1. Find the Slopes of the tangent and the normal to the following curves at the indicated points:
(i) $y=\sqrt{x^{3}}$ at $x=4$

Solution:

Given $\mathrm{y}=\sqrt{\mathrm{x}^{3}}$ at $\mathrm{x}=4$
First, we have to find $\frac{d y}{d x}$ of given function, $f(x)$ that is to find the derivative of f
(x)
$y=\sqrt{x^{3}}$
$\therefore \sqrt[n]{\mathrm{x}}=\mathrm{x}^{\frac{1}{\mathrm{n}}}$
$\Rightarrow \mathrm{y}=\left(\mathrm{x}^{3}\right)^{\frac{1}{2}}$
$\Rightarrow \mathrm{y}=(\mathrm{x})^{\frac{3}{2}}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x} \mathrm{n}^{\mathrm{n}-1}$
We know that the Slope of the tangent is $\frac{d y}{d x}$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{3}{2}(\mathrm{x})^{\frac{3}{2}-1}$
$\Rightarrow \frac{d y}{d x}=\frac{3}{2}(x)^{\frac{1}{2}}$
Since, $x=4$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=4}=\frac{3}{2}(4)^{\frac{1}{2}}$
$\Rightarrow\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\mathrm{x}=4}=\frac{3}{2} \times \sqrt{4}$
$\Rightarrow\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\mathrm{x}=4}=\frac{3}{2} \times 2$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=4}=3$
The Slope of the tangent at $x=4$ is 3
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right) x=4}$
\Rightarrow The Slope of the normal $=\frac{-1}{3}$
(ii) $y=\sqrt{x}$ at $x=9$

Solution:

Given $y=\sqrt{x}$ at $x=9$
First, we have to find $\frac{d y}{d x}$ of given function, $f(x)$ that is to find the derivative of $f(x)$
$\Rightarrow y=\sqrt{x}$
$\therefore \sqrt[n]{\mathrm{x}}=\mathrm{x}^{\frac{1}{\mathrm{n}}}$
$\Rightarrow y=(x)^{\frac{1}{2}}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
The Slope of the tangent is $\frac{d y}{d x}$
$\Rightarrow y=(x)^{\frac{1}{2}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}(\mathrm{x})^{\frac{1}{2}-1}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}(x)^{\frac{-1}{2}}$
Since, $x=9$
$\left(\frac{d y}{d x}\right)_{x=9}=\frac{1}{2}(9)^{\frac{-1}{2}}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=9}=\frac{1}{2} \times \frac{1}{(9)^{\frac{1}{2}}}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=9}=\frac{1}{2} \times \frac{1}{\sqrt{9}}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=9}=\frac{1}{2} \times \frac{1}{3}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=9}=\frac{1}{6}$
The Slope of the tangent at $x=9$ is $\frac{1}{6}$
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right) x=9}$
\Rightarrow The Slope of the normal $=\frac{\frac{-1}{\frac{1}{6}}}{6}$
\Rightarrow The Slope of the normal $=-6$
(iii) $y=x^{3}-x$ at $x=2$

Solution:

First, we have to find $\frac{d y}{d x}$ of given function $f(x)$ that is to find the derivative of $f(x)$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\frac{d y}{d x}$
$\Rightarrow \mathrm{y}=\mathrm{x}^{3}-\mathrm{x}$
$\Rightarrow \frac{d y}{d x}=\frac{d y}{d x}\left(x^{3}\right)+3 \times \frac{d y}{d x}(x)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=3 \cdot \mathrm{x}^{3-1}-1 \cdot \mathrm{x}^{1-0}$
$\Rightarrow \frac{d y}{d x}=3 x^{2}-1$
Since, $x=2$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=2}=3^{\times}(2)^{2}-1$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=2}=\left(3^{\times} 4\right)-1$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=2}=12-1$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=2}=11$
\therefore The Slope of the tangent at $\mathrm{x}=2$ is 11
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right) x=2}$
\Rightarrow The Slope of the normal $=\frac{-1}{11}$
(iv) $y=2 x^{2}+3 \sin x$ at $x=0$

Solution:

Given $y=2 x^{2}+3 \sin x$ at $x=0$
First, we have to find $\frac{d y}{d x}$ of given function $f(x)$ that is to find the derivative of $f(x)$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
The Slope of the tangent is $\frac{d y}{d x}$
$\Rightarrow y=2 x^{2}+3 \sin x$
$\Rightarrow \frac{d y}{d x}=2 d y / d x\left(x^{2}\right)+3 d y / d x(\sin x)$
$\Rightarrow \frac{d y}{d x}=2\left(2 x^{2-1}\right)+3(\cos x)$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\operatorname{Sin} \mathrm{x})=\cos \mathrm{x}$
$\Rightarrow \frac{d y}{d x}=4 x+3 \cos x$
Since, $x=2$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=0}=4(0)+3 \cos (0)$
We know $\cos (0)=1$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=0}=0+3(1)$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=0}=3$
\therefore The Slope of the tangent at $x=0$ is 3
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{y}{d x}\right) x=0}$
\Rightarrow The Slope of the normal $=\frac{-1}{3}$
(v) $x=a(\theta-\sin \theta), y=a(1+\cos \theta)$ at $\theta=-\pi / 2$

Solution:

Given $x=a(\theta-\sin \theta), y=a(1+\cos \theta)$ at $\theta=-\pi / 2$
Here, to find $\frac{d y}{d x}$, we have to find $\frac{\frac{d y}{d \theta}}{d} \& \frac{\frac{d y}{d \theta}}{\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}}$ and divide we get our desireddx.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \mathrm{x}=\mathrm{a}(\theta-\sin \theta)$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}\left\{\frac{\mathrm{dx}}{\mathrm{d} \theta}(\theta)-\frac{\mathrm{dx}}{\mathrm{d} \theta}(\sin \theta)\right\}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}(1-\cos \theta)$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\operatorname{Sin} \mathrm{x})=\cos \mathrm{x}$
$\Rightarrow y=a(1+\cos \theta)$
$\left.\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=a^{\frac{\mathrm{dx}}{\mathrm{d} \theta}(1)+\frac{\mathrm{dx}}{\mathrm{d} \theta}}(\cos \theta)\right]$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\operatorname{Cos} \mathrm{x})=-\sin \mathrm{x}$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}($ Constant $)=0$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}(0+(-\sin \theta))$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}(-\sin \theta)$

$$
\begin{align*}
& \Rightarrow \frac{d y}{d \theta} \tag{2}\\
&=-a \sin \theta \ldots \text { (2) } \\
& \Rightarrow \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-a \sin \theta}{a(1-\cos \theta)} \\
& \Rightarrow \frac{d y}{d x}=\frac{-\sin \theta}{(1-\cos \theta)}
\end{align*}
$$

The Slope of the tangent is $\frac{-\sin \theta}{(1-\cos \theta)}$
Since, $\theta=\frac{-\pi}{2}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{-\pi}{2}}=\frac{-\sin \frac{-\pi}{2}}{\left(1-\cos \frac{-\pi}{2}\right)}$
We know $\operatorname{Cos}(\pi / 2)=0$ and $\sin (\pi / 2)=1$

$$
\begin{aligned}
& \Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{-\pi}{2}}=\frac{-(-1)}{(1-(-0))} \\
& \Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{-\pi}{2}}=\frac{1}{(1-0)} \\
& \Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{-\pi}{2}}=1
\end{aligned}
$$

\therefore The Slope of the tangent at $\mathrm{x}=-\frac{\pi}{2}$ is 1

$$
-1
$$

\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)_{\theta=\frac{-\pi}{2}}}$
\Rightarrow The Slope of the normal $=\frac{-1}{1}$
\Rightarrow The Slope of the normal $=-1$
(vi) $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ at $\theta=\pi / 4$

Solution:

Given $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ at $\theta=\pi / 4$
Here, to find $\frac{d y}{d x}$, we have to find $\frac{d y}{d \theta} \& \frac{d x}{d \theta}$ and divide $\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$ and we get $\frac{d y}{d x}$.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \mathrm{x}=\mathrm{acos}^{3} \theta$
$\left.\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a} \frac{\mathrm{dx}}{(\mathrm{d} \theta}\left(\cos ^{3} \theta\right)\right)$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\operatorname{Cos} \mathrm{x})=-\sin \mathrm{x}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}\left(3 \cos ^{3-1} \theta \times-\sin \theta\right)$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}\left(3 \cos ^{2} \theta \times-\sin \theta\right)$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=-3 \operatorname{acos}^{2} \theta \sin \theta \ldots$
$\Rightarrow \mathrm{y}=\operatorname{asin}^{3} \theta$
$\Rightarrow \frac{d y}{d \theta}=a\left(\frac{d y}{d \theta}\left(\sin ^{3} \theta\right)\right)$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\operatorname{Sin} \mathrm{x})=\cos \mathrm{x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}\left(3 \sin ^{3-1} \theta \cos \theta\right)$
dy
$\Rightarrow \overline{\mathrm{d} \theta}=\mathrm{a}\left(3 \sin ^{2} \theta \cos \theta\right)$
$\Rightarrow \frac{d y}{d \theta}=3 a \sin ^{2} \theta \cos \theta \ldots$ (2)

$$
\begin{aligned}
& \frac{d y}{d x} \\
\Rightarrow & \frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-3 \operatorname{acos}^{2} \theta \sin \theta}{3 a \sin ^{2} \theta \cos \theta} \\
\Rightarrow & \frac{d y}{d x}=\frac{-\cos \theta}{\sin \theta}
\end{aligned}
$$

$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-\tan \theta$
The Slope of the tangent is $-\tan \theta$
Since, $\theta=\pi / 4$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{4}}=-\tan (\pi / 4)$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{4}}=-1$
We know $\tan (\pi / 4)=1$
The Slope of the tangent at $x=\pi / 4$ is -1
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{4}}}$
\Rightarrow The Slope of the normal $=\frac{-1}{-1}$
\Rightarrow The Slope of the normal $=1$
(vii) $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ at $\theta=\pi / 2$

Solution:

Given $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ at $\theta=\pi / 2$

$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \mathrm{x}=\mathrm{a}(\theta-\sin \theta)$
$\left.\Rightarrow \frac{\frac{\mathrm{dx}}{\mathrm{d} \theta}}{\mathrm{d}}=\mathrm{a} \frac{\mathrm{dx}}{\{\mathrm{d} \theta}(\theta)-\frac{\mathrm{dx}}{\mathrm{d} \theta}(\sin \theta)\right\}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}(1-\cos \theta) \ldots(1)$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\operatorname{Sin} \mathrm{x})=\cos \mathrm{x}$
$\Rightarrow y=a(1-\cos \theta)$
$\Rightarrow \frac{d y}{d \theta}=a\left(\frac{d x}{d \theta}(1)-\frac{d x}{d \theta}(\cos \theta)\right)$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\operatorname{Cos} \mathrm{x})=-\sin \mathrm{x}$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}($ Constant $)=0$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}(\theta-(-\sin \theta))$
$\Rightarrow \frac{d y}{d \theta}=a \sin \theta \ldots$ (2)
$\Rightarrow \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{a \sin \theta}{a(1-\cos \theta)}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\sin \theta}{(1-\cos \theta)}$
The Slope of the tangent is $\frac{-\sin \theta}{(1-\cos \theta)}$
Since, $\theta=\frac{\pi}{2}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=\frac{\sin \frac{\pi}{2}}{\left(1-\cos \frac{\pi}{2}\right)}$

We know $\cos (\pi / 2)=0$ and $\sin (\pi / 2)=1$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=\frac{(1)}{(1-(-0))}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=\frac{1}{(1-0)}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=1$
The Slope of the tangent at $x=\frac{\pi}{2}$ is 1
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}}$
\Rightarrow The Slope of the normal $=\frac{-1}{1}$
\Rightarrow The Slope of the normal $=-1$
(viii) $y=(\sin 2 x+\cot x+2)^{2}$ at $x=\pi / 2$

Solution:

Given $y=(\sin 2 x+\cot x+2)^{2}$ at $x=\pi / 2$
First, we have to find $\frac{d y}{d x}$ of given function $f(x)$ that is to find the derivative of $f(x)$
$\therefore \frac{d y}{d x}\left(x^{n}\right)=n x^{n-1}$
The Slope of the tangent is $\frac{d y}{d x}$
$\Rightarrow y=(\sin 2 x+\cot x+2)^{2}$

$$
\begin{aligned}
& \frac{d y}{d x}=2 x(\sin 2 x+\cot x+2)^{2-1}\left\{\frac{d y}{d x}(\sin 2 x)+\frac{d y}{d x}(\cot x)+\frac{d y}{d x}(2)\right\} \\
& \Rightarrow \frac{d y}{d x}=2(\sin 2 x+\cot x+2)\left\{(\cos 2 x) \times 2+\left(-\operatorname{cosec}^{2} x\right)+(0)\right\} \\
& \therefore \frac{d}{d x}(\sin x)=\cos x \\
& \therefore \frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x \\
& \Rightarrow \frac{d y}{d x}=2(\sin 2 x+\cot x+2)\left(2 \cos 2 x-\operatorname{cosec}^{2} x\right)
\end{aligned}
$$

Since, $x=\pi / 2$

$$
\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=2 \times(\sin 2(\pi / 2)+\cot (\pi / 2)+2)\left(2 \cos 2(\pi / 2)-\operatorname{cosec}^{2}(\pi / 2)\right)
$$

$$
\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=2 \times(\sin (\pi)+\cot (\pi / 2)+2) \times\left(2 \cos (\pi)-\operatorname{cosec}^{2}(\pi / 2)\right)
$$

$$
\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=2 \times(0+0+2) \times(2(-1)-1)
$$

We know $\sin (\pi)=0, \cos (\pi)=-1$
$\operatorname{Cot}(\pi / 2)=0, \operatorname{cosec}(\pi / 2)=1$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=2(2) \times(-2-1)$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=4 \times-3$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=-12$
The Slope of the tangent at $x=\frac{\pi}{2}$ is -12
\Rightarrow The Slope of the normal $=\overline{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}}$
\Rightarrow The Slope of the normal $=\frac{-1}{-12}$
\Rightarrow The Slope of the normal $=\frac{1}{12}$
(ix) $x^{2}+3 y+y^{2}=5$ at $(1,1)$

Solution:

Given $x^{2}+3 y+y^{2}=5$ at $(1,1)$
Here we have to differentiate the above equation with respect to x.
$\Rightarrow \frac{d}{d x}\left(x^{2}+3 y+y^{2}\right)=\frac{d}{d x}(5)$
$\Rightarrow \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(3 y)+\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}(5)$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow 2 x+3 \times \frac{d y}{d x}+2 y \times \frac{d y}{d x}=0$
$\Rightarrow 2 x+\frac{d y}{d x}(3+2 y)=0$
$\Rightarrow \frac{d y}{d x}(3+2 y)=-2 x$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x}{(3+2 y)}$
The Slope of the tangent at $(1,1)$ is
$\Rightarrow \frac{d y}{d x}=\frac{-2 \times 1}{(3+2 \times 1)}$
$\Rightarrow \frac{d y}{d x}=\frac{-2}{(3+2)}$
$\Rightarrow \frac{d y}{d x}=\frac{-2}{5}$
The Slope of the tangent at $(1,1)$ is $\frac{-2}{5}$
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)}$
\Rightarrow The Slope of the normal $=\frac{\frac{-1}{\frac{-2}{5}}}{5}$
\Rightarrow The Slope of the normal $=\frac{5}{2}$
$(x) x y=6$ at $(1,6)$

Solution:

Given $x y=6$ at $(1,6)$
Here we have to use the product rule for above equation, then we get
$\frac{d}{d x}(x y)=\frac{d}{d x}(6)$
$\Rightarrow x \times \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{y})+\mathrm{y} \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(5)$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}($ Constant $)=0$
$\Rightarrow x^{\frac{d y}{d x}}+y=0$
$\Rightarrow x^{\frac{d y}{d x}}=-y$
$\Rightarrow \frac{d y}{d x}=\frac{-y}{x}$

The Slope of the tangent at $(1,6)$ is
$\Rightarrow \frac{d y}{d x}=\frac{-6}{1}$
$\Rightarrow \frac{d y}{d x}=-6$
The Slope of the tangent at $(1,6)$ is -6
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{\frac{-1}{\left(\frac{d y}{d x}\right)}}{}$
\Rightarrow The Slope of the normal $=\frac{-1}{-6}$
\Rightarrow The Slope of the normal $=\frac{1}{6}$
2. Find the values of a and b if the Slope of the tangent to the curve $x y+a x+b y=2 a t$ $(1,1)$ is 2.

Solution:

Given the Slope of the tangent to the curve $x y+a x+b y=2$ at $(1,1)$ is 2
First, we will find The Slope of tangent by using product rule, we get

$$
\Rightarrow x y+a x+b y=2
$$

$\Rightarrow x^{\frac{d}{d x}}(y)+y^{\frac{d}{d x}}(x)+a^{\frac{d}{d x}(x)}+b^{\frac{d}{d x}(y)+=\frac{d}{d x}(2)}$

$$
\Rightarrow x^{\frac{d y}{d x}}+y+a+b^{\frac{d y}{d x}}=0
$$

$$
\Rightarrow \frac{d y}{d x}(x+b)+y+a=0
$$

$$
\Rightarrow \frac{d y}{d x}(x+b)=-(a+y)
$$

$\Rightarrow \frac{d y}{d x}=\frac{-(a+y)}{x+b}$
Since, the Slope of the tangent to the curve $x y+a x+b y=2$ at $(1,1)$ is 2 that is,
$\frac{d y}{d x}=2$
$\Rightarrow\left\{\begin{array}{l}\frac{-(a+y)}{x+b}\end{array}\right\}_{(x=1, y=1)}=2$
$\Rightarrow \frac{-(a+1)}{1+b}=2$
$\Rightarrow-a-1=2(1+b)$
$\Rightarrow-a-1=2+2 b$
$\Rightarrow a+2 b=-3$
Also, the point $(1,1)$ lies on the curve $x y+a x+b y=2$, we have
$1 \times 1+a \times 1+b \times 1=2$
$\Rightarrow 1+a+b=2$
$\Rightarrow \mathrm{a}+\mathrm{b}=1$... (2)
From (1) \& (2), we get $b=-4$
Substitute $b=-4$ in $a+b=1$
$a-4=1$
$\Rightarrow a=5$
So the value of $a=5 \& b=-4$
3. If the tangent to the curve $y=x^{3}+a x+b$ at $(1,-6)$ is parallel to the line $x-y+5=$ 0 , find a and b

Solution:

Given the Slope of the tangent to the curve $y=x^{3}+a x+b$ at $(1,-6)$
First, we will find the slope of tangent
$y=x^{3}+a x+b$
$\frac{d y}{d x}=\frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}(a x)+\frac{d}{d x}(b)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=3 \mathrm{x}^{3-1}+\mathrm{a}\left(\frac{\mathrm{dx}}{\mathrm{dx}}\right)+0$

$$
\Rightarrow \frac{d y}{d x}=3 x^{2}+a
$$

The Slope of the tangent to the curve $y=x^{3}+a x+b$ at $(1,-6)$ is

$$
\begin{align*}
& \frac{\mathrm{dy}}{\mathrm{dx}_{(x=1, y=-6)}}=3(1)^{2}+a \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}_{(x=1, y}} \tag{1}\\
&
\end{align*}
$$

The given line is $x-y+5=0$
$y=x+5$ is the form of equation of a straight line $y=m x+c$, where m is the Slope of the line.
So the slope of the line is $y=1 \times x+5$
So the Slope is 1. ... (2)
Also the point $(1,-6)$ lie on the tangent, so
$x=1 \& y=-6$ satisfies the equation, $y=x^{3}+a x+b$
$-6=1^{3}+a \times 1+b$
$\Rightarrow-6=1+a+b$
$\Rightarrow a+b=-7$.
Since, the tangent is parallel to the line, from (1) \& (2)
Hence, $3+a=1$
$\Rightarrow \mathrm{a}=-2$
From (3)
$a+b=-7$
$\Rightarrow-2+b=-7$
$\Rightarrow b=-5$
So the value is $a=-2 \& b=-5$
4. Find a point on the curve $y=x^{3}-3 x$ where the tangent is parallel to the chord joining (1, -2) and (2, 2).

Solution:

Given curve $y=x^{3}-3 x$
First, we will find the Slope of the tangent

$$
y=x^{3}-3 x
$$

$$
\frac{d y}{d x}=\frac{d}{d x}\left(x^{3}\right)-\frac{d}{d x}(3 x)
$$

$\Rightarrow \frac{d y}{d x}=3 x^{3-1}-3\left(\frac{d x}{d x}\right)$
$\Rightarrow \frac{d y}{d x}=3 x^{2}-3$
The equation of line passing through $\left(x_{0}, y_{0}\right)$ and The Slope m is $y-y_{0}=m(x-$ x_{0}).

So the Slope, $m=\frac{\frac{y-y_{0}}{x-x_{0}}}{}$
The Slope of the chord joining $(1,-2) \&(2,2)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2-(-2)}{2-1}$
$\Rightarrow \frac{d y}{d x}=\frac{4}{1}$
$\Rightarrow \stackrel{\mathrm{dy}}{\mathrm{dx}}=4$
From (1) \& (2)
$3 x^{2}-3=4$
$\Rightarrow 3 x^{2}=7$
$\Rightarrow x^{2}=\frac{7}{3}$
$\Rightarrow \mathrm{x}= \pm \sqrt{\frac{7}{3}}$
$y=x^{3}-3 x$
$\Rightarrow \mathrm{y}=\mathrm{x}\left(\mathrm{x}^{2}-3\right)$
$\Rightarrow \mathrm{y}= \pm \sqrt{\frac{7}{3}}\left(\left(\pm \sqrt{\frac{7}{3}}\right)^{2}-3\right)$
$\Rightarrow y= \pm \sqrt{\frac{7}{3}} \frac{7}{((3-3)}$
$\Rightarrow \mathrm{y}= \pm \sqrt{\frac{7}{3}} \frac{-2}{(3)}$
$\Rightarrow y=\mp\left(\frac{-2}{3}\right) \sqrt{\frac{7}{3}}$
Thus, the required point is $x= \pm \sqrt{\frac{7}{3}} \& y=\mp\left(\frac{-2}{3}\right) \sqrt{\frac{7}{3}}$
5. Find a point on the curve $y=x^{3}-2 x^{2}-2 x$ at which the tangent lines are parallel to the line $y=2 x-3$.

Solution:

Given the curve $y=x^{3}-2 x^{2}-2 x$ and a line $y=2 x-3$
First, we will find the slope of tangent
$y=x^{3}-2 x^{2}-2 x$
$\frac{d y}{d x}=\frac{d}{d x}\left(x^{3}\right)-\frac{d}{d x}\left(2 x^{2}\right)-\frac{d}{d x}(2 x)$
$\Rightarrow \frac{d y}{d x}=3 x^{3-1}-2 \times 2\left(x^{2-1}\right)-2 \times x^{1-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=3 \mathrm{x}^{2}-4 \mathrm{x}-2 \ldots$
$y=2 x-3$ is the form of equation of a straight line $y=m x+c$, where m is the Slope of the line.
So the slope of the line is $y=2 \times(x)-3$
Thus, the Slope $=2 \ldots$ (2)
From (1) \& (2)
$\Rightarrow 3 x^{2}-4 x-2=2$
$\Rightarrow 3 x^{2}-4 x=4$
$\Rightarrow 3 x^{2}-4 x-4=0$
We will use factorization method to solve the above Quadratic equation.
$\Rightarrow 3 x^{2}-6 x+2 x-4=0$
$\Rightarrow 3 x(x-2)+2(x-2)=0$
$\Rightarrow(x-2)(3 x+2)=0$
$\Rightarrow(x-2)=0 \&(3 x+2)=0$
$\Rightarrow x=2$ or
$x=-2 / 3$
Substitute $x=2 \& x=-2 / 3$ in $y=x^{3}-2 x^{2}-2 x$
When $x=2$
$\Rightarrow \mathrm{y}=(2)^{3}-2 \times(2)^{2}-2 \times(2)$
$\Rightarrow y=8-(2 \times 4)-4$
$\Rightarrow y=8-8-4$
$\Rightarrow y=-4$
When $\mathrm{x}=\frac{-2}{3}$
$\Rightarrow y=\left(\frac{-2}{3}\right)^{3}-2 \times\left(\frac{-2}{3}\right)^{2}-2 \times\left(\frac{-2}{3}\right)$
$\left.\Rightarrow y=\frac{-8}{(27}\right)-2 \times\left(\frac{4}{9}\right)+\left(\frac{4}{3}\right)$
$\left.\Rightarrow y=\left(\frac{-8}{(27}\right)-\frac{8}{9}\right)+\left(\frac{4}{(3)}\right.$
Taking LCM
$\Rightarrow \mathrm{y}=\frac{\frac{(-8 \times 1)-(8 \times 3)+(4 \times 9)}{27}}{27}$
$\Rightarrow \mathrm{y}=\frac{\frac{-8-24+36}{27}}{}$
$\Rightarrow y=\frac{4}{27}$
Thus, the points are $(2,-4) \&\left(\frac{-2}{3}, \frac{4}{27}\right)$
6. Find a point on the curve $y^{2}=2 x^{3}$ at which the Slope of the tangent is 3

Solution:

Given the curve $y^{2}=2 x^{3}$ and the Slope of tangent is 3
$y^{2}=2 x^{3}$
Differentiating the above with respect to x
$\Rightarrow 2 y^{2-1} \frac{d y}{d x}=2 \times 3 x^{3-1}$
$\Rightarrow y^{\frac{d y}{d x}}=3 x^{2}$
$\Rightarrow \frac{d y}{d x}=\frac{3 x^{2}}{y}$
Since, The Slope of tangent is 3
$\frac{3 x^{2}}{y}=3$
$\Rightarrow \frac{x^{2}}{y}=1$
$\Rightarrow x^{2}=y$
Substituting $x^{2}=y$ in $y^{2}=2 x^{3}$,
$\left(x^{2}\right)^{2}=2 x^{3}$
$x^{4}-2 x^{3}=0$
$x^{3}(x-2)=0$
$x^{3}=0$ or $(x-2)=0$
$\mathrm{x}=0$ or $\mathrm{x}=2$
If $x=0$
$\Rightarrow \frac{d y}{d x}=\frac{3(0)^{2}}{y}$
$d y / d x=0$ which is not possible.
So we take $x=2$ and substitute it in $y^{2}=2 x^{3}$, we get
$y^{2}=2(2)^{3}$
$y^{2}=2 \times 8$
$y^{2}=16$
$y=4$
Thus, the required point is $(2,4)$
7. Find a point on the curve $x y+4=0$ at which the tangents are inclined at an angle of
45° with the x-axis.

Solution:

Given the curve is $x y+4=0$
If a tangent line to the curve $y=f(x)$ makes an angle θ with x-axis in the positive direction, then
$\frac{d y}{d x}=$ The Slope of the tangent $=\tan \theta$
$x y+4=0$
Differentiating the above with respect to x
$\Rightarrow x^{\frac{d}{d x}}(y)+\frac{d}{d x}(x)+\frac{d}{d x}(4)=0$
$\Rightarrow x^{\frac{d y}{d x}}+y=0$
$\Rightarrow x^{\frac{d y}{d x}}=-y$
$\Rightarrow \frac{d y}{d x}=\frac{-y}{x}$
Also, $\frac{\mathrm{dy}}{\mathrm{dx}}=\tan 45^{\circ}=1 \ldots$ (2)
From (1) \& (2), we get,
$\Rightarrow \frac{-\mathrm{y}}{\mathrm{x}}=1$
$\Rightarrow \mathrm{x}=-\mathrm{y}$
Substitute in $x y+4=0$, we get
$\Rightarrow x(-x)+4=0$
$\Rightarrow-x^{2}+4=0$
$\Rightarrow x^{2}=4$
$\Rightarrow x= \pm_{2}$
So when $x=2, y=-2$
And when $x=-2, y=2$
Thus, the points are $(2,-2) \&(-2,2)$
8. Find a point on the curve $y=x^{2}$ where the Slope of the tangent is equal to the $x-$ coordinate of the point.

Solution:

Given the curve is $y=x^{2}$
$y=x^{2}$
Differentiating the above with respect to x

$$
\begin{align*}
& \Rightarrow \frac{d y}{d x}=2 x^{2-1} \\
& \Rightarrow \frac{d y}{d x}=2 x \ldots 1 \tag{1}
\end{align*}
$$

Also given the Slope of the tangent is equal to the x - coordinate,

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{dx}}=x \tag{2}
\end{equation*}
$$

From (1) \& (2), we get,
$2 \mathrm{x}=\mathrm{x}$
$\Rightarrow x=0$.
Substituting this in $y=x^{2}$, we get,
$y=0^{2}$
$\Rightarrow \mathrm{y}=0$
Thus, the required point is $(0,0)$
9. At what point on the circle $x^{2}+y^{2}-2 x-4 y+1=0$, the tangent is parallel to $x-a x i s$.

Solution:

Given the curve is $x^{2}+y^{2}-2 x-4 y+1=0$
Differentiating the above with respect to x
$\Rightarrow x^{2}+y^{2}-2 x-4 y+1=0$
$\Rightarrow 2 x^{2-1}+2 y^{2-1} \times \frac{d y}{d x}-2-4^{\times \frac{d y}{d x}}+0=0$
$\Rightarrow 2 x+2 y \frac{d y}{d x}-2-4 \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}(2 y-4)=-2 x+2$
$\Rightarrow \frac{d y}{d x}=\frac{-2(x-1)}{2(y-2)}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-(\mathrm{x}-1)}{(\mathrm{y}-2)}$
$\therefore \frac{d y}{d x}=$ The Slope of the tangent $=\tan \theta$
Since, the tangent is parallel to x-axis
$\Rightarrow \frac{d y}{d x}=\tan (0)=0 \ldots$ (2)
Because tan $(0)=0$
From (1) \& (2), we get,
$\Rightarrow \frac{-(x-1)}{(y-2)}=0$
$\Rightarrow-(x-1)=0$
$\Rightarrow x=1$
Substituting $x=1$ in $x^{2}+y^{2}-2 x-4 y+1=0$, we get,
$\Rightarrow 1^{2}+y^{2}-2(1)-4 y+1=0$
$\Rightarrow 1-y^{2}-2-4 y+1=0$
$\Rightarrow y^{2}-4 y=0$
$\Rightarrow y(y-4)=0$
$\Rightarrow y=0$ and $y=4$
Thus, the required point is $(1,0)$ and $(1,4)$
10. At what point of the curve $y=x^{2}$ does the tangent make an angle of 45° with the $x-$ axis?

Solution:

Given the curve is $y=x^{2}$
Differentiating the above with respect to x
$\Rightarrow y=x^{2}$
$\Rightarrow \frac{d y}{d x}=2 x^{2-1}$
$\frac{d y}{d x}$
$\Rightarrow \overline{\mathrm{dx}}=2 \mathrm{x} \ldots$
$\therefore \frac{d y}{d x}=$ The Slope of the tangent $=\tan \theta$
Since, the tangent make an angle of 45° with x - axis
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\tan \left(45^{\circ}\right)=1 \ldots$ (2)
Because tan $\left(45^{\circ}\right)=1$
From (1) \& (2), we get,
$\Rightarrow 2 x=1$
$\Rightarrow \mathrm{x}=\frac{\mathbf{1}}{\mathbf{2}}$
Substituting $\mathrm{x}=\frac{\mathbf{1}}{\mathbf{2}}$ in $\mathrm{y}=\mathrm{x}^{2}$, we get,
$\Rightarrow \mathrm{y}=\left(\frac{1}{2}\right)^{2}$
$\Rightarrow y=\frac{1}{4}$
Thus, the required point is $\left(\frac{\mathbf{1}}{\mathbf{2}}, \frac{\mathbf{1}}{\mathbf{4}}\right)$

1. Find the equation of the tangent to the curve $v x+\sqrt{y}=a$, at the point $\left(a^{2} / 4, a^{2} / 4\right)$.

Solution:

Given $\mathrm{Vx}+\mathrm{Vy}=\mathrm{a}$
To find the slope of the tangent of the given curve we have to differentiate the given equation
$\frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{y}}\left(\frac{d y}{d x}\right)=0$
$\frac{d y}{d x}=-\frac{\sqrt{x}}{\sqrt{y}}$
At $\left(\frac{a^{2}}{4}, \frac{a^{2}}{4}\right)$ slope m, is - 1
The equation of the tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$

$$
\begin{aligned}
& y-\frac{a^{2}}{4}=-1\left(x-\frac{a^{2}}{4}\right) \\
& x+y=\frac{a^{2}}{2}
\end{aligned}
$$

2. Find the equation of the normal to $y=2 x^{3}-x^{2}+3$ at (1, 4).

Solution:

$$
\text { Given } y=2 x^{3}-x^{2}+3
$$

By differentiating the given curve, we get the slope of the tangent
$m=\frac{d y}{d x}=6 x^{2}-2 x$
$m=4$ at (1, 4)
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
$m($ normal $)=-\frac{1}{4}$
Equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y-4=\left(-\frac{1}{4}\right)(x-1)$
$x+4 y=17$
3. Find the equation of the tangent and the normal to the following curves at the indicated points:
(i) $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(0,5)$

Solution:

Given $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(0,5)$
By differentiating the given curve, we get the slope of the tangent
$\frac{d y}{d x}=4 x^{3}-18 x^{2}+26 x-10$
m (tangent) at $(0,5)=-10$
m (normal) at $(0,5)=\frac{1}{10}$
Equation of tangent is given by $y-y_{1}=m$ (tangent) $\left(x-x_{1}\right)$
$y-5=-10 x$
$y+10 x=5$
Equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y-5=\frac{1}{10} x$
(ii) $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $x=1 y=3$

Solution:

Given $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $x=1 y=3$
By differentiating the given curve, we get the slope of the tangent
$\frac{d y}{d x}=4 x^{3}-18 x^{2}+26 x-10$
m (tangent) at $(x=1)=2$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
$\mathrm{m}($ normal $)$ at $(\mathrm{x}=1)=-\frac{1}{2}$
Equation of tangent is given by $y-y_{1}=m$ (tangent) $\left(x-x_{1}\right)$
$y-3=2(x-1)$
$y=2 x+1$
Equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y-3=-\frac{1}{2}(x-1)$
$2 y=7-x$
(iii) $y=x^{2}$ at $(0,0)$

Solution:

Given $y=x^{2}$ at $(0,0)$
By differentiating the given curve, we get the slope of the tangent
$\frac{d y}{d x}=2 x$
m (tangent) at $(x=0)=0$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at $(\mathrm{x}=0)=\frac{1}{0}$
We can see that the slope of normal is not defined
Equation of tangent is given by $y-y_{1}=m$ (tangent) $\left(x-x_{1}\right)$
$y=0$
Equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$x=0$
(iv) $y=2 x^{2}-3 x-1$ at $(1,-2)$

Solution:

Given $y=2 x^{2}-3 x-1$ at $(1,-2)$
By differentiating the given curve, we get the slope of the tangent
$\frac{d y}{d x}=4 x-3$
m (tangent) at $(1,-2)=1$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at $(1,-2)=-1$
Equation of tangent is given by $y-y_{1}=m$ (tangent) $\left(x-x_{1}\right)$
$y+2=1(x-1)$
$y=x-3$
Equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y+2=-1(x-1)$
$y+x+1=0$
(v) $y^{2}=\frac{x^{3}}{4-x}$

Solution:

By differentiating the given curve, we get the slope of the tangent
$2 y \frac{d y}{d x}=\frac{(4-x) 3 x^{2}+x^{4}}{(4-x)^{2}}$
$\frac{d y}{d x}=\frac{(4-x) 3 x^{2}+x^{4}}{2 y(4-x)^{2}}$
m (tangent) at $(2,-2)=-2$
m(normal) at $(2,-2)=\frac{1}{2}$
Equation of tangent is given by $y-y_{1}=m$ (tangent) $\left(x-x_{1}\right)$
$y+2=-2(x-2)$
$y+2 x=2$

Equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$

$$
\begin{aligned}
& y+2=\frac{1}{2}(x-2) \\
& 2 y+4=x-2 \\
& 2 y-x+6=0
\end{aligned}
$$

4. Find the equation of the tangent to the curve $x=\theta+\sin \theta, y=1+\cos \theta$ at $\theta=\pi / 4$.

Solution:

Given $x=\theta+\sin \theta, y=1+\cos \theta$ at $\theta=\pi / 4$
By differentiating the given equation with respect to θ, we get the slope of the tangent

$$
\begin{aligned}
& \frac{\mathrm{dx}}{\mathrm{~d} \theta}=1+\cos \theta \\
& \frac{\mathrm{dy}}{\mathrm{~d} \theta}=-\sin \theta
\end{aligned}
$$

Dividing both the above equations
$\frac{d y}{d x}=-\frac{\sin \theta}{1+\cos \theta}$
m at $\theta=(\pi / 4)=-1+\frac{1}{\sqrt{2}}$
Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-1-\frac{1}{\sqrt{2}}=\left(-1+\frac{1}{\sqrt{2}}\right)\left(x-\frac{\pi}{4}-\frac{1}{\sqrt{2}}\right)$
5. Find the equation of the tangent and the normal to the following curves at the indicated points:
(i) $x=\theta+\sin \theta, y=1+\cos \theta$ at $\theta=\pi / 2$

Solution:

Given $x=\theta+\sin \theta, y=1+\cos \theta$ at $\theta=\pi / 2$
By differentiating the given equation with respect to θ, we get the slope of the tangent

$$
\begin{aligned}
& \frac{d x}{d \theta}=1+\cos \theta \\
& \frac{d y}{d \theta}=-\sin \theta
\end{aligned}
$$

Dividing both the above equations
$\frac{d y}{d x}=-\frac{\sin \theta}{1+\cos \theta}$
m (tangent) at $\theta=(\pi / 2)=-1$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at $\theta=(\pi / 2)=1$
Equation of tangent is given by $y-y_{1}=m$ (tangent) $\left(x-x_{1}\right)$
$y-1=-1\left(x-\frac{\pi}{2}-1\right)$
Equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y-1=1\left(x-\frac{\pi}{2}-1\right)$
(ii) $x=\frac{2 a t^{2}}{1+t^{2}}, y=\frac{2 a t^{3}}{1+t^{2}}$ at $t=\frac{1}{2}$

Solution:

By differentiating the given equation with respect to t, we get the slope of the tangent

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{\left(1+t^{2}\right) 4 a t-2 a t^{2}(2 t)}{\left(1+t^{2}\right)^{2}} \\
& \frac{d x}{d t}=\frac{4 a t}{\left(1+t^{2}\right)^{2}} \\
& \frac{d y}{d t}=\frac{\left(1+t^{2}\right) 6 a t^{2}-2 a t^{3}(2 t)}{\left(1+t^{2}\right)^{2}}
\end{aligned}
$$

$\frac{d y}{d t}=\frac{6 \mathrm{at}^{2}+2 \mathrm{at}^{4}}{\left(1+\mathrm{t}^{2}\right)^{2}}$
Now dividing $\frac{\mathrm{dy}}{\mathrm{dt}}$ and $\frac{\mathrm{dx}}{\mathrm{dt}}$ to obtain the slope of tangent
$\frac{d y}{d x}=\frac{6 \mathrm{at}^{2}+2 a t^{4}}{4 a t}$
m (tangent) at $\mathrm{t}=\frac{1}{2}$ is $\frac{13}{16}$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at $\mathrm{t}=\frac{1}{2}$ is $-\frac{16}{13}$
Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-\frac{a}{5}=\frac{13}{16}\left(x-\frac{2 a}{5}\right)$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-\frac{a}{5}=-\frac{16}{13}\left(x-\frac{2 a}{5}\right)$
(iii) $\mathrm{x}=\mathrm{at}^{2}, \mathrm{y}=2 \mathrm{at}$ at $\mathrm{t}=1$.

Solution:

Given $\mathrm{x}=\mathrm{at}^{2}, \mathrm{y}=2$ at at $\mathrm{t}=1$.
By differentiating the given equation with respect to t, we get the slope of the tangent
$\frac{\mathrm{dx}}{\mathrm{dt}}=2 \mathrm{at}$
$\frac{d y}{d t}=2 a$
Now dividing $\frac{d y}{d t}$ and $\frac{d x}{d t}$ to obtain the slope of tangent
$\frac{d y}{d x}=\frac{1}{t}$
m (tangent) at $\mathrm{t}=1$ is 1
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at $\mathrm{t}=1$ is -1
Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-2 a=1(x-a)$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-2 a=-1(x-a)$
(iv) $x=a \sec t, y=b \tan t a t$.

Solution:

Given $\mathrm{x}=\mathrm{a} \sec \mathrm{t}, \mathrm{y}=\mathrm{b} \tan \mathrm{t}$ at t .
By differentiating the given equation with respect to t, we get the slope of the tangent
$\frac{d x}{d t}=\operatorname{asectan} t$
$\frac{d y}{d t}=\operatorname{bsec}^{2} t$
Now dividing $\frac{\mathrm{dy}}{\mathrm{dt}}$ and $\frac{\mathrm{dx}}{\mathrm{dt}}$ to obtain the slope of tangent
$\frac{d y}{d x}=\frac{b \operatorname{cosec} t}{a}$
m (tangent) at $t=\frac{b \operatorname{cosec} t}{a}$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at $\mathrm{t}=-\frac{\mathrm{a}}{\mathrm{b}} \sin \mathrm{t}$

Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-b \tan t=\frac{b \operatorname{cosec} t}{a}(x-a \sec t)$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-b \tan t=-\frac{a \sin t}{b}(x-\operatorname{asec} t)$
(v) $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ at θ

Solution:

Given $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ at θ
By differentiating the given equation with respect to θ, we get the slope of the tangent
$\frac{d x}{d \theta}=a(1+\cos \theta)$
$\frac{d y}{d \theta}=a(\sin \theta)$
Now dividing $\frac{\mathrm{dy}}{\mathrm{d} \theta}$ and $\frac{\mathrm{dx}}{\mathrm{d} \theta}$ to obtain the slope of tangent
$\frac{d y}{d x}=\frac{\sin \theta}{1+\cos \theta}$
m (tangent) at theta is $\frac{\sin \theta}{1+\cos \theta}$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at theta is $-\frac{\sin \theta}{1+\cos \theta}$
Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-a(1-\cos \theta)=\frac{\sin \theta}{1+\cos \theta}(x-a(\theta+\sin \theta))$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-a(1-\cos \theta)=\frac{1+\cos \theta}{-\sin \theta}(x-a(\theta+\sin \theta))$
(vi) $x=3 \cos \theta-\cos ^{3} \theta, y=3 \sin \theta-\sin ^{3} \theta$

Solution:

Given $\mathrm{x}=3 \cos \theta-\cos ^{3} \theta, \mathrm{y}=3 \sin \theta-\sin ^{3} \theta$
By differentiating the given equation with respect to θ, we get the slope of the tangent
$\frac{\mathrm{dx}}{\mathrm{d} \theta}=-3 \sin \theta+3 \cos ^{2} \theta \sin \theta$
$\frac{d y}{d \theta}=3 \cos \theta-3 \sin ^{2} \theta \cos \theta$
Now dividing $\frac{d y}{d \theta}$ and $\frac{d x}{d \theta}$ to obtain the slope of tangent
$\frac{d y}{d x}=\frac{3 \cos \theta-3 \sin ^{2} \theta \cos \theta}{-3 \sin \theta+3 \cos ^{2} \theta \sin \theta}=-\tan ^{3} \theta$
m (tangent) at theta is $-\tan ^{3} \theta$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at theta is $\cot ^{3} \theta$
Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-3 \sin \theta+\sin ^{3} \theta=-\tan ^{3} \theta\left(x-3 \cos \theta+3 \cos ^{3} \theta\right)$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-3 \sin \theta+\sin ^{3} \theta=\cot ^{3} \theta\left(x-3 \cos \theta+3 \cos ^{3} \theta\right)$
6. Find the equation of the normal to the curve $x^{2}+2 y^{2}-4 x-6 y+8=0$ at the point whose abscissa is 2 .

Solution:

Given $\mathrm{x}^{2}+2 \mathrm{y}^{2}-4 \mathrm{x}-6 \mathrm{y}+8=0$
By differentiating the given curve, we get the slope of the tangent

$$
\begin{aligned}
& 2 x+4 y \frac{d y}{d x}-4-6 \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{4-2 x}{4 y-6}
\end{aligned}
$$

Finding y co - ordinate by substituting x in the given curve
$2 y^{2}-6 y+4=0$
$y^{2}-3 y+2=0$
$y=2$ or $y=1$
m (tangent) at $\mathrm{x}=2$ is 0
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at $\mathrm{x}=2$ is $1 / 0$, which is undefined
Equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$x=2$
7. Find the equation of the normal to the curve $a y^{2}=x^{3}$ at the point $\left(a m^{2}, a m^{3}\right)$.

Solution:

Given $\mathrm{ay}^{2}=\mathrm{x}^{3}$

By differentiating the given curve, we get the slope of the tangent
2ay $\frac{d y}{d x}=3 x^{2}$

$$
\frac{d y}{d x}=\frac{3 x^{2}}{2 a y}
$$

m (tangent) at $\left(\mathrm{am}^{2}, \mathrm{am}^{3}\right)$ is $\frac{3 \mathrm{~m}}{2}$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at $\left(\mathrm{am}^{2}, \mathrm{am}^{3}\right)$ is $-\frac{2}{3 \mathrm{~m}}$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-a m^{3}=-\frac{2}{3 m}\left(x-a m^{2}\right)$
8. The equation of the tangent at $(2,3)$ on the curve $y^{2}=a x^{3}+b$ is $y=4 x-5$. Find the values of a and b.

Solution:

Given $y^{2}=a x^{3}+b$ is $y=4 x-5$
By differentiating the given curve, we get the slope of the tangent
$2 y \frac{d y}{d x}=3 a x^{2}$
$\frac{d y}{d x}=\frac{3 a x^{2}}{2 y}$
m (tangent) at $(2,3)=2 a$
Equation of tangent is given by $y-y_{1}=m$ (tangent) $\left(x-x_{1}\right)$
Now comparing the slope of a tangent with the given equation
$2 \mathrm{a}=4$
$a=2$
Now $(2,3)$ lies on the curve, these points must satisfy
$3^{2}=2 \times 2^{3}+b$
$b=-7$
9. Find the equation of the tangent line to the curve $y=x^{2}+4 x-16$ which is parallel to the line $3 x-y+1=0$.

Solution:

Given $y=x^{2}+4 x-16$
By differentiating the given curve, we get the slope of the tangent

$$
\frac{d y}{d x}=2 x+4
$$

m (tangent) $=2 x+4$
Equation of tangent is given by $y-y_{1}=m$ (tangent) $\left(x-x_{1}\right)$
Now comparing the slope of a tangent with the given equation
$2 x+4=3$
$\mathrm{x}=-\frac{1}{2}$
Now substituting the value of x in the curve to find y
$y=\frac{1}{4}-2-16=-\frac{71}{4}$
Therefore, the equation of tangent parallel to the given line is

$$
y+\frac{71}{4}=3\left(x+\frac{1}{2}\right)
$$

10. Find the equation of normal line to the curve $y=x^{3}+2 x+6$ which is parallel to the line $x+14 y+4=0$.

Solution:

Given $y=x^{3}+2 x+6$
By differentiating the given curve, we get the slope of the tangent
$\frac{d y}{d x}=3 x^{2}+2$
m (tangent $)=3 x^{2}+2$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
$m($ normal $)=\frac{-1}{3 x^{2}+2}$
Equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
Now comparing the slope of normal with the given equation
$m($ normal $)=-\frac{1}{14}$
$-\frac{1}{14}=-\frac{1}{3 x^{2}+2}$
$x=2$ or -2

Hence the corresponding value of y is 18 or -6
So, equations of normal are

$$
y-18=-\frac{1}{14}(x-2)
$$

Or

$$
y+6=-\frac{1}{14}(x+2)
$$

1. Find the angle to intersection of the following curves:
(i) $y^{2}=x$ and $x^{2}=y$

Solution:

Given curves $\mathrm{y}^{2}=\mathrm{x} \ldots$
And $x^{2}=y$... (2)
First curve is $\mathrm{y}^{2}=\mathrm{x}$
Differentiating above with respect to x,
$\Rightarrow 2 y \cdot \frac{d y}{d x}=1$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \mathrm{x}}$..
The second curve is $x^{2}=y$
$\Rightarrow 2 \mathrm{x}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}$.
Substituting (1) in (2), we get
$\Rightarrow \mathrm{x}^{2}=\mathrm{y}$
$\Rightarrow\left(y^{2}\right)^{2}=y$
$\Rightarrow \mathrm{y}^{4}-\mathrm{y}=0$
$\Rightarrow \mathrm{y}\left(\mathrm{y}^{3}-1\right)=0$
$\Rightarrow y=0$ or $y=1$
Substituting $y=0 \& y=1$ in (1) in (2),
$x=y^{2}$
When $y=0, x=0$
When $y=1, x=1$

Substituting above values for $m_{1} \& m_{2}$, we get,
When $x=0$,
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \times 0}=\infty$
When $x=1$,
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \times 1}=\frac{1}{2}$
Values of m_{1} is $\infty \& \frac{1}{2}$
When $\mathrm{y}=0$,
$m_{2}=\frac{d y}{d x}=2 x=2 \times 0=0$
When $x=1$,
$m_{2}=\frac{d y}{d x}=3 x=2 \times 1=2$
Values of m_{2} is $0 \& 2$
When $\mathrm{m}_{1}=\infty \& \mathrm{~m}_{2}=0$
$\operatorname{Tan} \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$\operatorname{Tan} \theta=\left|\frac{0-\infty}{1+\infty \times 0}\right|$
$\operatorname{Tan} \theta=\infty$
$\theta=\tan ^{-1}(\infty)$
$\therefore \operatorname{Tan}^{-1}(\infty)=\frac{\pi}{2}$
$\theta=\frac{\pi}{2}$
When $m_{1}=\frac{1}{2} \& m_{2}=2$
Angle of intersection of two curves is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\operatorname{Tan} \theta=\left|\frac{2-\frac{1}{2}}{1+\frac{1}{2} \times 2}\right|$
$\operatorname{Tan} \theta=\left|\frac{3}{2}\right|$
$\operatorname{Tan} \theta=\left|\frac{3}{4}\right|$
$\theta=\tan ^{-1}\left(\frac{3}{4}\right)$
(ii) $y=x^{2}$ and $x^{2}+y^{2}=20$

Solution:
Given curves $\mathrm{y}=\mathrm{x}^{2} \ldots$ (1) and $\mathrm{x}^{2}+\mathrm{y}^{2}=20 \ldots$ (2)
Now consider first curve $y=x^{2}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x} \ldots$
Consider second curve is $\mathrm{x}^{2}+\mathrm{y}^{2}=20$
Differentiating above with respect to x ,
$\Rightarrow 2 x+2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow y \cdot \frac{d y}{d x}=-x$
$\Rightarrow m_{2}=\frac{d y}{d x}=\frac{-x}{y} \ldots$
Substituting (1) in (2), we get
$\Rightarrow \mathrm{y}+\mathrm{y}^{2}=20$
$\Rightarrow y^{2}+y-20=0$
We will use factorization method to solve the above Quadratic equation
$\Rightarrow y^{2}+5 y-4 y-20=0$
$\Rightarrow y(y+5)-4(y+5)=0$
$\Rightarrow(y+5)(y-4)=0$
$\Rightarrow y=-5 \& y=4$
Substituting $y=-5 \& y=4$ in (1) in (2),
$y=x^{2}$
When $\mathrm{y}=-5$,
$\Rightarrow-5=x^{2}$
$\Rightarrow \mathrm{x}=\sqrt{-5}$
When $\mathrm{y}=4$,
$\Rightarrow 4=x^{2}$
$\Rightarrow \mathrm{x}= \pm 2$
Substituting above values for $m_{1} \& m_{2}$, we get,
When $\mathrm{x}=2$,
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \times 2$
$=4$
When $x=1$,
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \times-2$
$=-4$
Values of m_{1} is $4 \&-4$
When $\mathrm{y}=4 \& \mathrm{x}=2$
$\mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{x}}{\mathrm{y}}=\frac{-2}{4}=\frac{-1}{2}$
When $\mathrm{y}=4 \& \mathrm{x}=-2$
$\mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{x}}{\mathrm{y}}=\frac{2}{4}=\frac{1}{2}$

Values of m_{2} is $\frac{-1}{2} \& \frac{1}{2}$
When $\mathrm{m}_{1}=\infty \& \mathrm{~m}_{2}=0$
Angle of intersection of two curves is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\operatorname{Tan} \theta=\left|\frac{\frac{-1}{2}-4}{1+2 \times 4}\right|$
$\operatorname{Tan} \theta=\left|\frac{\frac{-9}{2}}{1-2}\right|$
$\operatorname{Tan} \theta=\left|\frac{9}{2}\right|$
$\theta=\tan ^{-1}\left(\frac{9}{2}\right)$
(iii) $2 y^{2}=x^{3}$ and $y^{2}=32 x$

Solution:

Given curves $2 y^{2}=x^{3} \ldots$ (1) and $y^{2}=32 x \ldots$ (2)
First curve is $2 y^{2}=x^{3}$
Differentiating above with respect to x ,
$\Rightarrow 4 y \cdot \frac{d y}{d x}=3 x^{2}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{3 \mathrm{x}^{2}}{4 \mathrm{y}}$
Second curve is $y^{2}=32 x$
$\Rightarrow 2 y \cdot \frac{d y}{d x}=32$
$\Rightarrow y \cdot \frac{d y}{d x}=16$
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{16}{\mathrm{y}} \ldots$

Substituting (2) in (1), we get
$\Rightarrow 2 y^{2}=x^{3}$
$\Rightarrow 2(32 x)=x^{3}$
$\Rightarrow 64 x=x^{3}$
$\Rightarrow x^{3}-64 x=0$
$\Rightarrow x\left(x^{2}-64\right)=0$
$\Rightarrow x=0 \&\left(x^{2}-64\right)=0$
$\Rightarrow x=0 \& \pm 8$
Substituting $x=0 \& x= \pm 8$ in (1) in (2),
$y^{2}=32 x$
When $x=0, y=0$
When $x=8$
$\Rightarrow y^{2}=32 \times 8$
$\Rightarrow y^{2}=256$
$\Rightarrow y= \pm 16$
Substituting above values for $m_{1} \& m_{2}$, we get,
When $x=0, y=16$
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \frac{3 \times 0^{2}}{4 \times 8}$
$=0$
When $x=8, y=16$
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \frac{3 \times 8^{2}}{4 \times 16}$
$=3$
Values of m_{1} is $0 \& 3$
When $x=0, y=0$,
$m_{2}=\frac{d y}{d x}$
$\Rightarrow \frac{16}{y}=\frac{16}{0}=\infty$
When $\mathrm{y}=16$,
$\mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \frac{16}{y}=\frac{16}{16}$
$=1$
Values of m_{2} is $\infty \& 1$
When $m_{1}=0 \& m_{2}=\infty$
$\Rightarrow \operatorname{Tan} \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$\Rightarrow \operatorname{Tan} \theta=\left|\frac{\infty-0}{1+\infty \times 0}\right|$
$\Rightarrow \operatorname{Tan} \theta=\infty$
$\Rightarrow \theta=\tan ^{-1}(\infty)$
$\therefore \operatorname{Tan}^{-1}(\infty)=\frac{\pi}{2}$
$\Rightarrow \theta=\frac{\pi}{2}$
When $m_{1}=\frac{1}{2} \& m_{2}=2$
Angle of intersection of two curves is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$

$$
\begin{aligned}
& \Rightarrow \operatorname{Tan} \theta=\left|\frac{3-1}{1+3 \times 1}\right| \\
& \Rightarrow \operatorname{Tan} \theta=\left|\frac{2}{4}\right| \\
& \Rightarrow \operatorname{Tan} \theta=\left|\frac{1}{2}\right| \\
& \Rightarrow \theta=\tan ^{-1}\left(\frac{1}{2}\right)
\end{aligned}
$$

(iv) $x^{2}+y^{2}-4 x-1=0$ and $x^{2}+y^{2}-2 y-9=0$

Solution:

Given curves $x^{2}+y^{2}-4 x-1=0 \ldots$ (1) and $x^{2}+y^{2}-2 y-9=0 \ldots$ (2)
First curve is $x^{2}+y^{2}-4 x-1=0$
$\Rightarrow x^{2}-4 x+4+y^{2}-4-1=0$
$\Rightarrow(x-2)^{2}+y^{2}-5=0$
Now, Subtracting (2) from (1), we get
$\Rightarrow x^{2}+y^{2}-4 x-1-\left(x^{2}+y^{2}-2 y-9\right)=0$
$\Rightarrow x^{2}+y^{2}-4 x-1-x^{2}-y^{2}+2 y+9=0$
$\Rightarrow-4 x-1+2 y+9=0$
$\Rightarrow-4 x+2 y+8=0$
$\Rightarrow 2 y=4 x-8$
$\Rightarrow y=2 x-4$
Substituting $y=2 x-4$ in (3), we get,
$\Rightarrow(x-2)^{2}+(2 x-4)^{2}-5=0$
$\Rightarrow(x-2)^{2}+4(x-2)^{2}-5=0$
$\Rightarrow(x-2)^{2}(1+4)-5=0$
$\Rightarrow 5(x-2)^{2}-5=0$
$\Rightarrow(x-2)^{2}-1=0$
$\Rightarrow(x-2)^{2}=1$
$\Rightarrow(x-2)= \pm 1$
$\Rightarrow x=1+2$ or $x=-1+2$
$\Rightarrow x=3$ or $x=1$
So, when $x=3$
$y=2 \times 3-4$
$\Rightarrow y=6-4=2$
So, when $x=1$
$y=2 \times 1-4$
$\Rightarrow y=2-4=-2$
The point of intersection of two curves are $(3,2) \&(1,-2)$
Now, differentiating curves (1) \& (2) with respect to x, we get
$\Rightarrow x^{2}+y^{2}-4 x-1=0$
$\Rightarrow 2 x+2 y \frac{d y}{d x}-4-0=0$

$$
\Rightarrow x+y^{\frac{d y}{d x}}-2=0
$$

$\Rightarrow y^{\frac{d y}{d x}}=2-x$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2-\mathrm{x}}{\mathrm{y}}$
$\Rightarrow x^{2}+y^{2}-2 y-9=0$
$\Rightarrow 2 x+2 y \frac{d y}{d x}-2 \frac{d y}{d x}-0=0$
$\Rightarrow x+y \frac{d y}{d x}-\frac{d y}{d x}=0$
$\Rightarrow x+(y-1)^{\frac{d y}{d x}}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-x}{y-1}$.
At $(3,2)$ in equation (3), we get
$\Rightarrow \frac{d y}{d x}=\frac{2-3}{2}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-1}{2}$
At $(3,2)$ in equation (4), we get
$\Rightarrow \frac{d y}{d x}=\frac{-3}{2-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-3$
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=-3$
When $m_{1}=\frac{-1}{2} \& m_{2}=0$
Angle of intersection of two curves is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\Rightarrow \operatorname{Tan} \theta=\left|\frac{\frac{-1}{2}+3}{1+\frac{3}{2}}\right|=1$
$\Rightarrow \theta=\tan ^{-1}(1)=\frac{\pi}{4}$
(v) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $x^{2}+y^{2}=a b$

Solution:

Given curves $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \ldots$ (1) and $x^{2}+y^{2}=a b$... (2)
Second curve is $x^{2}+y^{2}=a b$
$y^{2}=a b-x^{2}$
Substituting this in equation (1),
$\Rightarrow \frac{x^{2}}{a^{2}}+\frac{a b-x^{2}}{b^{2}}=1$
$\Rightarrow \frac{x^{2} b^{2}+a^{2}\left(a b-x^{2}\right)}{a^{2} b^{2}}=1$
$\Rightarrow x^{2} b^{2}+a^{3} b-a^{2} x^{2}=a^{2} b^{2}$
$\Rightarrow x^{2} b^{2}-a^{2} x^{2}=a^{2} b^{2}-a^{3} b$
$\Rightarrow x^{2}\left(b^{2}-a^{2}\right)=a^{2} b(b-a)$
$\Rightarrow x^{2}=\frac{a^{2} b(b-a)}{x^{2}\left(b^{2}-a^{2}\right)}$
$\Rightarrow x^{2}=\frac{a^{2} b(b-a)}{x^{2}(b-a)(b+a)}$
$\Rightarrow x^{2}=\frac{a^{2} b}{(b+a)}$
$\therefore \mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$
$\Rightarrow_{x}= \pm \sqrt{\frac{a^{2} b}{(b+a)}}$.
Since, $y^{2}=a b-x^{2}$
$\Rightarrow y^{2}=a b-\left(\frac{a^{2} b}{(b+a)}\right)$
$\Rightarrow y^{2}=\frac{a^{2}+a^{2} b-a^{2} b}{(b+a)}$
$\Rightarrow y^{2}=\frac{a b^{2}}{(b+a)}$
$\Rightarrow y= \pm \sqrt{\frac{a b^{2}}{(b+a)}} \ldots$ (4)
Since, curves are $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \& x^{2}+y^{2}=a b$
Differentiating above with respect to x
$\Rightarrow \frac{2 \mathrm{x}}{\mathrm{a}^{2}}+\frac{2 \mathrm{y}}{\mathrm{b}^{2}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=0$
$\Rightarrow \frac{\mathrm{y}}{\mathrm{b}^{2}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{\mathrm{x}}{\mathrm{a}^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{-\frac{x}{a^{2}}}{\frac{b^{2}}{b^{2}}}$
$\Rightarrow \frac{d y}{d x}=\frac{-b^{2} x}{a^{2} y}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{b}^{2} \mathrm{x}}{\mathrm{a}^{2} \mathrm{y}} \ldots$
Second curve is $x^{2}+y^{2}=a b$
$\Rightarrow 2 x+2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{x}}{\mathrm{y}}$.
Substituting (3) in (4), above values for $m_{1} \& m_{2}$, we get,

At $\left(\sqrt{\frac{a^{2} b}{(b+a)}}, \sqrt{\left.\frac{a b^{2}}{(b+a)}\right)}\right.$ in equation (5), we get

$$
\Rightarrow \frac{d y}{d x}=\frac{-b^{2} \times \sqrt{\frac{a^{2} b}{(b+a)}}}{a^{2} \times \sqrt{\frac{a b^{2}}{(b+a)}}}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{-b^{2} \times a \sqrt{\frac{b}{(b+a)}}}{a^{2} \times b \sqrt{\frac{a}{(b+a)}}}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{-b^{2} a \sqrt{b}}{a^{2} b \sqrt{a}}
$$

$\Rightarrow m_{1}=\frac{d y}{d x}=\frac{-b \sqrt{b}}{a \sqrt{a}}$
At $\left(\sqrt{\frac{a^{2} b}{(b+a)}}, \sqrt{\frac{a b^{2}}{(b+a)}}\right)$ in equation (6), we get

$$
\Rightarrow \frac{d y}{d x}=\frac{-\sqrt{\frac{a^{2} b}{(b+a)}}}{\sqrt{\frac{a b^{2}}{(b+a)}}}
$$

$\Rightarrow \frac{d y}{d x}=\frac{-a \sqrt{\frac{b}{(b+a)}}}{b \sqrt{\frac{a}{(b+a)}}}$
$\Rightarrow \frac{d y}{d x}=\frac{-a \sqrt{b}}{b \sqrt{a}}$
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=-\sqrt{\frac{\mathrm{a}}{\mathrm{b}}}$
When $m_{1}=\frac{-b \sqrt{b}}{a \sqrt{a}} \& m_{2}=-\sqrt{\frac{a}{b}}$

Angle of intersection of two curves is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$

$$
\begin{aligned}
& \Rightarrow \operatorname{Tan} \theta \quad\left|\frac{\frac{-b \sqrt{b}}{\mathrm{a} \sqrt{\mathrm{a}}}-\sqrt{\frac{\mathrm{a}}{\mathrm{~b}}}}{1+\frac{-\mathrm{b} \sqrt{\mathrm{~b}}}{\mathrm{a} \sqrt{\mathrm{a}}} \times-\sqrt{\frac{\mathrm{a}}{\mathrm{~b}}}}\right| \\
& \Rightarrow \operatorname{Tan} \theta \quad\left|\frac{\frac{-b \sqrt{b}}{a \sqrt{a}}+\sqrt{\frac{a}{b}}}{1+\frac{b}{a}}\right| \\
& \Rightarrow \operatorname{Tan} \theta=\left|\frac{\frac{-b \sqrt{b} \times \sqrt{b}+a \sqrt{a} \times \sqrt{a}}{a \sqrt{a} \times \sqrt{b}}}{1+\frac{b}{a}}\right| \\
& \Rightarrow \operatorname{Tan} \theta=\left|\frac{\frac{-b \times b+a \times a}{a \sqrt{a} b}}{1+\frac{b}{a}}\right| \\
& \Rightarrow \operatorname{Tan} \theta=\left|\frac{\frac{a^{2}-b^{2}}{a \sqrt{a} b}}{\frac{a+b}{a}}\right| \\
& \Rightarrow \operatorname{Tan} \theta=\left|\frac{\frac{(a+b)(a-b)}{\sqrt{2} b}}{a+b}\right| \\
& \Rightarrow \operatorname{Tan} \theta=\left|\frac{(\mathrm{a}-\mathrm{b})}{\sqrt{\mathrm{a} b}}\right| \\
& \Rightarrow \theta=\tan ^{-1}\left(\frac{(a-b)}{(\sqrt{a} b}\right)
\end{aligned}
$$

2. Show that the following set of curves intersect orthogonally:
(i) $y=x^{3}$ and $6 y=7-x^{2}$

Solution:

Given curves $y=x^{3} \ldots(1)$ and $6 y=7-x^{2} \ldots$ (2)
Solving (1) \& (2), we get
$\Rightarrow 6 y=7-x^{2}$
$\Rightarrow 6\left(x^{3}\right)=7-x^{2}$
$\Rightarrow 6 x^{3}+x^{2}-7=0$

Since $f(x)=6 x^{3}+x^{2}-7$,
We have to find $f(x)=0$, so that x is a factor of $f(x)$.
When $x=1$
$f(1)=6(1)^{3}+(1)^{2}-7$
$f(1)=6+1-7$
$f(1)=0$
Hence, $x=1$ is a factor of $f(x)$.
Substituting $x=1$ in $y=x^{3}$, we get
$y=1^{3}$
$y=1$
The point of intersection of two curves is $(1,1)$
First curve $y=x^{3}$
Differentiating above with respect to x,
$\Rightarrow 6 \frac{\mathrm{dy}}{\mathrm{dx}}=0-2 x$
$\Rightarrow m_{2}=\frac{-2 \mathrm{x}}{6}$
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{x}}{3}$
At $(1,1)$, we have,
$\mathrm{m}_{1}=3 \mathrm{x}^{2}$
$\Rightarrow 3 \times(1)^{2}$
$\mathrm{m}_{1}=3$
At (1, 1), we have,
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{x}}{3}$
$\Rightarrow \frac{-1}{3}$
$\Rightarrow \mathrm{m}_{2}=\frac{-1}{3}$
When $m_{1}=3 \& m_{2}=\frac{-1}{3}$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$
$\Rightarrow 3 \times \frac{-1}{3}=-1$
\therefore Two curves $\mathrm{y}=\mathrm{x}^{3} \& 6 \mathrm{y}=7-\mathrm{x}^{2}$ intersect orthogonally.
(ii) $x^{3}-3 x y^{2}=-2$ and $3 x^{2} y-y^{3}=2$

Solution:

Given curves $x^{3}-3 x y^{2}=-2 \ldots$ (1) and $3 x^{2} y-y^{3}=2$..
Adding (1) \& (2), we get
$\Rightarrow x^{3}-3 x y^{2}+3 x^{2} y-y^{3}=-2+2$
$\Rightarrow x^{3}-3 x y^{2}+3 x^{2} y-y^{3}=-0$
$\Rightarrow(x-y)^{3}=0$
$\Rightarrow(x-y)=0$
$\Rightarrow x=y$
Substituting $x=y$ on $x^{3}-3 x y^{2}=-2$
$\Rightarrow x^{3}-3 \times x \times x^{2}=-2$
$\Rightarrow x^{3}-3 x^{3}=-2$
$\Rightarrow-2 x^{3}=-2$
$\Rightarrow x^{3}=1$
$\Rightarrow x=1$
Since $x=y$
$y=1$
The point of intersection of two curves is $(1,1)$
First curve $x^{3}-3 x y^{2}=-2$
Differentiating above with respect to x,

$$
\begin{aligned}
& \Rightarrow 3 x^{2}-3\left(1 x y^{2}+x \times 2 y \frac{d y}{d x}\right)=0 \\
& \Rightarrow 3 x^{2}-3 y^{2}-6 x y \frac{d y}{d x}=0 \\
& \Rightarrow 3 x^{2}-3 y^{2}=6 x y \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x}=\frac{3 x^{2}-3 y^{2}}{6 x y} \\
& \Rightarrow \frac{d y}{d x}=\frac{3\left(x^{2}-y^{2}\right)}{6 x y}
\end{aligned}
$$

$\Rightarrow \mathrm{m}_{1}=\frac{\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)}{2 \mathrm{xy}}$.
Second curve $3 x^{2} y-y^{3}=2$
Differentiating above with respect to x
$\Rightarrow 3\left(2 x \times y+x^{2} \times \frac{d y}{d x}\right)-3 y^{2} \frac{d y}{d x}=0$
$\Rightarrow 6 x y+3 x^{2} \frac{d y}{d x}-3 y^{2} \frac{d y}{d x}=0$
$\Rightarrow 6 x y+\left(3 x^{2}-3 y^{2}\right)^{\frac{d y}{d x}}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-6 x y}{3 x^{2}-3 y^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x y}{x^{2}-y^{2}}$
$\Rightarrow m_{2}=\frac{-2 x y}{x^{2}-y^{2}}$
When $\mathrm{m}_{1}=\frac{\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)}{2 \mathrm{xy}} \& \mathrm{~m}_{2}=\frac{-2 \mathrm{xy}}{\mathrm{x}^{2}-\mathrm{y}^{2}}$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$
$\Rightarrow \frac{\left(x^{2}-y^{2}\right)}{2 x y} \times \frac{-2 x y}{x^{2}-y^{2}}=-1$
\therefore Two curves $x^{3}-3 x y^{2}=-2 \& 3 x^{2} y-y^{3}=2$ intersect orthogonally.
(iii) $x^{2}+4 y^{2}=8$ and $x^{2}-2 y^{2}=4$.

Solution:

Given curves $x^{2}+4 y^{2}=8 \ldots$ (1) and $x^{2}-2 y^{2}=4 \ldots$
Solving (1) \& (2), we get,
From 2nd curve,

$$
x^{2}=4+2 y^{2}
$$

Substituting on $x^{2}+4 y^{2}=8$,
$\Rightarrow 4+2 y^{2}+4 y^{2}=8$
$\Rightarrow 6 \mathrm{y}^{2}=4$
$\Rightarrow y^{2}=\frac{4}{6}$
$\Rightarrow y= \pm \sqrt{\frac{2}{3}}$
Substituting on $\mathrm{y}= \pm \sqrt{\frac{2}{3}}$, we get,
$\Rightarrow x^{2}=4+2\left(\pm \sqrt{\frac{2}{3}}\right)^{2}$
$\Rightarrow x^{2}=4+2\left(\frac{2}{3}\right)$
$\Rightarrow x^{2}=4+\frac{4}{3}$
$\Rightarrow \mathrm{x}^{2}=\frac{16}{3}$
$\Rightarrow x= \pm \sqrt{\frac{16}{3}}$
$\Rightarrow x= \pm \frac{4}{\sqrt{3}}$
\therefore The point of intersection of two curves $\left(\frac{4}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right) \&\left(-\frac{4}{\sqrt{3}},-\sqrt{\frac{2}{3}}\right)$
Now, differentiating curves (1) \& (2) with respect to x, we get
$\Rightarrow x^{2}+4 y^{2}=8$
$\Rightarrow 2 x+8 y \cdot \frac{d y}{d x}=0$
$\Rightarrow 8 y \cdot \frac{d y}{d x}=-2 x$
$\Rightarrow \frac{d y}{d x}=\frac{-x}{4 y} \ldots$
$\Rightarrow x^{2}-2 y^{2}=4$
$\Rightarrow 2 x-4 y \cdot \frac{d y}{d x}=0$
$\Rightarrow x-2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow 4 y \frac{d y}{d x}=x$
$\Rightarrow \frac{d y}{d x}=\frac{x}{2 y}$
At $\left(\frac{4}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right)$ in equation (3), we get
$\Rightarrow \frac{d y}{d x}=\frac{-\frac{4}{\sqrt{3}}}{4 \times \sqrt{\frac{2}{3}}}$
$\Rightarrow \frac{d y}{d x}=\frac{-\frac{1}{\sqrt{3}}}{\sqrt{\frac{2}{3}}}$
$\Rightarrow \mathrm{m}_{1}=\frac{-1}{\sqrt{2}}$
At $\left(\frac{4}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right)$ in equation (4), we get
$\Rightarrow \frac{d y}{d x}=\frac{\frac{4}{\sqrt{3}}}{\left.2 \times \sqrt{\frac{2}{3}}\right)}$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{2}{\sqrt{3}}}{\left.\sqrt{\frac{2}{3}}\right)}$
$\Rightarrow \frac{d y}{d x}=\frac{2}{\sqrt{2}}$
$\Rightarrow \frac{d y}{d x}=\sqrt{2}$
$\Rightarrow \mathrm{m}_{2}=1$
When $\mathrm{m}_{1}=\frac{-1}{\sqrt{2}} \& \mathrm{~m}_{2}=\sqrt{2}$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$
$\Rightarrow \frac{-1}{\sqrt{2}} \times \sqrt{2}=-1$
\therefore Two curves $\mathrm{x}^{2}+4 \mathrm{y}^{2}=8 \& \mathrm{x}^{2}-2 \mathrm{y}^{2}=4$ intersect orthogonally.
3. $x^{2}=4 y$ and $4 y+x^{2}=8$ at $(2,1)$

Solution:

Given curves $x^{2}=4 y \ldots(1)$ and $4 y+x^{2}=8$...
The point of intersection of two curves $(2,1)$
Solving (1) \& (2), we get,
First curve is $x^{2}=4 y$
Differentiating above with respect to x ,
$\Rightarrow 2 x=4 . \frac{d y}{d x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2 \mathrm{x}}{4}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{x}}{2}$
Second curve is $4 y+x^{2}=8$
$\Rightarrow 4 . \frac{d y}{d x}+2 x=0$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-2 \mathrm{x}}{4}$
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{x}}{2} \ldots$
Substituting $(2,1)$ for $m_{1} \& m_{2}$, we get,
$\mathrm{m}_{1}=\frac{\mathrm{x}}{2}$
$\Rightarrow \frac{2}{2}$
$m_{1}=1 \ldots$ (5)
$m_{2}=\frac{-x}{2}$
$\Rightarrow \frac{-2}{2}$
$m_{2}=-1 \ldots(6)$
When $m_{1}=1 \& m_{2}=-1$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$
$\Rightarrow 1 \times-1=-1$
\therefore Two curves $\mathrm{x}^{2}=4 \mathrm{y} \& 4 \mathrm{y}+\mathrm{x}^{2}=8$ intersect orthogonally.
(ii) $x^{2}=y$ and $x^{3}+6 y=7$ at $(1,1)$

Solution:

Given curves $x^{2}=y \ldots(1)$ and $x^{3}+6 y=7 \ldots$ (2)
The point of intersection of two curves $(1,1)$
Solving (1) \& (2), we get,
First curve is $x^{2}=y$
Differentiating above with respect to x,
$\Rightarrow 2 x=\frac{d y}{d x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}$
$\Rightarrow \mathrm{m}_{1}=2 \mathrm{x} \ldots$

Second curve is $x^{3}+6 y=7$
Differentiating above with respect to x ,
$\Rightarrow 3 x^{2}+6 \cdot \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-3 x^{2}}{6}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{x}^{2}}{2}$
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{x}^{2}}{2}$.
Substituting $(1,1)$ for $m_{1} \& m_{2}$, we get, $\mathrm{m}_{1}=2 \mathrm{x}$
$\Rightarrow 2 \times 1$
$\mathrm{m}_{1}=2$..
$m_{2}=\frac{-x^{2}}{2}$
$\Rightarrow \frac{-1^{2}}{2}$
$m_{2}=-\frac{-1}{2} \ldots$
When $m_{1}=2$ \& $m_{2}=-\frac{-1}{2}$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$
$\Rightarrow 2 \times \frac{-1}{2}=-1$
\therefore Two curves $\mathrm{x}^{2}=\mathrm{y} \& \mathrm{x}^{3}+6 \mathrm{y}=7$ intersect orthogonally.
(iii) $y^{2}=8 x$ and $2 x^{2}+y^{2}=10$ at (1, 2v2)

Solution:

Given curves $\mathrm{y}^{2}=8 \mathrm{x} \ldots$ (1) and $2 \mathrm{x}^{2}+\mathrm{y}^{2}=10 \ldots$ (

The point of intersection of two curves are $(0,0) \&(1,2 \mathrm{~V}$
Now, differentiating curves (1) \& (2) w.r.t x, we get
$\Rightarrow \mathrm{y}^{2}=8 \mathrm{x}$
$\Rightarrow 2 \mathrm{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=8$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{8}{2 \mathrm{y}}$
$\Rightarrow \frac{d y}{d x}=\frac{4}{y}$...
$\Rightarrow 2 \mathrm{x}^{2}+\mathrm{y}^{2}=10$
Differentiating above with respect to x ,
$\Rightarrow 4 x+2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow 2 x+y \cdot \frac{d y}{d x}=0$
$\Rightarrow y \cdot \frac{d y}{d x}=-2 x$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-2 \mathrm{x}}{\mathrm{y}}$.
Substituting (1, 2V2) for $m_{1} \& m_{2}$, we get,
$\mathrm{m}_{1}=\frac{4}{\mathrm{y}}$
$\Rightarrow \frac{4}{2 \sqrt{2}}$
$\mathrm{m}_{1}=\sqrt{2}$.
$\mathrm{m}_{2}=\frac{-2 \mathrm{x}}{\mathrm{y}}$
$\Rightarrow \frac{-2 \times 1}{2 \sqrt{2}}$
$m_{2}=-\frac{-1}{\sqrt{2}}$.

When $m_{1}=\sqrt{2} \& m_{2}=\frac{-1}{\sqrt{2}}$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$
$\Rightarrow \sqrt{2} \times \frac{-1}{\sqrt{2}}={ }^{-}{ }_{1}$
\therefore Two curves $\mathrm{y}^{2}=8 \mathrm{x} \& 2 \mathrm{x}^{2}+\mathrm{y}^{2}=10$ intersect orthogonally.
4. Show that the curves $4 x=y^{2}$ and $4 x y=k$ cut at right angles, if $k^{2}=512$.

Solution:

Given curves $4 \mathrm{x}=\mathrm{y}^{2} \ldots$ (1) and $4 \mathrm{xy}=\mathrm{k} \ldots$ (2)
We have to prove that two curves cut at right angles if $\mathrm{k}^{2}=512$
Now, differentiating curves (1) \& (2) w.r.t x, we get
$\Rightarrow 4 \mathrm{x}=\mathrm{y}^{2}$
$\Rightarrow 4=2 y . \frac{d y}{d x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{\mathrm{y}}$
$m_{1}=\frac{2}{y}$.
$\Rightarrow 4 \mathrm{xy}=\mathrm{k}$
Differentiating above with respect to x ,
$\Rightarrow 4\left(y+x \frac{d y}{d x}\right)=0$
$\Rightarrow y+x \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-y}{x}$
$\Rightarrow m_{2}=\frac{-\mathrm{y}}{\mathrm{x}} \ldots$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$

Since m_{1} and m_{2} cuts orthogonally,
$\Rightarrow \frac{2}{y} \times \frac{-y}{x}=-1$
$\Rightarrow \frac{-2}{\mathrm{x}}=-1$
$\Rightarrow \mathrm{x}=2$
Now, Solving (1) \& (2), we get,
$4 x y=k \& 4 x=y^{2}$
$\Rightarrow\left(y^{2}\right) y=k$
$\Rightarrow y^{3}=k$
$\Rightarrow \mathrm{y}=\mathrm{k}^{\frac{1}{3}}$
Substituting $y=k^{\frac{1}{3}}$ in $4 x=y^{2}$, we get,
$\Rightarrow 4 \mathrm{x}=\left(\mathrm{k}^{\frac{1}{3}}\right)^{2}$
$\Rightarrow 4 \times 2=\mathrm{k}^{\frac{2}{3}}$
$\Rightarrow \mathrm{k}^{\frac{2}{3}}=8$
$\Rightarrow \mathrm{k}^{2}=8^{3}$
$\Rightarrow \mathrm{k}^{2}=512$
5. Show that the curves $2 x=y^{2}$ and $2 x y=k$ cut at right angles, if $k^{2}=8$.

Solution:

Given curves $2 x=y^{2} \ldots$ (1) and $2 x y=k \ldots$ (2)
We have to prove that two curves cut at right angles if $\mathrm{k}^{2}=8$
Now, differentiating curves (1) \& (2) with respect to x, we get
$\Rightarrow 2 \mathrm{x}=\mathrm{y}^{2}$
$\Rightarrow 2=2 y \cdot \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{y}$
$\mathrm{m}_{1}=\frac{1}{\mathrm{y}} .$.
$\Rightarrow 2 x y=k$
Differentiating above with respect to x ,
$\Rightarrow 2\left({ }^{y}+x \frac{d y}{d x}\right)=0$
$\Rightarrow y+x \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-y}{x}$
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{y}}{\mathrm{x}} \ldots$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$
Since m_{1} and m_{2} cuts orthogonally,

$$
\begin{aligned}
& \Rightarrow \frac{1}{y} \times \frac{-y}{x}=-1 \\
& \Rightarrow \frac{-1}{x}=-1 \\
& \Rightarrow x=1
\end{aligned}
$$

Now, solving (1) \& (2), we get,

$$
\begin{aligned}
& 2 x y=k \& 2 x=y^{2} \\
& \Rightarrow\left(y^{2}\right) y=k \\
& \Rightarrow y^{3}=k \\
& \Rightarrow y=k^{\frac{1}{3}}
\end{aligned}
$$

Substituting $y=k^{\frac{1}{3}}$ in $2 x=y^{2}$, we get,

$$
\begin{aligned}
& \Rightarrow 2 x=\left(k^{\frac{1}{3}}\right)^{2} \\
& \Rightarrow 2 \times 1=k^{\frac{2}{3}} \\
& \Rightarrow k^{\frac{2}{3}}=2 \\
& \Rightarrow k^{2}=2^{3} \\
& \Rightarrow k^{2}=8
\end{aligned}
$$

