ABCD)$ (The area of a triangle is half that of a parallelogram on the same base and between the same parallels) Area (parallelogram ABCD) = 2 x Area ($\triangle ABC$)(i) In $\triangle ACE$, Area ($\triangle ACE$) = Area ($\triangle ABC$) + Area ($\triangle BCE$) Since BC is median, Hence, Area ($\triangle ABC$) = Area ($\triangle BCE$) Area ($\triangle ABC$) = Area ($\triangle BCE$) Area ($\triangle CE$) = 2 x Area ($\triangle ABC$)(ii) From equation (i) and (ii), we get,

Area (parallelogram ABCD) = Area (\triangle ACE)

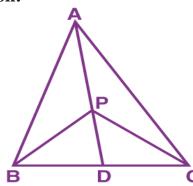
13. Prove that the median of a triangle divides it into two triangles of equal area. Solution:



Draw AL perpendicular to BC Since AD is median of \triangle ABC Hence, D is the midpoint of BC BD = DC

Multiplying by AL, we get, BD x AL = DC x AL (1/2) (BD x AL) = (1/2) (DC x AL) Therefore, Area (\triangle ABD) = Area (\triangle ADC) Hence, proved

14. AD is a median of a \triangle ABC. P is any point on AD. Show that the area of \triangle ABP is equal to the area of \triangle ACP. Solution:



Solution:

AD is the median of $\triangle ABC$. So, it will divide $\triangle ABC$ into two triangles of equal areas Hence, Area ($\triangle ABD$) = Area ($\triangle ACD$) (i) Now, PD is the median of $\triangle PBC$ Hence, Area ($\triangle PBD$) = Area ($\triangle PCD$) (ii) On subtracting equation (ii) from equation (i), we get, Area ($\triangle ABD$) – Area ($\triangle PBD$) = Area ($\triangle ACD$) – Area ($\triangle PCD$) Area ($\triangle ABP$) = Area ($\triangle ACP$) Hence, proved

15. In the given figure AF = BF and DCBF is a parallelogram. If the area of $\triangle ABC$ is 30 square units, find the area of the parallelogram DCBF.

