EXERCISE 15.1

1. Identify parallel line segments shown in Fig. 15.6.

(i)

(ii)

(iv)

(v)

(vi)

Solution:

(i) From the figure we know that $\mathrm{BC} \| \mathrm{DE}$.
(ii) From the figure we know that $A B\|D C, A D\| B C$.
(iii) From the figure we know that $A B \| D C$ and $A D \| B C$.
(iv) From the figure we know that $\mathrm{PQ}\|\mathrm{TS}, \mathrm{UT}\| \mathrm{QR}$ and $\mathrm{UP} \|$ SR.
(v) From the figure we know that $\mathrm{AB}\|\mathrm{EF}\| \mathrm{CD}, \mathrm{BC} \| \mathrm{AD}$ and $\mathrm{CF} \| \mathrm{DE}$.
(vi) From the figure we know that $E F\|B C, A B\| D F$ and $A C \| D E$.
2. Name the pairs of all possible parallel edges of the pencil box whose figure is shown in Fig. 15.7.

Solution:

The pairs of all possible parallel edges of the pencil box are AB || DC || $\mathrm{HE}||\mathrm{GF}, \mathrm{AD}\|\mathrm{GH}\| \mathrm{BC}|| \mathrm{EF}$ and $\mathrm{AH}||\mathrm{DG}|| \mathrm{BE}|\mid \mathrm{CF}$
3. In Fig. 15.8, do the segments AB and CD intersect? Are they parallel? Give reasons.

$$
\bar{A}
$$

Solution:
No, AB and CD do not intersect but they can intersect if extended further. No AB and CD are not parallel since, the distance between them is not constant.
4. State which of the following statements are true (T) or which are false (F):
(i) If two lines in the same plane do not intersect, then they must be parallel.
(ii) Distance between two parallel lines is not same everywhere.
(iii) If $m \perp 1, n \perp 1$ and m
(iv) Two non-intersecting coplanar rays are parallel.
(v) If ray $A B \| m$, then line segment $A B \| m$.
(vi) If line $A B \|$ line m, then line segment $A B \| m$.
(vii) No two parallel line segments intersect.
(viii) Every pair of lines is a pair of coplanar lines.
(ix) Two lines perpendicular to the same line are parallel.
(x) A line perpendicular to one of two parallel lines is perpendicular to the other.

Solution:
(i) True
(ii) False
(iii) True
(iv) False
(v) True
(vi) True
(vii) True
(viii) False
(ix) True
(x) True

EXERCISE 15.2

PAGE: 15.6

1. In Fig. 15.17, line \mathbf{n} is a transversal to lines l and m. Identify the following:
(i) Alternate and corresponding angles in Fig. 15.17 (i).
(ii) Angles alternate to $\angle \mathrm{d}$ and $\angle \mathrm{g}$ and angles corresponding to $\angle \mathrm{f}$ and $\angle \mathrm{h}$ in Fig. 15.17 (ii).
(iii) Angle alternative to $\angle P Q R$, angle corresponding to $\angle R Q F$ and angle alternate to $\angle P Q E$ in Fig. 15.17 (iii).
(iv) Pairs of interior and exterior angles on the same side of the transversal in Fig. 15.17 (ii).

(i)

(ii)

(iii)

Solution:
(i) Alternate interior angles are $\angle \mathrm{BGH}$ and $\angle \mathrm{CHG} ; \angle \mathrm{AGH}$ and $\angle \mathrm{CHF}$

Alternate exterior angles are $\angle \mathrm{AGE}$ and $\angle \mathrm{DHF} ; \angle \mathrm{EGB}$ and $\angle \mathrm{CHF}$
Corresponding angles are $\angle \mathrm{EGB}$ and $\angle \mathrm{GHD} ; \angle \mathrm{EGA}$ and $\angle \mathrm{GHC} ; \angle \mathrm{BGH}$ and $\angle \mathrm{DHF} ; \angle \mathrm{AGF}$ and $\angle \mathrm{CHF}$.
(ii) Angles alternate to $\angle \mathrm{d}$ and $\angle \mathrm{g}$ are $\angle \mathrm{e}$ and $\angle \mathrm{b}$ and angles corresponding to $\angle \mathrm{f}$ and $\angle \mathrm{h}$ are $\angle \mathrm{c}$ and $\angle \mathrm{a}$.
(iii) From the figure we know that 1 is transversal to m and n.

Angle alternate to $\angle \mathrm{PQR}$ is $\angle \mathrm{QRA}$
Angle corresponding to $\angle \mathrm{RQF}$ is $\angle \mathrm{BRA}$
Angle alternate to $\angle \mathrm{PQE}$ is $\angle \mathrm{BRA}$
(iv) Interior angles are $\angle \mathrm{d}, \angle \mathrm{f}$ and $\angle \mathrm{a}, \angle \mathrm{e}$ and exterior angles are $\angle \mathrm{c}, \angle \mathrm{g}$ and $\angle \mathrm{b}, \angle \mathrm{h}$
2. Match column A and column B with the help of the Fig. 15.18:

Column A

(i) Vertically opposite angles
(ii) Alternate angles
(iii) Corresponding angles

Column B

(i) $\angle \mathrm{PAB}$ and $\angle \mathrm{ABS}$
(ii) $\angle P A B$ and $\angle R B Y$
(iii) $\angle P A B$ and $\angle X A Q$

Solution:
(i) $\angle \mathrm{PAB}$ and $\angle \mathrm{XAQ}$ are vertically opposite angles
(ii) $\angle \mathrm{PAB}$ and $\angle \mathrm{ABS}$ are alternate angles
(iii) $\angle \mathrm{PAB}$ and $\angle \mathrm{RBY}$ are corresponding angles

