EXERCISE 20.1

1. A flooring tile has the shape of a parallelogram whose base is $\mathbf{2 4} \mathbf{~ c m}$ and the corresponding height is 10 cm . How many such tiles are required to cover a floor of area $1080 \mathrm{~m}^{2}$?

Solution:

Given that,
Base of parallelogram $=24 \mathrm{~cm}$
Height of parallelogram $=10 \mathrm{~cm}$
Area of floor $=1080 \mathrm{~m}^{2}$
We know that,
Area of parallelogram $=$ Base \times Height
Area of 1 tile $=24 \times 10=240 \mathrm{~cm}^{2}$
We know that, $1 \mathrm{~m}=100 \mathrm{~cm}$
So for $1080 \mathrm{~m}^{2}=1080 \times 100 \times 100 \mathrm{~cm}^{2}$
To calculate the Number of tiles required $=$ Area of floor/Area of 1 tile
i.e., Number of tiles required $=(1080 \times 100 \times 100) /(24 \times 10)=45000$
\therefore Number of tiles required $=45000$
2. A plot is in the form of a rectangle ABCD having semi-circle on BC as shown in Fig. 20.23. If $A B=60 \mathrm{~m}$ and $B C=28 \mathrm{~m}$, Find the area of the plot.

Fig. 20.23

Solution:

Area of the plot $=$ Area of the rectangle + Area of semi-circle
Radius of semi-circle $=\mathrm{BC} / 2=28 / 2=14 \mathrm{~m}$
Area of the Rectangular plot $=$ Length \times Breadth $=60 \times 28=1680 \mathrm{~m}^{2}$
Area of the Semi-circular portion $=\pi r^{2} / 2$

$$
\begin{aligned}
& =1 / 2 \times 22 / 7 \times 14 \times 14 \\
& =308 \mathrm{~m}^{2}
\end{aligned}
$$

\therefore The total area of the plot $=1680+308=1988 \mathrm{~m}^{2}$
3. A playground has the shape of a rectangle, with two semi-circles on its smaller sides as diameters, added to its outside. If the sides of the rectangle are $\mathbf{3 6} \mathbf{~ m}$ and 24.5 m , find the area of the playground. (Take $\pi=22 / 7$.) Solution:

Area of the plot $=$ Area of the Rectangle $+2 \times$ area of one semi-circle
Radius of semi-circle $=\mathrm{BC} / 2=24.5 / 2=12.25 \mathrm{~m}$
Area of the Rectangular plot $=$ Length \times Breadth $=36 \times 24.5=882 \mathrm{~m}^{2}$
Area of the Semi-circular portions $=2 \times \pi \mathrm{r}^{2} / 2$
$=2 \times 1 / 2 \times 22 / 7 \times 12.25 \times 12.25=471.625 \mathrm{~m}^{2}$
Area of the plot $=882+471.625=1353.625 \mathrm{~m}^{2}$
4. A rectangular piece is 20 m long and 15 m wide. From its four corners, quadrants of radii 3.5 m have been cut. Find the area of the remaining part.
Solution:

Area of the plot $=$ Area of the rectangle $-4 \times$ area of one quadrant
Radius of semi-circle $=3.5 \mathrm{~m}$
Area of four quadrants $=$ area of one circle
Area of the plot $=$ Length \times Breadth $-\pi r^{2}$

Area of the plot $=20 \times 15-(22 / 7 \times 3.5 \times 3.5)$
Area of the plot $=300-38.5=261.5 \mathrm{~m}^{2}$
5. The inside perimeter of a running track (shown in Fig. 20.24) is $\mathbf{4 0 0} \mathbf{m}$. The length of each of the straight portion is 90 m and the ends are semi-circles. If track is everywhere 14 m wide, find the area of the track. Also, find the length of the outer running track.

Fig. 20.24

Solution:

Perimeter of the inner track $=2 \times$ Length of rectangle + perimeter of two semi-circular ends
Perimeter of the inner track $=$ Length + Length $+2 \pi r$
$400=90+90+(2 \times 22 / 7 \times \mathrm{r})$
$(2 \times 22 / 7 \times \mathrm{r})=400-180$
$(2 \times 22 / 7 \times \mathrm{r})=220$
$44 \mathrm{r}=220 \times 7$
$44 \mathrm{r}=1540$
$r=1540 / 44=35$
$\mathrm{r}=35 \mathrm{~m}$
So, the radius of inner circle $=35 \mathrm{~m}$
Now, let's calculate the radius of outer track
Radius of outer track $=$ Radius of inner track + width of the track
Radius of outer track $=35+14=49 \mathrm{~m}$
Length of outer track $=2 \times$ Length of rectangle + perimeter of two outer semi-circular ends
Length of outer track $=2 \times 90+2 \pi$ r
Length of outer track $=2 \times 90+(2 \times 22 / 7 \times 49)$
Length of outer track $=180+308=488$
So, Length of outer track $=488 \mathrm{~m}$
Area of inner track $=$ Area of inner rectangle + Area of two inner semi-circles

Area of inner track $=$ Length \times Breadth $+\pi r^{2}$
Area of inner track $=90 \times 70+(22 / 7 \times 35 \times 35)$
Area of inner track $=6300+3850$
So, Area of inner track $=10150 \mathrm{~m}^{2}$
Area of outer track $=$ Area of outer rectangle + Area of two outer semi-circles
Breadth of outer track $=35+35+14+14=98 \mathrm{~m}$
Area of outer track $=$ length \times breadth $+\pi r^{2}$
Area of outer track $=90 \times 98+(22 / 7 \times 49 \times 49)$
Area of outer track $=8820+7546$
So, Area of outer track $=16366 \mathrm{~m}^{2}$
Now, let's calculate area of path
Area of path $=$ Area of outer track - Area of inner track
Area of path $=16366-10150=6216$
So, Area of path $=6216 \mathrm{~m}^{2}$
6. Find the area of Fig. 20.25, in square $\mathbf{c m}$, correct to one place of decimal. (Take π $=22 / 7$)

Fig. 20.25

Solution:

Area of the Figure $=$ Area of square + Area of semi-circle - Area of right angled triangle
Area of the Figure $=$ side \times side $+\pi r^{2} / 2-(1 / 2 \times$ base \times height $)$
Area of the Figure $=10 \times 10+(1 / 2 \times 22 / 7 \times 5 \times 5)-(1 / 2 \times 8 \times 6)$
Area of the Figure $=100+39.28-24$
Area of the Figure $=115.3$
So, Area of the Figure $=115.3 \mathrm{~cm}^{2}$
7. The diameter of a wheel of a bus is 90 cm which makes 315 revolutions per minute. Determine its speed in kilometres per hour. (Take $\pi=22 / 7$) Solution:

Given that, Diameter of a wheel $=90 \mathrm{~cm}$
We know that, Perimeter of wheel $=\pi \mathrm{d}$
Perimeter of wheel $=22 / 7 \times 90=282.857$
So, Perimeter of a wheel $=282.857 \mathrm{~cm}$
Distance covered in 315 revolutions $=282.857 \times 315=89099.955 \mathrm{~cm}$
One $\mathrm{km}=100000 \mathrm{~cm}$
Therefore, Distance covered $=89099.955 / 100000=0.89 \mathrm{~km}$
Speed in km per hour $=0.89 \times 60=53.4 \mathrm{~km}$ per hour
8. The area of a rhombus is $240 \mathrm{~cm}^{2}$ and one of the diagonal is 16 cm . Find another diagonal.
Solution:
Area of rhombus $=1 / 2 \times \mathrm{d}_{1} \times \mathrm{d}_{2}$
$240=1 / 2 \times 16 \times \mathrm{d}_{2}$
$240=8 \times \mathrm{d}_{2}$
$\mathrm{d}_{2}=240 / 8=30$
So, the other diagonal is 30 cm
9. The diagonals of a rhombus are 7.5 cm and 12 cm . Find its area.

Solution:

Area of rhombus $=1 / 2 \times d_{1} \times d_{2}$
Area of rhombus $=1 / 2 \times 7.5 \times 12$
Area of rhombus $=6 \times 7.5=45$
So, Area of rhombus $=45 \mathrm{~cm}^{2}$
10. The diagonal of a quadrilateral shaped field is 24 m and the perpendiculars dropped on it from the remaining opposite vertices are $\mathbf{8} \mathbf{m}$ and 13 m . Find the area of the field.
Solution:
Area of quadrilateral $=1 / 2 \times \mathrm{d}_{1} \times\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)$
Area of quadrilateral $=1 / 2 \times 24 \times(8+13)$
Area of quadrilateral $=12 \times 21=252$
So, Area of quadrilateral is $252 \mathrm{~cm}^{2}$
11. Find the area of a rhombus whose side is 6 cm and whose altitude is 4 cm . If one of its diagonals is $\mathbf{8 ~ c m}$ long, find the length of the other diagonal.
Solution:
Given that,
Side of rhombus $=6 \mathrm{~cm}$

Altitude of rhombus $=4 \mathrm{~cm}$
Since rhombus is a parallelogram, therefore area of parallelogram $=$ base \times altitude
i.e., Area of parallelogram $=6 \times 4=24 \mathrm{~cm}^{2}$

Area of parallelogram $=$ Area of rhombus
Area of rhombus $=1 / 2 \times \mathrm{d}_{1} \times \mathrm{d}_{2}$
$24=1 / 2 \times 8 \times \mathrm{d}_{2}$
$24=4 \times \mathrm{d}_{2}$
$\mathrm{d}_{2}=24 / 4=6$
So, length of other diagonal of rhombus is 6 cm
12. The floor of a building consists of 3000 tiles which are rhombus shaped and each of its diagonals are 45 cm and 30 cm in length. Find the total cost of polishing the floor, if the cost per m^{2} is Rs. 4.

Solution:

We know that,
Area of rhombus $=1 / 2 \times \mathrm{d}_{1} \times \mathrm{d}_{2}$
Area of rhombus $=1 / 2 \times 45 \times 30$
Area of rhombus $=1350 / 2=675$
So, Area of rhombus $=675 \mathrm{~cm}^{2}$
\therefore Area of one tile $=675 \mathrm{~cm}^{2}$
Now, Area of 3000 tiles $=675 \times 3000=2025000 \mathrm{~cm}^{2}$
Area of tiles in $\mathrm{m}^{2}=2025000 / 10000=202.5 \mathrm{~m}^{2}$
Total cost for polishing the floor $=202.5 \times 4=$ Rs 810
13. A rectangular grassy plot is 112 m long and 78 m broad. It has gravel path $\mathbf{2 . 5} \mathbf{~ m}$ wide all around it on the side. Find the area of the path and the cost of constructing it at Rs. 4.50 per square metre.

Solution:

We know that,
Outer area of rectangle $=$ length \times breadth
Outer area of rectangle $=112 \times 78=8736 \mathrm{~m}^{2}$
Width of path $=2.5 \mathrm{~m}$
Length of inner rectangle $=112-(2.5+2.5)=107 \mathrm{~m}$
Breadth of inner rectangle $=78-(2.5+2.5)=73 \mathrm{~m}$
And,
Inner area of rectangle $=$ length \times breadth
Inner area of rectangle $=107 \times 73=7811 \mathrm{~m}^{2}$
Now let's calculate Area of path,
Area of path $=$ Outer area of rectangle - Inner area of rectangle

Area of path $=8736-7811=925 \mathrm{~m}^{2}$
Also given that,
Cost of construction for $1 \mathrm{~m}^{2}=$ Rs 4.50
\therefore Cost of construction for $925 \mathrm{~m}^{2}=925 \times 4.50=$ Rs 4162.5
14. Find the area of a rhombus, each side of which measures 20 cm and one of whose diagonals is 24 cm .
Solution:

Given that,
Length of side of rhombus $=20 \mathrm{~cm}$
Length of one diagonal $=24 \mathrm{~cm}$
In $\triangle \mathrm{AOB}$,
Using Pythagoras theorem:
$\mathrm{AB}^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2}$
$20^{2}=12^{2}+\mathrm{OB}^{2}$
$\mathrm{OB}^{2}=20^{2}-12^{2}$
$\mathrm{OB}^{2}=400-144$
$\mathrm{OB}^{2}=256$
$\mathrm{OB}=16$
So, length of the other diameter $=16 \times 2=32 \mathrm{~cm}$
Area of rhombus $=1 / 2 \times \mathrm{d}_{1} \times \mathrm{d}_{2}$
Area of rhombus $=1 / 2 \times 24 \times 32$
Area of rhombus $=384 \mathrm{~cm}^{2}$
15. The length of a side of a square field is $\mathbf{4} \mathbf{~ m}$. What will be the altitude of the rhombus, if the area of the rhombus is equal to the square field and one of its diagonal is 2 m ?

Solution:

Given that,
Length of a side of a square $=4 \mathrm{~m}$
Area of square $=$ side 2
Area of square $=4 \times 4=16 \mathrm{~m}^{2}$
We know that,
Area of square $=$ Area of rhombus
So, Area of rhombus $=16 \mathrm{~m}^{2}$
Area of rhombus $=1 / 2 \times \mathrm{d}_{1} \times \mathrm{d}_{2}$
$16=1 / 2 \times 2 \times \mathrm{d}_{2}$
$16=\mathrm{d}_{2}$
\therefore the diagonal of rhombus $=16 \mathrm{~m}$
In $\triangle \mathrm{AOB}$,

Using Pythagoras theorem:
$\mathrm{AB}^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2}$
$\mathrm{AB}^{2}=8^{2}+1^{2}$
$\mathrm{AB}^{2}=65$
$A B=\sqrt{ } 65$
Since rhombus is a parallelogram, therefore area of parallelogram $=$ base \times altitude
Area of parallelogram $=\mathrm{AB} \times \mathrm{DE}$
$16=\sqrt{ } 65 \times$ DE
$\mathrm{DE}=16 / \sqrt{ } 65$
i.e., Altitude of Rhombus $=16 / \sqrt{ } 65 \mathrm{~cm}$
16. Find the area of the field in the form of a rhombus, if the length of each side be 14 cm and the altitude be 16 cm .

Solution:

Given that,
Side of rhombus $=14 \mathrm{~cm}$
Altitude of rhombus $=16 \mathrm{~cm}$

Since rhombus is a parallelogram, therefore
Area of parallelogram $=$ base \times altitude
Area of parallelogram $=14 \times 16=224 \mathrm{~cm}^{2}$
17. The cost of fencing a square field at 60 paise per metre is Rs. 1200. Find the cost of reaping the field at the rate of $\mathbf{5 0}$ paise per $\mathbf{1 0 0}$ sq. metres.

Solution:

Perimeter of square field $=$ Cost of fencing $/$ rate of fencing
Perimeter of square field $=1200 / 0.6=2000$
So, Perimeter of square field $=2000 \mathrm{~m}$
Perimeter of square $=4 \times$ side
Side of square $=$ Perimeter $/ 4=2000 / 4=500$
So, Side of square $=500 \mathrm{~m}$
We know that, Area of square $=$ side 2
Area of square $=500 \times 500=250000 \mathrm{~m}^{2}$
Cost of reaping $=(250000 \times 0.5) / 100=1250$
\therefore Cost of reaping the field is Rs 1250
18. In exchange of a square plot one of whose sides is 84 m , a man wants to buy a rectangular plot 144 m long and of the same area as of the square plot. Find the width of the rectangular plot.

Solution:

Area of square $=$ side 2
Area of square $=84 \times 84=7056$
Since, Area of square $=$ Area of rectangle
$7056=144 \times$ width
Width $=7056 / 144=49$
\therefore Width of rectangle $=49 \mathrm{~m}$
19. The area of a rhombus is $84 \mathrm{~m}^{2}$. If its perimeter is $\mathbf{4 0} \mathrm{m}$, then find its altitude. Solution:
Given that,
Area of rhombus $=84 \mathrm{~m}^{2}$
Perimeter $=40 \mathrm{~m}$
We know that,
Perimeter of rhombus $=4 \times$ side
\therefore Side of rhombus $=$ Perimeter $/ 4=40 / 4=10$
So, Side of rhombus $=10 \mathrm{~m}$
Since rhombus is a parallelogram, therefore Area of parallelogram $=$ base \times altitude
$84=10 \times$ altitude
Altitude $=84 / 10=8.4$
So, Altitude of rhombus $=8.4 \mathrm{~m}$
20. A garden is in the form of a rhombus whose side is 30 metres and the corresponding altitude is $\mathbf{1 6} \mathbf{~ m}$. Find the cost of levelling the garden at the rate of Rs. 2 per m^{2}.
Solution:
Given that,
Side of rhombus $=30 \mathrm{~m}$
Altitude of rhombus $=16 \mathrm{~m}$
Since rhombus is a parallelogram, therefore Area of parallelogram $=$ base \times altitude
Area of parallelogram $=30 \times 16=480 \mathrm{~m}^{2}$
Cost of levelling the garden $=$ area \times rate
Cost of levelling the garden $=480 \times 2=960$
So, Cost of levelling the garden is Rs 960
21. A field in the form of a rhombus has each side of length $\mathbf{6 4} \mathrm{m}$ and altitude 16 m .

What is the side of a square field which has the same area as that of a rhombus?
Solution:
Given that,
Side of rhombus $=64 \mathrm{~m}$
Altitude of rhombus $=16 \mathrm{~m}$
Since rhombus is a parallelogram, therefore Area of parallelogram $=$ base \times altitude
Area of parallelogram $=64 \times 16=1024 \mathrm{~m}^{2}$
Since Area of rhombus $=$ Area of square
Therefore, Area of square $=$ side 2
Or side ${ }^{2}=$ Area of square
Side of a square $=\sqrt{ }$ square
Side of square $=\sqrt{ } 1024=32$
\therefore Side of square $=32 \mathrm{~m}$
22. The area of a rhombus is equal to the area of a triangle whose base and the corresponding altitude are 24.8 cm and 16.5 cm respectively. If one of the diagonals of the rhombus is 22 cm , find the length of the other diagonal.
Solution:
Given that,
Length of base of triangle $=24.8 \mathrm{~cm}$
Length of altitude of triangle $=16.5 \mathrm{~cm}$
\therefore Area of triangle $=1 / 2 \times$ base \times altitude
Area of triangle $=1 / 2 \times 24.8 \times 16.5=204.6$
So, Area of triangle $=204.6 \mathrm{~cm}$
Since, Area of triangle $=$ Area of rhombus
\therefore Area of rhombus $=1 / 2 \times \mathrm{d}_{1} \times \mathrm{d}_{2}$

$$
\begin{aligned}
& 204.6=1 / 2 \times 22 \times \mathrm{d}_{2} \\
& 204.6=11 \times \mathrm{d}_{2} \\
& \mathrm{~d}_{2}=204.6 / 11=18.6
\end{aligned}
$$

\therefore The length of other diagonal is 18.6 cm

1. Find the area, in square metres, of the trapezium whose bases and altitudes are as under:

(i) bases $=\mathbf{1 2 ~ d m}$ and $\mathbf{2 0 ~ d m}$, altitude $=\mathbf{1 0 ~ d m}$
(ii) bases $=28 \mathrm{~cm}$ and 3 dm , altitude $=25 \mathrm{~cm}$
(iii) bases $=8 \mathrm{~m}$ and 60 dm , altitude $=40 \mathrm{dm}$
(iv) bases $=150 \mathrm{~cm}$ and 30 dm , altitude $=9 \mathrm{dm}$

Solution:
(i) Given that,

Length of bases of trapezium $=12 \mathrm{dm}$ and 20 dm
Length of altitude $=10 \mathrm{dm}$
We know that, $10 \mathrm{dm}=1 \mathrm{~m}$
\therefore Length of bases in $\mathrm{m}=1.2 \mathrm{~m}$ and 2 m
Similarly, length of altitude in $\mathrm{m}=1 \mathrm{~m}$
Area of trapezium $=1 / 2($ Sum of lengths of parallel sides $) \times$ altitude
Area of trapezium $=1 / 2(1.2+2.0) \times 1$
Area of trapezium $=1 / 2 \times 3.2=1.6$
So, Area of trapezium $=1.6 \mathrm{~m}^{2}$
(ii) Given that,

Length of bases of trapezium $=28 \mathrm{~cm}$ and 3 dm
Length of altitude $=25 \mathrm{~cm}$
We know that, $10 \mathrm{dm}=1 \mathrm{~m}$
\therefore Length of bases in $\mathrm{m}=0.28 \mathrm{~m}$ and 0.3 m
Similarly, length of altitude in $\mathrm{m}=0.25 \mathrm{~m}$
Area of trapezium $=1 / 2($ Sum of lengths of parallel sides $) \times$ altitude
Area of trapezium $=1 / 2(0.28+0.3) \times 0.25$
Area of trapezium $=1 / 2 \times 0.58 \times 0.25=0.0725$
So, Area of trapezium $=0.0725 \mathrm{~m}^{2}$
(iii) Given that,

Length of bases of trapezium $=8 \mathrm{~m}$ and 60 dm
Length of altitude $=40 \mathrm{dm}$
We know that, $10 \mathrm{dm}=1 \mathrm{~m}$
\therefore Length of bases in $\mathrm{m}=8 \mathrm{~m}$ and 6 m
Similarly, length of altitude in $\mathrm{m}=4 \mathrm{~m}$
Area of trapezium $=1 / 2($ Sum of lengths of parallel sides $) \times$ altitude
Area of trapezium $=1 / 2(8+6) \times 4$

Area of trapezium $=1 / 2 \times 56=28$
So, Area of trapezium $=28 \mathrm{~m}^{2}$
(iv) Given that,

Length of bases of trapezium $=150 \mathrm{~cm}$ and 30 dm
Length of altitude $=9 \mathrm{dm}$
We know that, $10 \mathrm{dm}=1 \mathrm{~m}$
\therefore Length of bases in $\mathrm{m}=1.5 \mathrm{~m}$ and 3 m
Similarly, length of altitude in $\mathrm{m}=0.9 \mathrm{~m}$
Area of trapezium $=1 / 2($ Sum of lengths of parallel sides $) \times$ altitude
Area of trapezium $=1 / 2(1.5+3) \times 0.9$
Area of trapezium $=1 / 2 \times 4.5 \times 0.9=2.025$
So, Area of trapezium $=2.025 \mathrm{~m}^{2}$
2. Find the area of trapezium with base 15 cm and height 8 cm , if the side parallel to the given base is 9 cm long.

Solution:

Given that,
Length of bases of trapezium $=15 \mathrm{~cm}$ and 9 cm
Length of altitude $=8 \mathrm{~cm}$
We know that,
Area of trapezium $=1 / 2($ Sum of lengths of parallel sides $) \times$ altitude
Area of trapezium $=1 / 2(15+9) \times 8$
Area of trapezium $=1 / 2 \times 192=96$
So, Area of trapezium $=96 \mathrm{~m}^{2}$
3. Find the area of a trapezium whose parallel sides are of length $16 \mathbf{d m}$ and 22 dm and whose height is $\mathbf{1 2 ~ d m}$.

Solution:

Given that,
Length of bases of trapezium $=16 \mathrm{dm}$ and 22 dm
Length of altitude $=12 \mathrm{dm}$
We know that, $10 \mathrm{dm}=1 \mathrm{~m}$
\therefore Length of bases in $\mathrm{m}=1.6 \mathrm{~m}$ and 2.2 m
Similarly, length of altitude in $\mathrm{m}=1.2 \mathrm{~m}$
Area of trapezium $=1 / 2($ Sum of lengths of parallel sides $) \times$ altitude
Area of trapezium $=1 / 2(1.6+2.2) \times 1.2$
Area of trapezium $=1 / 2 \times 3.8 \times 1.2=2.28$
So, Area of trapezium $=2.28 \mathrm{~m}^{2}$
4. Find the height of a trapezium, the sum of the lengths of whose bases (parallel sides) is 60 cm and whose area is $600 \mathrm{~cm}^{2}$.
Solution:
Given that,
Length of bases of trapezium $=60 \mathrm{~cm}$
Area $=600 \mathrm{~cm}^{2}$
We know that,
Area of trapezium $=1 / 2$ (Sum of lengths of parallel sides) \times altitude
$600=1 / 2(60) \times$ altitude
$600=30 \times$ altitude
Which implies, altitude $=600 / 30=20$
\therefore Length of altitude is 20 cm
5. Find the altitude of a trapezium whose area is $65 \mathrm{~cm}^{2}$ and whose base are 13 cm and 26 cm .

Solution:

Given that,
Length of bases of trapezium $=13 \mathrm{~cm}$ and 26 cm
Area $=65 \mathrm{~cm}^{2}$
We know that,
Area of trapezium $=1 / 2$ (Sum of lengths of parallel sides) \times altitude
$65=1 / 2(13+26) \times$ altitude
$65=39 / 2 \times$ altitude
Which implies, altitude $=(65 \times 2) / 39=130 / 39=10 / 3$
\therefore Length of altitude $=10 / 3 \mathrm{~cm}$
6. Find the sum of the lengths of the bases of a trapezium whose area is $4.2 \mathbf{m}^{\mathbf{2}}$ and whose height is 280 cm .
Solution:
Given that,
Height of trapezium $=280 \mathrm{~cm}=2.8 \mathrm{~m}$
Area $=4.2 \mathrm{~m}^{2}$
We know that,
Area of trapezium $=1 / 2$ (Sum of lengths of parallel sides) \times altitude
To calculate the length of parallel sides we can rewrite the above equation as,
Sum of lengths of parallel sides $=(2 \times$ Area $) /$ altitude
Sum of lengths of parallel sides $=(2 \times 4.2) / 2.8=8.4 / 2.8=3$
\therefore Sum of lengths of parallel sides $=3 \mathrm{~m}$
7. Find the area of a trapezium whose parallel sides of lengths 10 cm and 15 cm are at a distance of 6 cm from each other. Calculate this area as,
(i) the sum of the areas of two triangles and one rectangle.
(ii) the difference of the area of a rectangle and the sum of the areas of two triangles.

Solution:

We know that, Area of a trapezium ABCD
$=$ area $(\triangle \mathrm{DFA})+$ area (rectangle DFEC) + area $(\triangle \mathrm{CEB})$
$=(1 / 2 \times \mathrm{AF} \times \mathrm{DF})+(\mathrm{FE} \times \mathrm{DF})+(1 / 2 \times \mathrm{EB} \times \mathrm{CE})$
$=(1 / 2 \times \mathrm{AF} \times \mathrm{h})+(\mathrm{FE} \times \mathrm{h})+(1 / 2 \times \mathrm{EB} \times \mathrm{h})$
$=1 / 2 \times \mathrm{h} \times(\mathrm{AF}+2 \mathrm{FE}+\mathrm{EB})$
$=1 / 2 \times \mathrm{h} \times(\mathrm{AF}+\mathrm{FE}+\mathrm{EB}+\mathrm{FE})$
$=1 / 2 \times \mathrm{h} \times(\mathrm{AB}+\mathrm{FE})$
$=1 / 2 \times \mathrm{h} \times(\mathrm{AB}+\mathrm{CD})$ [Opposite sides of rectangle are equal]
$=1 / 2 \times 6 \times(15+10)$
$=1 / 2 \times 6 \times 25=75$
\therefore Area of trapezium $=75 \mathrm{~cm}^{2}$
8. The area of a trapezium is $960 \mathrm{~cm}^{2}$. If the parallel sides are 34 cm and 46 cm , find the distance between them.

Solution:

We know that,
Area of trapezium $=1 / 2$ (Sum of lengths of parallel sides) \times distance between parallel sides
i.e., Area of trapezium $=1 / 2($ Sum of sides $) \times$ distance between parallel sides

To calculate the distance between parallel sides we can rewrite the above equation as,
Distance between parallel sides $=(2 \times$ Area $) /$ Sum of sides

$$
\begin{aligned}
& =(2 \times 960) /(34+46) \\
& =(2 \times 960) / 80=1920 / 80=24
\end{aligned}
$$

\therefore Distance between parallel sides $=24 \mathrm{~cm}$
9. Find the area of Fig. 20.35 as the sum of the areas of two trapezium and a rectangle.

Fig. 20.35

Solution:

From the figure we can write,
Area of figure $=$ Area of two trapeziums + Area of rectangle
Given that,
Length of rectangle $=50 \mathrm{~cm}$
Breadth of rectangle $=10 \mathrm{~cm}$
Length of parallel sides of trapezium $=30 \mathrm{~cm}$ and 10 cm
Distance between parallel sides of trapezium $=(70-50) / 2=20 / 2=10$
So, Distance between parallel sides of trapezium $=10 \mathrm{~cm}$
Area of figure $=2 \times 1 / 2$ (Sum of lengths of parallel sides) \times altitude + Length \times Breadth
Area of figure $=2 \times 1 / 2(30+10) \times 10+50 \times 10$
Area of figure $=40 \times 10+50 \times 10$
Area of figure $=400+500=900$
\therefore Area of figure $=900 \mathrm{~cm}^{2}$
10. Top surface of a table is trapezium in shape. Find its area if its parallel sides are

1 m and 1.2 m and perpendicular distance between them is 0.8 m .

Fig. 20.36

Solution:

Given that,
Length of parallel sides of trapezium $=1.2 \mathrm{~m}$ and 1 m
Distance between parallel sides of trapezium $=0.8 \mathrm{~m}$
We know that,
Area of trapezium $=1 / 2$ (Sum of lengths of parallel sides) \times distance between parallel sides
i.e., Area of trapezium $=1 / 2($ Sum of sides $) \times$ distance between parallel sides

Area of trapezium $=1 / 2(1.2+1) \times 0.8$
Area of trapezium $=1 / 2 \times 2.2 \times 0.8=0.88$
So, Area of trapezium $=0.88 \mathrm{~m}^{2}$
11. The cross-section of a canal is a trapezium in shape. If the canal is $\mathbf{1 0} \mathbf{~ m}$ wide at the top $\mathbf{6 m}$ wide at the bottom and the area of cross-section is $72 \mathbf{m}^{2}$ determine its depth.

Solution:

Given that,
Length of parallel sides of trapezium $=10 \mathrm{~m}$ and 6 m
Area $=72 \mathrm{~m}^{2}$
Let the distance between parallel sides of trapezium $=\mathrm{x}$ meter
We know that,
Area of trapezium $=1 / 2($ Sum of lengths of parallel sides $) \times$ distance between parallel sides
i.e., Area of trapezium $=1 / 2$ (Sum of sides) \times distance between parallel sides
$72=1 / 2(10+6) \times x$
$72=8 \times x$
$x=72 / 8=9$
\therefore The depth is 9 m .
12. The area of a trapezium is $91 \mathrm{~cm}^{2}$ and its height is 7 cm . If one of the parallel sides is longer than the other by $\mathbf{8 ~ c m}$, find the two parallel sides.

Solution:

Given that,
Let the length of one parallel side of trapezium $=x$ meter
Length of other parallel side of trapezium $=(x+8)$ meter
Area of trapezium $=91 \mathrm{~cm}^{2}$
Height $=7 \mathrm{~cm}$
We know that,
Area of trapezium $=1 / 2$ (Sum of lengths of parallel sides) \times altitude
$91=1 / 2(x+x+8) \times 7$
$91=1 / 2(2 x+8) \times 7$
$91=(\mathrm{x}+4) \times 7$
$(x+4)=91 / 7$
$\mathrm{x}+4=13$
$\mathrm{x}=13-4$
$\mathrm{x}=9$
\therefore Length of one parallel side of trapezium $=9 \mathrm{~cm}$
And, Length of other parallel side of trapezium $=x+8=9+8=17 \mathrm{~cm}$
13. The area of a trapezium is $384 \mathrm{~cm}^{2}$. Its parallel sides are in the ratio $3: 5$ and the perpendicular distance between them is 12 cm . Find the length of each one of the parallel sides.

Solution:

Given that,
Let the length of one parallel side of trapezium $=3 \mathrm{x}$ meter
Length of other parallel side of trapezium $=5 \mathrm{x}$ meter
Area of trapezium $=384 \mathrm{~cm}^{2}$
Distance between parallel sides $=12 \mathrm{~cm}$
We know that,
Area of trapezium $=1 / 2$ (Sum of lengths of parallel sides) \times distance between parallel sides
i.e., Area of trapezium $=1 / 2($ Sum of sides $) \times$ distance between parallel sides
$384=1 / 2(3 \mathrm{x}+5 \mathrm{x}) \times 12$
$384=1 / 2(8 x) \times 12$
$4 \mathrm{x}=384 / 12$
$4 \mathrm{x}=32$
$\mathrm{x}=8$
\therefore Length of one parallel side of trapezium $=3 \mathrm{x}=3 \times 8=24 \mathrm{~cm}$
And, Length of other parallel side of trapezium $=5 \mathrm{x}=5 \times 8=40 \mathrm{~cm}$
14. Mohan wants to buy a trapezium shaped field. Its side along the river is parallel and twice the side along the road. If the area of this field is $10500 \mathrm{~m}^{2}$ and the perpendicular distance between the two parallel sides is $\mathbf{1 0 0} \mathbf{~ m}$, find the length of the side along the river.

> Road

River
Fig. 20.37

Solution:

Given that,
Let the length of side of trapezium shaped field along road $=x$ meter
Length of other side of trapezium shaped field along road $=2 \mathrm{x}$ meter
Area of trapezium $=10500 \mathrm{~cm}^{2}$
Distance between parallel sides $=100 \mathrm{~m}$
We know that,
Area of trapezium $=1 / 2$ (Sum of lengths of parallel sides) \times distance between parallel sides
i.e., Area of trapezium $=1 / 2($ Sum of sides $) \times$ distance between parallel sides
$10500=1 / 2(x+2 x) \times 100$
$10500=1 / 2(3 x) \times 100$
$3 \mathrm{x}=10500 / 50$
$3 \mathrm{x}=210$
$\mathrm{x}=210 / 3=70$
$\mathrm{x}=70$
\therefore Length of side of trapezium shaped field along road $=70 \mathrm{~m}$
And, Length of other side of trapezium shaped field along road $=2 \mathrm{x}=70 \times 2=140 \mathrm{~m}$
15. The area of a trapezium is $1586 \mathrm{~cm}^{2}$ and the distance between the parallel sides is $\mathbf{2 6 ~ c m}$. If one of the parallel sides is $\mathbf{3 8} \mathbf{~ c m}$, find the other.

Solution:

Given that,
Let the length of other parallel side of trapezium $=x \mathrm{~cm}$
Length of one parallel side of trapezium $=38 \mathrm{~cm}$
Area of trapezium $=1586 \mathrm{~cm}^{2}$
Distance between parallel sides $=26 \mathrm{~cm}$
We know that,
Area of trapezium $=1 / 2$ (Sum of lengths of parallel sides) \times distance between parallel sides
i.e., Area of trapezium $=1 / 2$ (Sum of sides) \times distance between parallel sides
$1586=1 / 2(x+38) \times 26$
$1586=(x+38) \times 13$
$(x+38)=1586 / 13$
$\mathrm{x}=122-38$
$\mathrm{x}=84$
\therefore Length of the other parallel side of trapezium $=84 \mathrm{~cm}$
16. The parallel sides of a trapezium are 25 cm and 13 cm ; its nonparallel sides are equal, each being 10 cm , find the area of the trapezium.

Solution:

In $\triangle \mathrm{CEF}$,
$\mathrm{CE}=10 \mathrm{~cm}$ and $\mathrm{EF}=6 \mathrm{~cm}$
Using Pythagoras theorem:
$\mathrm{CE}^{2}=\mathrm{CF}^{2}+\mathrm{EF}^{2}$
$\mathrm{CF}^{2}=\mathrm{CE}^{2}-\mathrm{EF}^{2}$
$\mathrm{CF}^{2}=10^{2}-6^{2}$
$\mathrm{CF}^{2}=100-36$
$\mathrm{CF}^{2}=64$
CF $=8 \mathrm{~cm}$
From the figure we can write,
Area of trapezium = Area of parallelogram AECD + Area of area of triangle CEF
Area of trapezium $=$ base \times height $+1 / 2$ (base \times height)
Area of trapezium $=13 \times 8+1 / 2(12 \times 8)$
Area of trapezium $=104+48=152$
\therefore Area of trapezium $=152 \mathrm{~cm}^{2}$
17. Find the area of a trapezium whose parallel sides are $25 \mathrm{~cm}, 13 \mathrm{~cm}$ and the other sides are 15 cm each.

Solution:

In $\triangle \mathrm{CEF}$,
$\mathrm{CE}=10 \mathrm{~cm}$ and $\mathrm{EF}=6 \mathrm{~cm}$
Using Pythagoras theorem:
$\mathrm{CE}^{2}=\mathrm{CF}^{2}+\mathrm{EF}^{2}$
$\mathrm{CF}^{2}=\mathrm{CE}^{2}-\mathrm{EF}^{2}$
$\mathrm{CF}^{2}=15^{2}-6^{2}$
$\mathrm{CF}^{2}=225-36$
$\mathrm{CF}^{2}=189$
$C F=\sqrt{ } 189$

$$
\begin{aligned}
& =\sqrt{ }(9 \times 21) \\
& =3 \sqrt{ } 21 \mathrm{~cm}
\end{aligned}
$$

From the figure we can write,
Area of trapezium = Area of parallelogram AECD + Area of area of triangle CEF
Area of trapezium $=$ height $+1 / 2$ (sum of parallel sides)
Area of trapezium $=3 \sqrt{ } 21 \times 1 / 2(25+13)$
Area of trapezium $=3 \sqrt{ } 21 \times 19=57 \sqrt{ } 21$
\therefore Area of trapezium $=57 \sqrt{ } 21 \mathrm{~cm}^{2}$

18. If the area of a trapezium is $28 \mathrm{~cm}^{2}$ and one of its parallel sides is $6 \mathbf{~ c m}$, find the other parallel side if its altitude is 4 cm .

Solution:

Given that,
Let the length of other parallel side of trapezium $=x \mathrm{~cm}$
Length of one parallel side of trapezium $=6 \mathrm{~cm}$
Area of trapezium $=28 \mathrm{~cm}^{2}$
Length of altitude of trapezium $=4 \mathrm{~cm}$
We know that,
Area of trapezium $=1 / 2$ (Sum of lengths of parallel sides) \times distance between parallel sides
i.e., Area of trapezium $=1 / 2($ Sum of sides $) \times$ distance between parallel sides
$28=1 / 2(6+x) \times 4$
$28=(6+x) \times 2$
$(6+x)=28 / 2$
$(6+x)=14$
$x=14-6$
$x=8$
\therefore Length of the other parallel side of trapezium $=8 \mathrm{~cm}$
19. In Fig. 20.38, a parallelogram is drawn in a trapezium, the area of the parallelogram is $80 \mathrm{~cm}^{2}$, find the area of the trapezium.

Fig. 20.38

Solution:

In $\triangle \mathrm{CEF}$,
$\mathrm{CE}=10 \mathrm{~cm}$ and $\mathrm{EF}=6 \mathrm{~cm}$
Using Pythagoras theorem:
$\mathrm{CE}^{2}=\mathrm{CF}^{2}+\mathrm{EF}^{2}$
$\mathrm{CF}^{2}=\mathrm{CE}^{2}-\mathrm{EF}^{2}$
$\mathrm{CF}^{2}=10^{2}-6^{2}$
$\mathrm{CF}^{2}=100-36$
$\mathrm{CF}^{2}=64$
$\mathrm{CF}=8 \mathrm{~cm}$
Area of parallelogram $=80 \mathrm{~cm}^{2}$
From the figure we can write,
Area of trapezium = Area of parallelogram AECD + Area of area of triangle CEF
Area of trapezium $=$ base \times height $+1 / 2$ (base \times height $)$

Area of trapezium $=10 \times 8+1 / 2(12 \times 8)$
Area of trapezium $=80+48=128$
\therefore Area of trapezium $=128 \mathrm{~cm}^{2}$
20. Find the area of the field shown in Fig. 20.39 by dividing it into a square, a rectangle and a trapezium.

Fig. 20.39

Solution:

From the figure we can write,
Area of given figure $=$ Area of square ABCD + Area of rectangle DEFG + Area of rectangle GHIJ + Area of triangle FHI
i.e., Area of given figure $=$ side \times side + length \times breadth + length \times breadth $+1 / 2 \times$ base \times altitude
Area of given figure $=4 \times 4+8 \times 4+3 \times 4+1 / 2 \times 5 \times 5$
Area of given figure $=16+32+12+10=70$
\therefore Area of given figure $=70 \mathrm{~cm}^{2}$

EXERCISE 20.3

1. Find the area of the pentagon shown in fig. 20.48, if $\mathrm{AD}=10 \mathrm{~cm}, \mathrm{AG}=8$ $\mathrm{cm}, \mathrm{AH}=6 \mathrm{~cm}, \mathrm{AF}=5 \mathrm{~cm}, \mathrm{BF}=5 \mathrm{~cm}, \mathrm{CG}=7 \mathrm{~cm}$ and $\mathrm{EH}=3 \mathrm{~cm}$.

Fig. 20.48

Solution:

$\mathrm{GH}=\mathrm{AG}-\mathrm{AH}=8-6=2 \mathrm{~cm}$
$\mathrm{HF}=\mathrm{AH}-\mathrm{AF}=6-5=1 \mathrm{~cm}$
$\mathrm{GD}=\mathrm{AD}-\mathrm{AG}=10-8=2 \mathrm{~cm}$
From the figure we can write,
Area of given figure $=$ Area of triangle AFB + Area of trapezium BCGF + Area of
triangle CGD + Area of triangle AHE + Area of triangle EGD
We know that,
Area of right angled triangle $=1 / 2 \times$ base \times altitude
Area of trapezium $=1 / 2($ Sum of lengths of parallel sides $) \times$ altitude
Area of given pentagon $=1 / 2 \times \mathrm{AF} \times \mathrm{BF}+1 / 2(\mathrm{CG}+\mathrm{BF}) \times \mathrm{FG}+1 / 2 \times \mathrm{GD} \times \mathrm{CG}+1 / 2$ $\times \mathrm{AH} \times \mathrm{EH}+1 / 2 \times \mathrm{HD} \times \mathrm{EH}$
Area of given pentagon $=1 / 2 \times 5 \times 5+1 / 2(7+5) \times 3+1 / 2 \times 2 \times 7+1 / 2 \times 6 \times 3+1 / 2 \times$ 4×3
Area of given pentagon $=12.5+18+7+9+6=52.5$
\therefore Area of given pentagon $=52.5 \mathrm{~cm}^{2}$
2. Find the area enclosed by each of the following figures [fig. 20.49 (i)-(ii)] as the sum of the areas of a rectangle and a trapezium.

Fig. 20.49

Solution:

Figure (i)
From the figure we can write,
Area of figure $=$ Area of trapezium + Area of rectangle
Area of figure $=1 / 2($ Sum of lengths of parallel sides $) \times$ altitude + Length \times Breadth
Area of figure $=1 / 2(18+7) \times 8+18 \times 18$
Area of figure $=1 / 2(25) \times 8+18 \times 18$
Area of figure $=100+324=424$
\therefore Area of figure is $424 \mathrm{~cm}^{2}$
Figure (ii)
From the figure we can write,
Area of figure $=$ Area of trapezium + Area of rectangle
Area of figure $=1 / 2($ Sum of lengths of parallel sides $) \times$ altitude + Length \times Breadth
Area of given figure $=1 / 2(15+6) \times 8+15 \times 20$
Area of given figure $=84+300=384$
\therefore Area of figure is $384 \mathrm{~cm}^{2}$

Figure (iii)

Using Pythagoras theorem in the right angled triangle,
$5^{2}=4^{2}+\mathrm{x}^{2}$
$\mathrm{x}^{2}=25-16$
$\mathrm{x}^{2}=9$
$\mathrm{x}=3 \mathrm{~cm}$
From the figure we can write,
Area of figure $=$ Area of trapezium + Area of rectangle
Area of figure $=1 / 2($ Sum of lengths of parallel sides $) \times$ altitude + Length \times Breadth

Area of given figure $=1 / 2(14+6) \times 3+4 \times 6$
Area of given figure $=30+24=54$
\therefore Area of figure is $54 \mathrm{~cm}^{2}$

3. There is a pentagonal shaped park as shown in Fig. 20.50. Jyoti and Kavita divided it in two different ways.
 Find the area of this park using both ways. Can you suggest some another way of finding its area?

Jyoti's diagram

Kavita's diagram

Fig. 20.50

Solution:

From the figure we can write, Area of figure $=$ Area of trapezium + Area of rectangle
Area of Jyoti's diagram $=2 \times 1 / 2$ (Sum of lengths of parallel sides) \times altitude
Area of figure $=2 \times 1 / 2 \times(15+30) \times 7.5$
Area of figure $=45 \times 7.5=337.5$
Therefore, Area of figure $=337.5 \mathrm{~cm}^{2}$
We also know that,
Area of Pentagon $=$ Area of triangle + area of rectangle
Area of Pentagon $=1 / 2 \times$ Base \times Altitude + Length \times Breadth
Area of Pentagon $=1 / 2 \times 15 \times 15+15 \times 15$
Area of Pentagon $=112.5+225=337.5$
\therefore Area of pentagon is $337.5 \mathrm{~m}^{2}$
4. Find the area of the following polygon, if $\mathrm{AL}=10 \mathrm{~cm}, \mathrm{AM}=\mathbf{2 0} \mathrm{cm}, \mathrm{AN}=50$ $\mathrm{cm} . \mathrm{AO}=60 \mathrm{~cm}$ and $\mathrm{AD}=90 \mathrm{~cm}$.

Fig. 20.51

Solution:

Given that,
$\mathrm{AL}=10 \mathrm{~cm} ; \mathrm{AM}=20 \mathrm{~cm} ; \mathrm{AN}=50 \mathrm{~cm} ; \mathrm{AO}=60 \mathrm{~cm} ; \mathrm{AD}=90 \mathrm{~cm}$
$\mathrm{LM}=\mathrm{AM}-\mathrm{AL}=20-10=10 \mathrm{~cm}$
$\mathrm{MN}=\mathrm{AN}-\mathrm{AM}=50-20=30 \mathrm{~cm}$
$\mathrm{OD}=\mathrm{AD}-\mathrm{AO}=90-60=30 \mathrm{~cm}$
$\mathrm{ON}=\mathrm{AO}-\mathrm{AN}=60-50=10 \mathrm{~cm}$
$\mathrm{DN}=\mathrm{OD}+\mathrm{ON}=30+10=40 \mathrm{~cm}$
$\mathrm{OM}=\mathrm{MN}+\mathrm{ON}=30+10=40 \mathrm{~cm}$
$\mathrm{LN}=\mathrm{LM}+\mathrm{MN}=10+30=40 \mathrm{~cm}$
From the figure we can write,
Area of figure $=$ Area of triangle AMF + Area of trapezium FMNE + Area of triangle
END + Area of triangle ALB + Area of trapezium LBCN + Area of triangle DNC
We know that,
Area of right angled triangle $=1 / 2 \times$ base \times altitude
Area of trapezium $=1 / 2($ Sum of lengths of parallel sides $) \times$ altitude
Area of given hexagon $=1 / 2 \times \mathrm{AM} \times \mathrm{FM}+1 / 2(\mathrm{MF}+\mathrm{OE}) \times \mathrm{OM}+1 / 2 \times \mathrm{OD} \times \mathrm{OE}+$ $1 / 2 \times \mathrm{AL} \times \mathrm{BL}+1 / 2 \times(\mathrm{BL}+\mathrm{CN}) \times \mathrm{LN}+1 / 2 \times \mathrm{DN} \times \mathrm{CN}$
Area of given hexagon $=1 / 2 \times 20 \times 20+1 / 2(20+60) \times 40+1 / 2 \times 30 \times 60+1 / 2 \times 10 \times$ $30+1 / 2 \times(30+40) \times 40+1 / 2 \times 40 \times 40$
Area of given hexagon $=200+1600+900+150+1400+800=5050$
\therefore Area of given hexagon is $5050 \mathrm{~cm}^{2}$

5. Find the area of the following regular hexagon.

Fig. 20.52

Solution:

Given that,
$\mathrm{NQ}=23 \mathrm{~cm}$
$\mathrm{NA}=\mathrm{BQ}=10 / 2=5 \mathrm{~cm}$
$\mathrm{MR}=\mathrm{OP}=13 \mathrm{~cm}$
In the right triangle BPQ
$\mathrm{PQ}^{2}=\mathrm{BQ}^{2}+\mathrm{BP}^{2}$
Substituting the values
$(13)^{2}=(5)^{2}+\mathrm{BP}^{2}$
$169=25+\mathrm{BP}^{2}$
So we get
$\mathrm{BP}^{2}=169-25=144$
$\mathrm{BP}=12 \mathrm{~cm}$
Here
$\mathrm{PR}=\mathrm{MO}=2 \times 12=24 \mathrm{~cm}$
Area of rectangle $\mathrm{RPOM}=\mathrm{RP} \times \mathrm{PO}=24 \times 13=321 \mathrm{~cm}^{2}$
Area of triangle $\mathrm{PRQ}=1 / 2 \times \mathrm{PR} \times \mathrm{BQ}$
$=1 / 2 \times 24 \times 5$
$=60 \mathrm{~cm}^{2}$
Area of triangle MON $=60 \mathrm{~cm}^{2}$
Area of hexagon $=312+60+60=432 \mathrm{~cm}^{2}$
Therefore, area of given hexagon is $432 \mathrm{~cm}^{2}$

