EXERCISE 2.11

1. For each of the following pairs of numbers, verify the property:

Product of the number $=$ Product of their HCF and LCM
(i) 25,65
(ii) 117, 221
(iii) 35,40
(iv) 87, 145
(v) 490, 1155

Solution:

(i) 25,65

Prime factorization of
$25=5 \times 5$
$65=5 \times 13$
So we get
HCF of $25,65=5$
LCM of $25,65=5 \times 5 \times 13=325$
So we get the product of numbers $=25 \times 65=1625$
Product of HCF and LCM $=5 \times 325=1625$
Hence, it is verified that product of the number = product of their HCF and LCM.
(ii) 117, 221

Prime factorization of
$117=3 \times 3 \times 13$
$221=13 \times 17$
So we get
HCF of 117, $221=13$
LCM of $117,221=3 \times 3 \times 13 \times 17=1989$
So we get the product of numbers $=117 \times 221=25857$
Product of HCF and LCM $=13 \times 1989=25857$
Hence, it is verified that product of the number = product of their HCF and LCM.
(iii) 35,40

Prime factorization of
$35=5 \times 7$
$40=2 \times 2 \times 2 \times 5$
So we get
HCF of $35,40=5$
LCM of $35,40=2 \times 2 \times 2 \times 5 \times 7=280$
So we get the product of numbers $=35 \times 40=1400$
Product of HCF and LCM $=5 \times 280=1400$
Hence, it is verified that product of the number = product of their HCF and LCM.
(iv) 87,145

Prime factorization of
$87=3 \times 29$
$145=5 \times 29$
So we get
HCF of $87,145=29$
LCM of $87,145=3 \times 5 \times 29=435$
So we get the product of numbers $=87 \times 145=12615$
Product of HCF and LCM $=29 \times 435=12615$
Hence, it is verified that product of the number = product of their HCF and LCM.
(v) 490,1155

Prime factorization of
$490=2 \times 5 \times 7 \times 7$
$1155=3 \times 5 \times 7 \times 11$
So we get
HCF of $490,1155=35$
LCM of $490,1155=2 \times 3 \times 5 \times 7 \times 7 \times 11=16170$

So we get the product of numbers $=490 \times 1155=565950$
Product of HCF and LCM $=35 \times 16170=565950$
Hence, it is verified that product of the number = product of their HCF and LCM.
2. Find the HCF and LCM of the following pairs of numbers:
(i) 117, 221
(ii) 234,572
(iii) 145,232
(iv) 861, 1353

Solution:
(i) 117,221

Prime factorization of
$117=3 \times 3 \times 13$
$221=13 \times 17$
So the required $\mathrm{HCF}=13$
Required LCM $=3 \times 3 \times 13 \times 17=1989$
(ii) 234,572

Prime factorization of
$234=2 \times 3 \times 3 \times 13$
$572=2 \times 2 \times 11 \times 13$
So the required $\mathrm{HCF}=26$
Required LCM $=2 \times 2 \times 3 \times 3 \times 11 \times 13=5148$
(iii) 145,232

Prime factorization of
$145=5 \times 29$
$232=2 \times 2 \times 2 \times 29$
So the required HCF $=29$
Required LCM $=2 \times 2 \times 2 \times 5 \times 29=1160$
(iv) 861,1353

Prime factorization of
$861=3 \times 7 \times 41$
$1353=3 \times 11 \times 41$
So the required $\mathrm{HCF}=123$
Required LCM $=3 \times 7 \times 11 \times 41=9471$
3. The LCM and HCF of two numbers are 180 and 6 respectively. If one of the numbers is 30 , find the other number.

Solution:

It is given that
LCM of two numbers $=180$
HCF of two numbers $=6$
One of the number $=30$
We know that
Product of two numbers = Product of HCF and LCM
So we get
$30 \times$ other number $=6 \times 180$
On further calculation
Other number $=(6 \times 180) / 30=36$
Hence, the other number is 36 .

4. The HCF of two numbers is 16 and their product is 3072. Find their LCM.

Solution:

It is given that
HCF of two numbers $=16$
Product $=3072$
We know that
Product of two numbers = Product of HCF and LCM
So we get
$3072=16 \times$ LCM
On further calculation
LCM $=3072 / 16=192$
Therefore, the LCM of two numbers is 192.
5. The HCF of two numbers is 145 , their LCM is 2175 . If one number is 725 , find the other. Solution:

It is given that
HCF of two numbers $=145$
$\mathrm{LCM}=2175$
We know that
Product of two numbers = Product of HCF and LCM
So we get
$725 \times$ other number $=145 \times 2175$
On further calculation
Other number $=(145 \times 2175) / 725=435$
Therefore, the other number is 435 .

6. Can two numbers have 16 as their HCF and 380 as their LCM? Give reason. Solution:

No. HCF of two numbers must exactly divide their LCM
We know that 16 does not divide 380 exactly
Therefore, no two numbers can exist with 16 as HCF and 380 as LCM.

