EXERCISE 5.1

1. Write the opposite of each of the following:
(i) Increase in population
(ii) Depositing money in a bank
(iii) Earning money
(iv) Going North
(v) Gaining a weight of $4 \mathbf{k g}$
(vi) A loss of Rs 1000
(vii) 25
(viii) - 15

Solution:
(i) The opposite of Increase in population is Decrease in population.
(ii) The opposite of Depositing money in a bank is Withdrawing money from a bank.
(iii) The opposite of earning money is Spending money.
(iv) The opposite of Going North is Going South.
(v) The opposite of gaining a weight of 4 kg is losing a weight of 4 kg .
(vi) The opposite of a loss of Rs 1000 is a gain of Rs 1000 .
(vii) The opposite of 25 is -25 .
(viii) The opposite of -15 is 15 .
2. Indicate the following by using integers:
(i) 25° above zero
(ii) 5° below zero
(iii) A profit of Rs 800
(iv) A deposit of Rs 2500
(v) 3 km above sea level
(vi) $\mathbf{2 k m}$ below level

Solution:

(i) 25° above zero is $+25^{\circ}$.
(ii) 5° below zero is -5°.
(iii) A profit of Rs 800 is +800 .
(iv) A deposit of Rs 2500 is +2500 .
(v) 3 km above sea level is +3 .
(vi) 2 km below level is -2 .
3. Mark the following integers on a number line:
(i) 7
(ii) -4
(iii) 0

Solution:
The following integers are marked on a number line as given below:

4. Which number in each of the following pairs is smaller?
(i) $0,-4$
(ii) $\mathbf{- 3 , 1 2}$
(iii) 8,13
(iv) - 15, -27

Solution:
(i) 0 is greater than the negative integers

So we get - $4<0$
Therefore, -4 is smaller.
(ii) 12 is greater than -3 on a number line

So we get
$-3<12$
Therefore, -3 is smaller.
(iii) 13 is greater than 8 on a number line

So we get $8<13$
Therefore, 8 is smaller.
(iv) -15 is greater than -27 on a number line

So we get $-27<-15$
Therefore, - 27 is smaller.
5. Which number in each of the following pairs is larger?
(i) 3, -4
(ii) $-12,-8$
(iii) 0,7
(iv) 12, - 18

Solution:
(i) We know that 3 is larger than -4 on a number line

So we get $3>-4$
Therefore, 3 is larger.
(ii) We know that -8 is larger than -12 on a number line

So we get - $8>-12$

Therefore, -8 is larger.
(iii) We know that 7 is larger than 0 on a number line

So we get $7>0$
Therefore, 7 is larger.
(iv) We know that 12 is larger than -18 on a number line So we get $12>-18$
Therefore, 12 is larger.

6. Write all integers between:

(i) -7 and 3
(ii) - 2 and 2
(iii) -4 and 0
(iv) 0 and 3

Solution:
(i) The integers between -7 and 3 are
$-6,-5,-4,-3,-2,-1,0,1,2$
(ii) The integers between -2 and 2 are $-1,0,1$.
(iii) The integers between -4 and 0 are $-3,-2,-1$
(iv) The integers between 0 and 3 are $1,2$.
7. How many integers are between?
(i) - 4 and 3
(ii) 5 and 12
(iii) - 9 and - 2
(iv) 0 and 5

Solution:
(i) The integers between -4 and 3 are
$-3,-2,-1,0,1,2$
Therefore, number of integers between -4 and 3 are 6 .
(ii) The integers between 5 and 12 are

6, 7, 8, 9, 10, 11
Therefore, number of integers between 5 and 12 are 6 .
(iii) The integers between -9 and -2 are
$-8,-7,-6,-5,-4,-3$
Therefore, number of integers between -9 and -2 are 6 .
(iv) The integers between 0 and 5 are 1, 2, 3, 4

Therefore, number of integers between 0 and 5 are 4 .
8. Replace * in each of the following by < or > so that the statement is true:
(i) $2 * 5$
(ii) $0 * 3$
(iii) $0 *-7$
(iv) $-18 * 15$
(v) $-235 *-532$
(vi) $-20 * 20$

Solution:
(i) $2<5$
(ii) $0<3$
(iii) $0>-7$
(iv) $-18<15$
(v) $-235>-532$
(vi) $-20<20$
9. Write the following integers in increasing order:
(i) $-8,5,0,-12,1,-9,15$
(ii) - 106, 107, - 320, - 7, 185

Solution:
(i) $-8,5,0,-12,1,-9,15$ can be written in increasing order as
$-12,-9,-8,0,1,5,15$
(ii) $-106,107,-320,-7,185$ can be written in increasing order as -320, - 106, - 7, 107, 185.
10. Write the following integers in decreasing order:
(i) $-15,0,-2,-9,7,6,-5,8$
(ii) $-154,123,-205,-89,-74$

Solution:
(i) $-15,0,-2,-9,7,6,-5,8$ can be written in decreasing order as $8,7,6,0,-2,-5,-9,-15$
(ii) $-154,123,-205,-89,-74$ can be written in decreasing order as 123, $-74,-89,-154,-205$
11. Using the number line, write the integer which is:
(i) 2 more than 3
(ii) 5 less than 3
(iii) 4 more than - 9

Solution:
(i) 2 more than 3

In order to get the integer 2 more than 3
We draw a number line from 2 and proceed 3 units to the right to obtain 5

Therefore, 2 more than 3 is 5 .
(ii) 5 less than 3

In order to get the integer 5 less than 3
We draw a number line from 3 and proceed 5 units to the left to obtain - 2

Therefore, 5 less than 3 is -2 .
(iii) 4 more than - 9

In order to get the integer 4 more than - 9
We draw a number line from -9 and proceed 4 units to the right to obtain -5

Therefore, 4 more than -9 is - 5 .
12. Write the absolute value of each of the following:
(i) 14
(ii) -25
(iii) 0
(iv) $\mathbf{- 1 2 5}$
(v) -248
(vi) a-7, if a is greater than 7
(vii) a-7, if a-2 is less than 7
(viii) $a+4$, if a is greater than -4
(ix) $\mathbf{a}+4$ if \mathbf{a} is less than -4
(x) $|-3|$
(xi) $-|-5|$
(xii) $|12-5|$

Solution:
(i) The absolute value of 14 is
$|14|=14$
(ii) The absolute value of -25 is
$|-25|=25$
(iii) The absolute value of 0 is
$|0|=0$
(iv) The absolute value of -125 is
$|-125|=125$
(v) The absolute value of -248 is $|-248|=248$
(vi) The absolute value of $a-7$, if a is greater than 7 is $|a-7|=a-7$ where $a>7$
(vii) The absolute value of $\mathrm{a}-7$, if a-2 is less than 7 is $|a-7|=-(a-7)$ where $a-2<7$
(viii) The absolute value of $a+4$, if a is greater than -4 is $|a+4|=a+4$ where $a>-4$
(ix) The absolute value of $a+4$ if a is less than -4 is $|a+4|=-(a+4)$ where $a<-4$
(x) The absolute value of $|-3|$ is $|-3|=3$
(xi) The absolute value of $-|-5|$ is
$-|-5|=5$
(xii) The absolute value of $|12-5|$ is
$|12-5|=7$
13. (i) Write 4 negative integers less than - 10.
(ii) Write 6 negative integers just greater than - 12.

Solution:

(i) The 4 negative integers less than -10 are
$-11,-12,-13,-14$
(ii) The 6 negative integers just greater than -12 are
$-11,-10,-9,-8,-7,-6$
14. Which of the following statements are true?
(i) The smallest integer is zero.
(ii) The opposite of zero is zero.
(iii) Zero is not an integer.
(iv) 0 is larger than every negative integer.
(v) The absolute value of an integer is greater than the integer.
(vi) A positive integer is greater than its opposite.
(vii) Every negative integer is less than every natural number. (viii) 0 is the smallest positive integer.

Solution:
(i) False. The smallest integer is 1 .
(ii) True. 0 is neither positive nor negative so the opposite is 0 .
(iii) False. Zero is an integer which is neither positive nor negative.
(iv) True. 0 is larger than -1 .
(v) False. The absolute value of an integer is the numerical value.
(vi) True. 3 is greater than -3 .
(vii) True. -3 is less than 1 .
(viii) False. 1 is the smallest positive integer.

EXERCISE 5.2

1. Draw a number line and represent each of the following on it:
(i) $5+(-2)$
(ii) $(-9)+4$
(iii) $(-3)+(-5)$
(iv) $6+(-6)$
(v) $(-1)+(-2)+2$
(vi) $(-2)+7+(-9)$

Solution:
(i) $5+(-2)$

From 0 move towards right of first five units to obtain +5
So the second number is -2 so move 2 units towards left of +5 we get +3

Therefore, $5+(-2)=3$.
(ii) $(-9)+4$

From 0 move towards left of nine units to obtain - 9
So the second number is 4 so move 4 units towards right of -9 we get -5

Therefore, $(-9)+4=-5$.
(iii) $(-3)+(-5)$

From 0 move towards left of three units to obtain - 3
So the second number is -5 so move 5 units towards left of -3 we get -8

Therefore, $(-3)+(-5)=-8$.
(iv) $6+(-6)$

From zero move towards right of six units to obtain 6
So the second number is - 6 so move 6 units towards left of 6 we get 0

Therefore, $6+(-6)=0$.
(v) $(-1)+(-2)+2$

From zero move towards left of one unit to obtain - 1
So the second number is -2 so move 2 units towards left of -1 we get -3
The third number is 2 so move 2 units towards right of -3 we get -1

Therefore, $(-1)+(-2)+2=-1$.
(vi) $(-2)+7+(-9)$

From zero move towards left of two units to obtain - 2
So the second number is 7 so move 7 units towards right of -2 we get 5
The third number is -9 so move 9 units towards left of 5 we get -4

Therefore, $(-2)+7+(-9)=-4$.
2. Find the sum of
(i) -557 and 488
(ii) -522 and -160
(iii) 2567 and - 325
(iv) $\mathbf{- 1 0 0 2 5}$ and 139
(v) 2547 and -2548
(vi) 2884 and -2884

Solution:

(i) -557 and 488

We get
$-557+488$
It can be written as
$|-557|-|488|=557-488=69$.
(ii) -522 and -160

We get
$-522+(-160)$
It can be written as
$-522-160=-682$
(iii) 2567 and - 325

We get
$2567+(-325)$
It can be written as
$2567-325=2242$
(iv) -10025 and 139

We get
$-10025+139$
It can be written as
$-10025+139=-9886$
(v) 2547 and -2548

We get
$2547+(-2548)$
It can be written as $2547-2548=-1$
(vi) 2884 and -2884

We get
$2884+(-2884)$
It can be written as $2884-2884=0$

EXERCISE 5.3

1. Find the additive inverse of each of the following integers:
(i) 52
(ii) - 176
(iii) 0
(iv) 1

Solution:
(i) The additive inverse of 52 is -52 .
(ii) The additive inverse of -176 is 176 .
(iii) The additive inverse of 0 is 0 .
(iv) The additive inverse of 1 is -1 .
2. Find the successor of each of the following integers:
(i) -42
(ii) -1
(iii) 0
(iv) $\mathbf{- 2 0 0}$
(v) -99

Solution:
(i) The successor of -42 is
$-42+1=-41$
(ii) The successor of -1 is
$-1+1=0$
(iii) The successor of 0 is
$0+1=1$
(iv) The successor of -200 is
$-200+1=-199$
(v) The successor of -99 is
$-99+1=-98$
3. Find the predecessor of each of the following integers:
(i) 0
(ii) 1
(iii) - 1
(iv) $\mathbf{- 1 2 5}$
(v) 1000

Solution:
(i) The predecessor of 0 is
$0-1=-1$
(ii) The predecessor of 1 is
$1-1=0$
(iii) The predecessor of -1 is
$-1-1=-2$
(iv) The predecessor of -125 is
$-125-1=-126$
(v) The predecessor of 1000 is $1000-1=999$
4. Which of the following statements are true?
(i) The sum of a number and its opposite is zero.
(ii) The sum of two negative integers is a positive integer.
(iii) The sum of a negative integer and a positive integer is always a negative integer.
(iv) The successor of -1 is $\mathbf{1}$.
(v) The sum of three different integers can never be zero.

Solution:
(i) True. $1-1=0$
(ii) False. $-1-1=-2$
(iii) False. $-2+3=1$
(iv) False. The successor of -1 is 0 .
(v) False. $1+2-3=0$
5. Write all integers whose absolute values are less than 5.

Solution:
The integers whose absolute values are less than 5 are
$-4,-3,-2,-1,0,1,2,3,4$
6. Which of the following is false:
(i) $|4+2|=|4|+|2|$
(ii) $|2-4|=|2|+|4|$
(iii) $|4-2|=|4|-|2|$
(iv) $|(-2)+(-4)|=|-2|+|-4|$

Solution:
(i) True.
(ii) False.
(iii) True.
(iv) True.
7. Complete the following table:

+	-6	-4	-2	0	2	4	6
6						10	
4							
2							8
0	-6						
-2							
-4						0	
-6				-6			

From the above table:
(i) Write all the pairs of integers whose sum is 0 .
(ii) Is $(-4)+(-2)=(-2)+(-4)$?
(iii) Is $0+(-6)=-6$?

Solution:

+	-6	-4	-2	0	2	4	6
6	0	2	4	6	8	10	12
4	-2	0	2	4	6	8	10
2	-4	-2	0	2	4	6	8
0	-6	-4	-2	0	2	4	6
-2	-8	-6	-4	-2	0	2	4
-4	-10	-8	-6	-4	-2	0	2
-6	-12	-10	-8	-6	-4	-2	0

(i) The pairs of integers whose sum is 0 are
(6, -6), (4, - 4), (2, - 2), (0, 0)
(ii) Yes. By using commutativity of addition (-4) $+(-2)=(-2)+(-4)$
(iii) Yes. By using additive identity $0+(-6)=-6$.
8. Find an integer x such that
(i) $\mathrm{x}+\mathbf{1}=\mathbf{0}$
(ii) $x+5=0$
(iii) $-3+x=0$
(iv) $x+(-8)=0$
(v) $7+x=0$
(vi) $\mathbf{x}+\mathbf{0}=\mathbf{0}$

Solution:
(i) $\mathrm{x}+1=0$

Subtracting 1 on both sides
$\mathrm{x}+1-1=0-1$

We get
$\mathrm{x}=-1$
(ii) $\mathrm{x}+5=0$

By subtracting 5 on both sides
$x+5-5=0-5$
So we get
$x=-5$
(iii) $-3+x=0$

By adding 3 on both sides
$-3+x+3=0+3$
So we get
$\mathrm{x}=3$
(iv) $\mathrm{x}+(-8)=0$

By adding 8 on both sides
$\mathrm{x}-8+8=0+8$
So we get
$x=8$
(v) $7+x=0$

By subtracting 7 on both sides
$7+x-7=0-7$
So we get
$\mathrm{x}=-7$
(vi) $x+0=0$

So we get
$\mathrm{x}=0$

EXERCISE 5.4

1. Subtract the first integer from the second in each of the following:
(i) $12,-5$
(ii) $-12,8$
(iii) - 225, - 135
(iv) 1001, 101
(v) $-812,3126$
(vi) 7560, - 8
(vii) - 3978, - 4109
(viii) $0,-1005$

Solution:
(i) $12,-5$

So by subtracting the first integer from the second $-5-12=-17$
(ii) $-12,8$

So by subtracting the first integer from the second
$8-(-12)=8+12=20$
(iii) - 225, - 135

So by subtracting the first integer from the second $-135-(-225)=225-135=90$
(iv) 1001, 101

So by subtracting the first integer from the second $101-1001=-900$
(v) $-812,3126$

So by subtracting the first integer from the second
$3126-(-812)=3126+812=3938$
(vi) $7560,-8$

So by subtracting the first integer from the second $-8-7560=-7568$
(vii) - 3978, - 4109

So by subtracting the first integer from the second $-4109-(-3978)=-4109+3978=-131$
(viii) $0,-1005$

So by subtracting the first integer from the second $-1005-0=-1005$
2. Find the value of:
(i) $-27-(-23)$
(ii) $-17-18-(-35)$
(iii) $-12-(-5)-(-125)+270$
(iv) $\mathbf{3 7 3}+(-245)+(-373)+\mathbf{1 4 5}+\mathbf{3 0 0 0}$
(v) $1+(-475)+(-475)+(-475)+(-475)+1900$
(vi) $(-1)+(-304)+304+304+(-304)+1$

Solution:

(i) $-27-(-23)$

So we get
$=-27+23$
On further calculation
$=23-27$
We get
$=-4$
(ii) $-17-18-(-35)$

So we get
$=-35+35$
On further calculation
$=0$
(iii) $-12-(-5)-(-125)+270$

So we get
$=-12+5+125+270$
On further calculation
$=400-12$
We get
$=388$
(iv) $373+(-245)+(-373)+145+3000$

So we get
$=373-245-373+145+3000$
On further calculation
$=3145+373-373-245$
We get
$=3145-245$
By subtraction
$=2900$
(v) $1+(-475)+(-475)+(-475)+(-475)+1900$

So we get
$=1-950-950+1900$
On further calculation
$=1900+1-1900$
We get
$=1$
(vi) $(-1)+(-304)+304+304+(-304)+1$

So we get
$=-1+1-304+304-304+304$
On further calculation
$=0$
3. Subtract the sum of - $\mathbf{5 0 2 0}$ and $\mathbf{2 3 2 0}$ from - 709 .

Solution:
We know that the sum of -5020 and 2320 is
$-5020+2320$
It can be written as
$=2320-5020$
So we get
= - 2700
Subtracting from - 709 we get
$=-709-(-2700)$
We get
$=-709+2700$
By subtraction
= 1991
4. Subtract the sum of - $\mathbf{1 2 5 0}$ and $\mathbf{1 1 3 8}$ from the sum of $\mathbf{1 1 3 6}$ and $\mathbf{- 1 2 7 2}$.

Solution:
We know that the sum of - 1250 and 1138 is
$-1250+1138$
It can be written as
$=1138-1250$
So we get
$=-112$
We know that the sum of 1136 and - 1272 is
$1136-1272=-136$
So we get
$-136-(-112)=-136+112=-24$
5. From the sum of 233 and -147 , subtract -284 .

Solution:

We know that the sum of 233 and -147 is
$233-147=86$
Subtracting - 284 we get
$86-(-284)=86+284=370$
6. The sum of two integers is 238 . If one of the integers is $\mathbf{- 1 2 2}$, determine the other.

Solution:

It is given that
Sum of two integers $=238$
One of the integers $=-122$
So the other integer $=-(-122)+238$
On further calculation
Other integer $=238+122=360$
7. The sum of two integers is $\mathbf{- 2 2 3}$. If one of the integers is $\mathbf{1 7 2}$, find the other.

Solution:

It is given that
Sum of two integers $=-223$
One of the integers $=172$
So the other integer $=-223-172=-395$
8. Evaluate the following:
(i) $-8-24+31-26-28+7+19-18-8+33$
(ii) $-26-20+33-(-33)+21+24-(-25)-26-14-34$

Solution:
(i) $-8-24+31-26-28+7+19-18-8+33$

We get
$=-8-24-26-28-18-8+31+7+19+33$
On further calculation
$=-32-26-28-26+38+19+33$
It can be written as
$=38-32-26-28+33-26+19$
So we get
$=6-26-28+7+19$
By calculation
$=6-28-26+26$
$=6-28$
By subtraction
$=-22$
(ii) $-26-20+33-(-33)+21+24-(-25)-26-14-34$

We get
$=-46+33+33+21+24+25-26-14-34$
On further calculation
$=-46+66+21+24+25+(-74)$
It can be written as
$=-46+66+70-74$
So we get
$=-46-4+66$
By calculation
$=-50+66$
$=66-50$
By subtraction
$=16$

9. Calculate

$1-2+3-4+5-6+\ldots \ldots \ldots .+15-16$
Solution:
It can be written as
$1-2+3-4+5-6+7-8+9-10+11-12+13-14+15-16$
We get
$=-1-1-1-1-1-1-1-1$

By calculation
$=-8$
10. Calculate the sum:
$5+(-5)+5+(-5)+$ $+. . .$.
(i) if the number of terms is 10 .
(ii) if the number of terms is 11 .

Solution:
(i) if the number of terms is 10

We get
$5+(-5)+5+(-5)+5+(-5)+5+(-5)+5+(-5)$
On further calculation
$=5-5+5-5+5-5+5-5+5-5=0$
(ii) if the number of terms is 11

We get
$5+(-5)+5+(-5)+5+(-5)+5+(-5)+5+(-5)+5$
On further calculation
$=5-5+5-5+5-5+5-5+5-5+5=5$
11. Replace * by < or > in each of the following to make the statement true:
(i) $(-6)+(-9) *(-6)-(-9)$
(ii) $(-12)-(-12) *(-12)+(-12)$
(iii) $(-20)-(-20) * 20-(65)$
(iv) $28-(-10) *(-16)-(-76)$

Solution:
(i) $(-6)+(-9)<(-6)-(-9)$
(ii) $(-12)-(-12)>(-12)+(-12)$
(iii) $(-20)-(-20)>20-(65)$
(iv) $28-(-10)<(-16)-(-76)$
12. If Δ is an operation on integers such that $a \Delta b=-a+b-(-2)$ for all integers a, b. Find the value of (i) $4 \Delta 3$
(ii) $(-2) \Delta(-3)$
(iii) $6 \Delta(-5)$
(iv) $(-5) \Delta 6$

Solution:
(i) $4 \Delta 3$

By substituting values in a $\Delta \mathrm{b}=-\mathrm{a}+\mathrm{b}-(-2)$
We get
$4 \Delta 3=-4+3-(-2)=1$
(ii) $(-2) \Delta(-3)$

By substituting values in a $\Delta \mathrm{b}=-\mathrm{a}+\mathrm{b}-(-2)$

We get
$(-2) \Delta(-3)=-(-2)+(-3)-(-2)=1$
(iii) $6 \Delta(-5)$

By substituting values in $\mathrm{a} \Delta \mathrm{b}=-\mathrm{a}+\mathrm{b}-(-2)$
We get
$6 \Delta(-5)=-6+(-5)-(-2)=-9$
(iv) (-5) $\Delta 6$

By substituting values in $\mathrm{a} \Delta \mathrm{b}=-\mathrm{a}+\mathrm{b}-(-2)$
We get
$(-5) \Delta 6=-(-5)+6-(-2)=13$
13. If a and b are two integers such that a is the predecessor of b. Find the value of $a-b$. Solution:

It is given that a is the predecessor of b
We can write it as
$\mathrm{a}+1=\mathrm{b}$
So we get
$a-b=-1$
14. If a and b are two integers such that a is the successor of b. Find the value of $a-b$. Solution:

It is given that a is the successor of b
We can write it as
$\mathrm{a}-1=\mathrm{b}$
So we get
$a-b=1$
15. Which of the following statements are true:
(i) $-13>-8-(-2)$
(ii) $-4+(-2)<2$
(iii) The negative of a negative integer is positive.
(iv) If a and b are two integers such that $a>b$, then $a-b$ is always a positive integer.
(v) The difference of two integers is an integer.
(vi) Additive inverse of a negative integer is negative.
(vii) Additive inverse of a positive integer is negative.
(viii) Additive inverse of a negative integer is positive.

Solution:
(i) False.
(ii) True.
(iii) True.
(iv) True.
(v) True.
(vi) False.
(vii) True.
(viii) True.
16. Fill in the blanks:
(i) $-7+\ldots \ldots=0$
(ii) $29+\ldots \ldots=0$
(iii) $132+(-132)=\ldots$.
(iv) $-14+\ldots$... $=22$
(v) $-1256+\ldots \ldots=-742$
(vi) $.-1234=-4539$

Solution:
(i) $-7+7=0$
(ii) $29+(-29)=0$
(iii) $132+(-132)=0$
(iv) $-14+36=22$
(v) $-1256+514=-742$
(vi) $-3305-1234=-4539$

OBJECTIVE TYPE QUESTIONS

Mark the correct alternative in each of the following:

1. Which of the following statement is true?
(a) $-7>-5$
(b) $-7<-5$
(c) $(-7)+(-5)>0$
(d) $(-7)-(-5)>0$

Solution:

The option (b) is correct answer.
In option (a)
We know that -7 is to the left of -5
Hence, $-7<-5$.
In option (c)
We know that $(-7)+(-5)=-(7+5)=-12$.
So -12 is to the left of 0
Hence $(-7)+(-5)<0$.
In option (d)
$(-7)-(-5)=(-7)+($ additive inverse of -5$)=(-7)+(5)=-(7-5)=-2$
We know that -2 is to the left of 0 , so $(-7)-(-5)<0$.
2. 5 less than -2 is
(a) 3
(b) -3
(c) -7
(d) 7

Solution:
The option (c) is correct answer.
We know that, 5 less than $-2=(-2)-(5)=-2-5=-7$
3. 6 more than -7 is
(a) 1
(b) -1
(c) 13
(d) -13

Solution:
The option (b) is correct answer.
We know that, 6 more than $-7=(-7)+6=-(7-6)=-1$
4. If x is a positive integer, then
(a) $\mathrm{x}+|\mathrm{x}|=0$
(b) $\mathbf{x}-|\mathbf{x}|=\mathbf{0}$
(c) $x+|x|=-2 x$
(d) $\mathbf{x}=-|\mathbf{x}|$

Solution:
The option (b) is correct answer.
We know that if x is positive integer, then $|\mathrm{x}|=\mathrm{x}$
Hence, $\mathrm{x}+|\mathrm{x}|=\mathrm{x}+\mathrm{x}=2 \mathrm{x}$ and $\mathrm{x}-|\mathrm{x}|=\mathrm{x}-\mathrm{x}=0$
5. If x is a negative integer, then
(a) $\mathrm{x}+|\mathrm{x}|=\mathbf{0}$
(b) $\mathbf{x}-|\mathbf{x}|=\mathbf{0}$
(c) $\mathbf{x}+|\mathbf{x}|=2 \mathbf{x}$
(d) $\mathbf{x}-|\mathbf{x}|=-2 \mathbf{x}$

Solution:

The option (a) is correct answer.
We know that x is negative integer, then $|\mathrm{x}|=-\mathrm{x}$
It can be written as
$\mathrm{x}+|\mathrm{x}|=\mathrm{x}-\mathrm{x}=0$ and $\mathrm{x}-|\mathrm{x}|=\mathrm{x}-(-\mathrm{x})=\mathrm{x}+\mathrm{x}=2 \mathrm{x}$
6. If x is greater than 2 , then $|2-x|=$
(a) $2-\mathrm{x}$
(b) $\mathrm{x}-2$
(c) $2+x$
(d) $-x-2$

Solution:

The option (b) is correct answer.
We know that if a is negative integer, then $|a|=-a$
It is given that x is greater than 2 where $2-x$ is negative
Hence, $|2-x|=-(2-x)=-2+x=x-2$.
$7.9+|-4|$ is equal to
(a) 5
(b) -5
(c) $\mathbf{1 3}$
(d) -13

Solution:
The option (c) is correct answer.
We know that, $|-4|=4$
Hence $9+|-4|=9+4=13$
8. $(-35)+(-32)$ is equal to
(a) 67
(b) -67
(c) -3
(d) 3

Solution:
The option (b) is correct answer.
It can be written as $(-35)+(-32)=-(35+32)=-67$
9. $(-29)+5$ is equal to
(a) 24
(b) 34
(c) $\mathbf{- 3 4}$
(d) $\mathbf{- 2 4}$

Solution:
The option (d) is correct answer.
It can be written as $(-29)+5=-(29-5)=-24$
10. $|-|-7|-3|$ is equal to
(a) -7
(b) 7
(c) 10
(d) $\mathbf{- 1 0}$

Solution:
The option (c) is correct answer.
It can be written as $|-|-7|-3|=|-7-3|=|-10|=10$
11. The successor of -22 is
(a) -23
(b) -21
(c) 23
(d) 21

Solution:
The option (b) is correct answer.
We know that if ' a ' is an integer $a+1$ is its successor.
So the successor of $-22=-22+1=-(22-1)=-21$
12. The predecessor of $-\mathbf{1 4}$ is
(a) -15
(b) 15
(c) 13
(d) - $\mathbf{1 3}$

Solution:

The option (a) is correct answer. The predecessor of -14 is -15 .
13. If the sum of two integers is $\mathbf{- 2 6}$ and one of them is 14 , then the other integer is
(a) -12
(b) 12
(c) -40
(d) 40

Solution:

The option (c) is correct answer.
It is given that the sum of two integers $=-26$
One of them $=14$
So the other integer $=-26-14=-(26+14)=-40$
14. Which of the following pairs of integers have 5 as a difference?
(a) 10,5
(b) $\mathbf{- 1 0},-5$
(c) 15, -20
(d) both (a) and (b)

Solution:

The option (d) is correct answer.
Consider option (a) $10-5=5$
Consider option (b) $(-5)-(-10)=-5+10=5$
Consider option (c) $15-(-20)=15+20=35$
15. If the product of two integers is 72 and one of them is $\mathbf{- 9}$, then the other integers is
(a) -8
(b) 8
(c) 81
(d) 63

Solution:
The option (a) is correct answer.
It is given that the product of two integers $=72$
One of them $=-9$
Hence, the other integers $=72 \div(-9)=-8$
16. On subtracting -7 from -14 , we get
(a) - 12
(b) -7
(c) -14
(d) 21

Solution:
The option (b) is correct answer.
It can be written as
Required number $=-14-(-7)=-14+7=-(14-7)=-7$
17. The largest number that divides 64 and 72 and leave the remainders 12 and 7 respectively, is
(a) 17
(b) 13
(c) 14
(d) 18

Solution:
The option (b) is correct answer.
By subtracting 12 and 7 from 64 and 72
We get
$64-12=52$ and $72-7=65$
So the required number is the HCF of 52 and 65.
It can be written as
$52=4 \times 13$ and $65=5 \times 13$
HCF of 52 and $65=13$

RD Sharma Solutions for Class 6 Maths Chapter 5 -
 Negative Numbers and Integers

Hence, the largest number that divides 64 and 72 and leave the remainders 12 and 7 respectively, is 13 .
18. The sum of two integers is $\mathbf{- 2 3}$. If one of them is 18 , then the other is
(a) -14
(b) 14
(c) 41
(d) $\mathbf{- 4 1}$

Solution:
The option (d) is correct answer.
It is given that the sum of two integers $=-23$
One of them $=18$
So the other number $=(-23)-(18)=-23-18=-(23+18)=-41$
Hence, the other number is -41 .
19. The sum of two integers is $\mathbf{- 3 5}$. If one of them is 40 , then the other is
(a) 5
(b) -75
(c) 75
(d) -5

Solution:
The option (b) is correct answer.
It is given that the sum of two integers $=-35$
One of them $=40$
So the other number $=(-35)-(40)=-35-40=-(35+40)=-75$
Hence, the other number is -75 .
20. On subtracting - 5 from 0 , we get
(a) -5
(b) 5
(c) 50
(d) 0

Solution:
The option (b) is correct answer.
We know that, $0-(-5)=0+5=5$
Hence by subtracting - 5 from 0 , we obtain 5 .
21. $(-16)+14-(-13)$ is equal to
(a) -11
(b) 12
(c) 11
(d) -15

Solution:
The option (c) is correct answer.
It can be written as $(-16)+14-(-13)=(-16)+14+13=(-16)+27=27-16=11$
22. $(-2) \times(-3) \times 6 \times(-1)$ is equal to
(a) 36
(b) -36
(c) 6
(d) -6

Solution:
The option (b) is correct answer.
It can be written as $(-2) \times(-3) \times 6 \times(-1)=(2 \times 3) \times 6 \times(-1)=6 \times 6 \times(-1)=36 \times(-1)$
So we get $(-2) \times(-3) \times 6 \times(-1)=-(36 \times 1)=-36$
23. $86+(-28)+12+(-34)$ is equal to
(a) 36
(b) $\mathbf{- 3 6}$
(c) 6
(d) -6

Solution:
The option (a) is correct answer.

It can be written as $86+(-28)+12+(-34)=86+(-28)-(34-12)=86+(-28)-22$
On further calculation
$86+(-28)+12+(-34)=(86-28)-(34-12)=(86-28)-22=58-22=36$
24. $(-12) \times(-9)-6 \times(-8)$ is equal to
(a) 156
(b) 60
(c) -156
(d) -60

Solution:

The option (a) is correct answer.
It can be written as $(-12) \times(-9)-6 \times(-8)=(12 \times 9)-6 \times(-8)=108-6 \times(-8)$
On further calculation
$(-12) \times(-9)-6 \times(-8)=108+6 \times 8=108+48=156$

