RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

Exercise 6.1

Question 1: Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer:
(i) $3 x^{2}-4 x+15$
(ii) $y^{2}+2 \sqrt{ } 3$
(iii) $3 \sqrt{x}+\sqrt{2 x}$
(iv) $x-4 / x$
(v) $x^{12}+y^{3}+t^{50}$

Solution:

(i) $3 x^{2}-4 x+15$

It is a polynomial of x.
(ii) $\mathrm{y}^{2}+2 \sqrt{ } 3$

It is a polynomial of y .
(iii) $3 \sqrt{ } x+\sqrt{ } 2 x$

It is not a polynomial since the exponent of $3 \sqrt{ } x$ is a rational term.
(iv) $x-4 / x$

It is not a polynomial since the exponent of $-4 / x$ is not a positive term.
(v) $x^{12}+y^{3}+t^{50}$

It is a three variable polynomial, x, y and t .
Question 2: Write the coefficient of x^{2} in each of the following:
(i) $17-2 x+7 x^{2}$
(ii) $9-12 x+x^{3}$
(iii) $\Pi / 6 x^{2}-3 x+4$
(iv) $\sqrt{ } 3 x-7$

Solution:

(i) $17-2 x+7 x^{2}$

Coefficient of $x^{2}=7$
(ii) $9-12 x+x^{3}$

Coefficient of $x^{2}=0$

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

(iii) $\Pi / 6 x^{2}-3 x+4$

Coefficient of $x^{2}=\Pi / 6$
(iv) $\sqrt{ } 3 x-7$

Coefficient of $x^{2}=0$

Question 3: Write the degrees of each of the following polynomials:
(i) $7 x^{3}+4 x^{2}-3 x+12$
(ii) $12-x+2 x^{3}$
(iii) $5 y-\sqrt{ } 2$
(iv) 7
(v) 0

Solution:

As we know, degree is the highest power in the polynomial
(i) Degree of the polynomial $7 x^{3}+4 x^{2}-3 x+12$ is 3
(ii) Degree of the polynomial $12-x+2 x^{3}$ is 3
(iii) Degree of the polynomial $5 y-\sqrt{ } 2$ is 1
(iv) Degree of the polynomial 7 is 0
(v) Degree of the polynomial 0 is undefined.

Question 4: Classify the following polynomials as linear, quadratic, cubic and biquadratic polynomials:
(i) $x+x^{2}+4$
(ii) $3 x-2$
(iii) $2 x+x^{2}$
(iv) $3 y$
(v) $t^{2}+1$
(vi) $7 t^{4}+4 t^{3}+3 t-2$

Solution:

(i) $x+x^{2}+4$: It is a quadratic polynomial as its degree is 2 .
(ii) $3 x-2$: It is a linear polynomial as its degree is 1 .
(iii) $2 x+x^{2}$: It is a quadratic polynomial as its degree is 2 .
(iv) $3 y$: It is a linear polynomial as its degree is 1 .
(v) $\mathrm{t}^{2}+1$: It is a quadratic polynomial as its degree is 2 .
(vi) $7 t^{4}+4 t^{3}+3 t-2$: It is a biquadratic polynomial as its degree is 4 .

Exercise 6.2

Question 1: If $f(x)=2 x^{3}-13 x^{2}+17 x+12$, find
(i) $f(2)$
(ii) $f(-3)$
(iii) $f(0)$

Solution:
$f(x)=2 x^{3}-13 x^{2}+17 x+12$
(i) $f(2)=2(2)^{3}-13(2)^{2}+17(2)+12$
$=2 \times 8-13 \times 4+17 \times 2+12$
$=16-52+34+12$
$=62-52$
$=10$
(ii) $f(-3)=2(-3)^{3}-13(-3)^{2}+17 \times(-3)+12$
$=2 \times(-27)-13 \times 9+17 \times(-3)+12$
$=-54-117-51+12$
$=-222+12$
$=-210$
(iii) $f(0)=2 \times(0)^{3}-13(0)^{2}+17 \times 0+12$
$=0-0+0+12$
$=12$
Question 2: Verify whether the indicated numbers are zeros of the polynomials corresponding to them in the following cases:
(i) $f(x)=3 x+1, x=-1 / 3$
(ii) $f(x)=x^{2}-1, x=1,-1$
(iii) $g(x)=3 x^{2}-2, x=2 / \sqrt{ } 3,-2 / \sqrt{ } 3$
(iv) $p(x)=x^{3}-6 x^{2}+11 x-6, x=1,2,3$
(v) $f(x)=5 x-\pi, x=4 / 5$
(vi) $f(x)=x^{2}, x=0$
(vii) $f(x)=1 x+m, x=-m / I$
(viii) $f(x)=2 x+1, x=1 / 2$

Solution:

(i) $f(x)=3 x+1, x=-1 / 3$
$f(x)=3 x+1$

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

Substitute $x=-1 / 3$ in $f(x)$
$f(-1 / 3)=3(-1 / 3)+1$
$=-1+1$
$=0$

Since, the result is 0 , so $x=-1 / 3$ is the root of $3 x+1$
(ii) $f(x)=x^{2}-1, x=1,-1$
$f(x)=x^{2}-1$
Given that $x=(1,-1)$
Substitute $x=1$ in $f(x)$
$f(1)=1^{2}-1$
$=1-1$
$=0$
Now, substitute $x=(-1)$ in $f(x)$
$f(-1)=(-1)^{2}-1$
$=1-1$
$=0$
Since, the results when $x=1$ and $x=-1$ are 0 , so $(1,-1)$ are the roots of the polynomial $f(x)=x^{2}-1$
(iii) $g(x)=3 x^{2}-2, x=2 / \sqrt{ } 3,-2 / \sqrt{ } 3$
$g(x)=3 x^{2}-2$
Substitute $x=2 / \sqrt{ } 3$ in $g(x)$
$g(2 / v 3)=3(2 / v 3)^{2}-2$

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

$=3(4 / 3)-2$
$=4-2$
$=2 \neq 0$

Now, Substitute $x=-2 / \sqrt{ } 3$ in $g(x)$
$g(2 / \sqrt{ } 3)=3(-2 / \sqrt{ } 3)^{2}-2$
$=3(4 / 3)-2$
$=4-2$
$=2 \neq 0$

Since, the results when $x=2 / \sqrt{ } 3$ and $x=-2 / \sqrt{ } 3)$ are not 0 . Therefore $(2 / \sqrt{ } 3,-2 / \sqrt{ } 3)$ are not zeros of $3 x^{2}-2$.
(iv) $p(x)=x^{3}-6 x^{2}+11 x-6, x=1,2,3$
$p(1)=1^{3}-6(1)^{2}+11 \times 1-6=1-6+11-6=0$
$p(2)=2^{3}-6(2)^{2}+11 \times 2-6=8-24+22-6=0$
$p(3)=3^{3}-6(3)^{2}+11 \times 3-6=27-54+33-6=0$
Therefore, $x=1,2,3$ are zeros of $p(x)$.
(v) $f(x)=5 x-\pi, x=4 / 5$
$f(4 / 5)=5 \times 4 / 5-\pi=4-\pi \neq 0$
Therefore, $x=4 / 5$ is not a zeros of $f(x)$.
(vi) $f(x)=x^{2}, x=0$
$f(0)=0^{2}=0$
Therefore, $x=0$ is a zero of $f(x)$.

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

(vii) $f(x)=\mid x+m, x=-m / l$
$f(-m / l)=I x-m / l+m=-m+m=0$
Therefore, $x=-m / l$ is a zero of $f(x)$.
(viii) $f(x)=2 x+1, x=1 / 2$
$f(1 / 2)=2 \times 1 / 2+1=1+1=2 \neq 0$
Therefore, $x=1 / 2$ is not a zero of $f(x)$.

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

Exercise 6.3

In each of the following, using the remainder theorem, find the remainder when $f(x)$ is divided by $g(x)$ and verify the by actual division : (1-8)

Question 1: $f(x)=x^{3}+4 x^{2}-3 x+10, g(x)=x+4$
Solution:
$f(x)=x^{3}+4 x^{2}-3 x+10, g(x)=x+4$
Put $g(x)=0$
$\Rightarrow x+4=0$ or $x=-4$

Remainder $=f(-4)$
Now,
$f(-4)=(-4)^{3}+4(-4)^{2}-3(-4)+10=-64+64+12+10=22$

Actual Division:

$$
\begin{array}{r}
x^{2}-3 \\
x + 4 \longdiv { x ^ { 3 } } + 4 x ^ { 2 } - 3 x + 1 0 \\
- \\
\\
\hline \begin{array}{rrrr}
x^{3}+4 x^{2} & & \\
\hline & & -3 x & +10 \\
& & -3 x & -12 \\
\hline
\end{array}
\end{array}
$$

Question 2: $f(x)=4 x^{4}-3 x^{3}-2 x^{2}+x-7, g(x)=x-1$
Solution:
$f(x)=4 x^{4}-3 x^{3}-2 x^{2}+x-7$
Put $g(x)=0$
$\Rightarrow>x-1=0$ or $x=1$

Remainder $=f(1)$
Now,
$f(1)=4(1)^{4}-3(1)^{3}-2(1)^{2}+(1)-7=4-3-2+1-7=-7$

Actual Division:

 Polynomials$$
x-1 \begin{array}{rrrrr}
4 x^{3} & +x^{2} & -x \\
& \begin{array}{rrrrr}
4 x^{4} & -3 x^{3} & -2 x^{2} & +x & -7 \\
- & & & & \\
& \begin{array}{rrrrr}
4 x^{4} & -4 x^{3} & & & \\
& & x^{3} & -2 x^{2} & +x
\end{array} & -7 \\
& x^{3} & -x^{2} & & \\
\hline & & -x^{2} & +x & -7 \\
& & & -x^{2} & +x
\end{array} \\
\hline
\end{array}
$$

Question 3: $f(x)=2 x^{4}-6 X^{3}+2 x^{2}-x+2, g(x)=x+2$
Solution:
$f(x)=2 x^{4}-6 X^{3}+2 x^{2}-x+2, g(x)=x+2$
Put $g(x)=0$
$=>x+2=0$ or $x=-2$
Remainder $=f(-2)$
Now,
$f(-2)=2(-2)^{4}-6(-2)^{3}+2(-2)^{2}-(-2)+2=32+48+8+2+2=92$
Actual Division:

$$
\begin{aligned}
& x+2 \quad \begin{array}{|ccc}
& 2 x^{3}-10 x^{2}+22 x-45 \\
2 x^{4}-6 x^{3}+2 x^{2}-x+2
\end{array} \\
& \text { - } \\
& \begin{array}{rrrr}
2 x^{4} & +4 x^{3} & & \\
\hline & -10 x^{3} & +2 x^{2} & -x
\end{array} \\
& \begin{array}{rrr}
-10 x^{3} & -20 x^{2} & \\
\hline 22 x^{2} & -x & +2
\end{array} \\
& \begin{array}{rrr}
22 x^{2} & +44 x & \\
& -45 x & +2
\end{array} \\
& \begin{array}{rr}
-45 x & -90 \\
\hline & 92
\end{array}
\end{aligned}
$$

Question 4: $f(x)=4 x^{3}-12 x^{2}+14 x-3, g(x)=2 x-1$
Solution:
$f(x)=4 x^{3}-12 x^{2}+14 x-3, g(x)=2 x-1$

Put $g(x)=0$
$\Rightarrow 2 x-1=0$ or $x=1 / 2$

Remainder $=f(1 / 2)$
Now,
$f(1 / 2)=4(1 / 2)^{3}-12(1 / 2)^{2}+14(1 / 2)-3=1 / 2-3+7-3=3 / 2$
Actual Division: Polynomials

$$
\begin{aligned}
& \begin{array}{cc}
2 x^{2}-5 x+\frac{9}{2} \\
2 x-1 & \begin{array}{|c|}
4 x^{3}-12 x^{2}+14 x-3
\end{array}
\end{array} \\
& \begin{array}{llll}
4 x^{3} & -2 x^{2} & \\
\hline & -10 x^{2} & +14 x & -3
\end{array} \\
& \begin{array}{rrr}
-10 x^{2} & +5 x & \\
\hline & 9 x & -3
\end{array} \\
& \begin{array}{rr}
9 x & -\frac{9}{2} \\
\hline & \frac{3}{2}
\end{array}
\end{aligned}
$$

Question 5: $f(x)=x^{3}-6 x^{2}+2 x-4, g(x)=1-2 x$
Solution:
$f(x)=x^{3}-6 x^{2}+2 x-4, g(x)=1-2 x$
Put $g(x)=0$
=> $1-2 x=0$ or $x=1 / 2$
Remainder $=f(1 / 2)$
Now,
$f(1 / 2)=(1 / 2)^{3}-6(1 / 2)^{2}+2(1 / 2)-4=1+1 / 8-4-3 / 2=-35 / 8$
Actual Division:

$$
-2 x+1 \begin{array}{rrrr}
& \begin{array}{rrrr}
-\frac{x^{2}}{2} & +\frac{11 x}{4} & +\frac{3}{8} & \\
x^{3} & -6 x^{2} & +2 x & -4
\end{array} \\
& \begin{array}{rrrr}
x^{3} & -\frac{x^{2}}{2} & & \\
\hline & -\frac{11 x^{2}}{2} & +2 x & -4 \\
- & & \\
\hline & & -\frac{11 x^{2}}{2} & +\frac{11 x}{4}
\end{array} \\
\hline & & -\frac{3 x}{4} & -4 \\
& & & -\frac{35}{8}
\end{array}
$$

Question 6: $f(x)=x^{4}-3 x^{2}+4, g(x)=x-2$
Solution:
$f(x)=x^{4}-3 x^{2}+4, g(x)=x-2$

Put $g(x)=0$
=> $x-2=0$ or $x=2$
Remainder $=f(2)$
Now,
$f(2)=(2)^{4}-3(2)^{2}+4=16-12+4=8$
Actual Division:

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of

 Polynomials$$
\begin{aligned}
& x-2 \quad \begin{array}{lll}
x^{3}+2 x^{2}+x+2 \\
x^{4}+0 x^{3}-3 x^{2}+0 x+4
\end{array} \\
& \begin{array}{rrrr}
x^{4} & -2 x^{3} & & \\
& 2 x^{3} & -3 x^{2} & +0 x
\end{array} \\
& \begin{array}{rr}
2 x^{3}-4 x^{2} & \\
x^{2} & +0 x \quad+4
\end{array} \\
& \begin{array}{rr}
x^{2}-2 x \\
2 x+4
\end{array} \\
& \begin{array}{rr}
2 x-4 \\
\hline 8
\end{array}
\end{aligned}
$$

Question 7: $f(x)=9 x^{3}-3 x^{2}+x-5, g(x)=x-2 / 3$
Solution:
$f(x)=9 x^{3}-3 x^{2}+x-5, g(x)=x-2 / 3$
Put $g(x)=0$
$\Rightarrow x-2 / 3=0$ or $x=2 / 3$
Remainder $=f(2 / 3)$
Now,
$f(2 / 3)=9(2 / 3)^{3}-3(2 / 3)^{2}+(2 / 3)-5=8 / 3-4 / 3+2 / 3-5 / 1=-3$

Actual Division:

 Polynomials$$
\begin{aligned}
& x-\frac{2}{3} \quad \begin{array}{ccc}
9 x^{2}+3 x+3 \\
9 x^{3} & -3 x^{2}+x-5
\end{array} \\
& \begin{array}{rrr}
9 x^{3}-6 x^{2} & & \\
3 x^{2} & +x & -5
\end{array} \\
& \begin{array}{r}
- \\
3 x^{2} \\
\\
3 x-2 x
\end{array} \\
& \begin{array}{ll}
3 x & -2 \\
\hline
\end{array}
\end{aligned}
$$

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

Exercise 6.4

In each of the following, use factor theorem to find whether polynomial $\mathbf{g}(\mathbf{x})$ is a factor of polynomial $\mathrm{f}(\mathrm{x})$ or, not: (1-7)

Question 1: $f(x)=x^{3}-6 x^{2}+11 x-6 ; g(x)=x-3$

Solution:

If $g(x)$ is a factor of $f(x)$, then the remainder will be zero that is $g(x)=0$.
$g(x)=x-3=0$
or $\mathrm{x}=3$
Remainder $=f(3)$

Now,
$f(3)=(3)^{3}-6(3)^{2}+11 \times 3-6$
$=27-54+33-6$
$=60-60$
$=0$
Therefore, $g(x)$ is a factor of $f(x)$
Question 2: $f(x)=3 x^{4}+17 x^{3}+9 x^{2}-7 x-10 ; g(x)=x+5$
Solution:
If $g(x)$ is a factor of $f(x)$, then the remainder will be zero that is $g(x)=0$.
$g(x)=x+5=0$, then $x=-5$
Remainder $=f(-5)$

Now,
$f(3)=3(-5)^{4}+17(-5)^{3}+9(-5)^{2}-7(-5)-10$
$=3 \times 625+17 \times(-125)+9 \times(25)-7 \times(-5)-10$
$=1875-2125+225+35-10$
$=0$
Therefore, $g(x)$ is a factor of $f(x)$.
Question 3: $f(x)=x^{5}+3 x^{4}-x^{3}-3 x^{2}+5 x+15, g(x)=x+3$
Solution:
If $g(x)$ is a factor of $f(x)$, then the remainder will be zero that is $g(x)=0$.
$g(x)=x+3=0$, then $x=-3$

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

Remainder $=f(-3)$

Now,
$f(-3)=(-3)^{5}+3(-3)^{4}-(-3)^{3}-3(-3)^{2}+5(-3)+15$
$=-243+3 \times 81-(-27)-3 \times 9+5(-3)+15$
$=-243+243+27-27-15+15$
$=0$

Therefore, $g(x)$ is a factor of $f(x)$.
Question 4: $f(x)=x^{3}-6 x^{2}-19 x+84, g(x)=x-7$

Solution:

If $g(x)$ is a factor of $f(x)$, then the remainder will be zero that is $g(x)=0$.
$g(x)=x-7=0$, then $x=7$
Remainder $=f(7)$
Now,
$f(7)=(7)^{3}-6(7)^{2}-19 \times 7+84$
$=343-294-133+84$
$=343+84-294-133$
$=0$
Therefore, $g(x)$ is a factor of $f(x)$.
Question 5: $f(x)=3 x^{3}+x^{2}-20 x+12, g(x)=3 x-2$

Solution:

If $g(x)$ is a factor of $f(x)$, then the remainder will be zero that is $g(x)=0$.
$g(x)=3 x-2=0$, then $x=2 / 3$
Remainder $=f(2 / 3)$
Now,
$f(2 / 3)=3(2 / 3)^{3}+(2 / 3)^{2}-20(2 / 3)+12$
$=3 \times 8 / 27+4 / 9-40 / 3+12$
$=8 / 9+4 / 9-40 / 3+12$
= 0/9
$=0$
Therefore, $g(x)$ is a factor of $f(x)$.
Question 6: $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}-9 \mathrm{x}^{2}+\mathrm{x}+12, \mathrm{~g}(\mathrm{x})=3-2 \mathrm{x}$
Solution:
If $g(x)$ is a factor of $f(x)$, then the remainder will be zero that is $g(x)=0$.
$g(x)=3-2 x=0$, then $x=3 / 2$
Remainder $=f(3 / 2)$
Now,
$f(3 / 2)=2(3 / 2)^{3}-9(3 / 2)^{2}+(3 / 2)+12$

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

$=2 \times 27 / 8-9 \times 9 / 4+3 / 2+12$
$=27 / 4-81 / 4+3 / 2+12$
$=0 / 4$
$=0$
Therefore, $g(x)$ is a factor of $f(x)$.
Question 7: $f(x)=x^{3}-6 x^{2}+11 x-6, g(x)=x^{2}-3 x+2$
Solution:
If $g(x)$ is a factor of $f(x)$, then the remainder will be zero that is $g(x)=0$.
$g(x)=0$
or $x^{2}-3 x+2=0$
$x^{2}-x-2 x+2=0$
$x(x-1)-2(x-1)=0$
$(x-1)(x-2)=0$
Therefore $x=1$ or $x=2$
Now,
$f(1)=(1)^{3}-6(1)^{2}+11(1)-6=1-6+11-6=12-12=0$
$f(2)=(2)^{3}-6(2)^{2}+11(2)-6=8-24+22-6=30-30=0$
$\Rightarrow f(1)=0$ and $f(2)=0$
Which implies $g(x)$ is factor of $f(x)$.
Question 8: Show that $(x-2),(x+3)$ and $(x-4)$ are factors of $x^{3}-3 x^{2}-10 x+24$. Solution:

Let $f(x)=x^{3}-3 x^{2}-10 x+24$
If $x-2=0$, then $x=2$,
If $x+3=0$ then $x=-3$,
and If $x-4=0$ then $x=4$
Now,
$f(2)=(2)^{3}-3(2)^{2}-10 \times 2+24=8-12-20+24=32-32=0$
$f(-3)=(-3)^{3}-3(-3)^{2}-10(-3)+24=-27-27+30+24=-54+54=0$
$f(4)=(4)^{3}-3(4)^{2}-10 \times 4+24=64-48-40+24=88-88=0$

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

$f(2)=0$
$f(-3)=0$
$f(4)=0$
Hence $(x-2),(x+3)$ and $(x-4)$ are the factors of $f(x)$
Question 9: Show that $(x+4),(x-3)$ and $(x-7)$ are factors of $x^{3}-6 x^{2}-19 x+84$.

Solution:

Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-6 \mathrm{x}^{2}-19 \mathrm{x}+84$
If $x+4=0$, then $x=-4$
If $x-3=0$, then $x=3$
and if $x-7=0$, then $x=7$

Now,
$f(-4)=(-4)^{3}-6(-4)^{2}-19(-4)+84=-64-96+76+84=160-160=0$
$f(-4)=0$
$f(3)=(3)^{3}-6(3)^{2}-19 \times 3+84=27-54-57+84=111-111=0$
$f(3)=0$
$f(7)=(7)^{3}-6(7)^{2}-19 \times 7+84=343-294-133+84=427-427=0$
$f(7)=0$
Hence $(x+4),(x-3),(x-7)$ are the factors of $f(x)$.

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

Exercise 6.5

Using factor theorem, factorize each of the following polynomials:
Question 1: $x^{3}+6 x^{2}+11 x+6$
Solution:
Let $f(x)=x^{3}+6 x^{2}+11 x+6$
Step 1: Find the factors of constant term

Here constant term $=6$

Factors of 6 are $\pm 1, \pm 2, \pm 3, \pm 6$

Step 2: Find the factors of $f(x)$
Let $\mathrm{x}+1=0$
$\Rightarrow>x=-1$

Put the value of x in $f(x)$
$f(-1)=(-1)^{3}+6(-1)^{2}+11(-1)+6$
$=-1+6-11+6$
$=12-12$
$=0$
So, $(x+1)$ is the factor of $f(x)$
Let $\mathrm{x}+2=0$
$\Rightarrow x=-2$

Put the value of x in $f(x)$
$f(-2)=(-2)^{3}+6(-2)^{2}+11(-2)+6=-8+24-22+6=0$
So, $(x+2)$ is the factor of $f(x)$
Let $\mathrm{x}+3=0$

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

$\Rightarrow x=-3$

Put the value of x in $f(x)$
$f(-3)=(-3)^{3}+6(-3)^{2}+11(-3)+6=-27+54-33+6=0$
So, $(x+3)$ is the factor of $f(x)$
Hence, $f(x)=(x+1)(x+2)(x+3)$
Question 2: $x^{3}+2 x^{2}-x-2$
Solution:
Let $f(x)=x^{3}+2 x^{2}-x-2$
Constant term $=-2$
Factors of -2 are $\pm 1, \pm 2$
Let $\mathrm{x}-1=0$
=> $x=1$
Put the value of x in $f(x)$
$f(1)=(1)^{3}+2(1)^{2}-1-2=1+2-1-2=0$
So, $(x-1)$ is factor of $f(x)$
Let $\mathrm{x}+1=0$
$\Rightarrow>x=-1$

Put the value of x in $f(x)$
$f(-1)=(-1)^{3}+2(-1)^{2}-1-2=-1+2+1-2=0$
$(x+1)$ is a factor of $f(x)$
Let $\mathrm{x}+2=0$
$\Rightarrow x=-2$
Put the value of x in $f(x)$

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

$f(-2)=(-2)^{3}+2(-2)^{2}-(-2)-2=-8+8+2-2=0$
$(x+2)$ is a factor of $f(x)$
Let $\mathrm{x}-2=0$
$\Rightarrow x=2$

Put the value of x in $f(x)$
$f(2)=(2)^{3}+2(2)^{2}-2-2=8+8-2-2=12 \neq 0$
$(x-2)$ is not a factor of $f(x)$
Hence $f(x)=(x+1)(x-1)(x+2)$
Question 3: $x^{3}-6 x^{2}+3 x+10$

Solution:

Let $f(x)=x^{3}-6 x^{2}+3 x+10$
Constant term = 10
Factors of 10 are $\pm 1, \pm 2, \pm 5, \pm 10$

Let $\mathrm{x}+1=0$ or $\mathrm{x}=-1$
$f(-1)=(-1)^{3}-6(-1)^{2}+3(-1)+10=10-10=0$
$f(-1)=0$
Let $\mathrm{x}+2=0$ or $\mathrm{x}=-2$
$f(-2)=(-2)^{3}-6(-2)^{2}+3(-2)+10=-8-24-6+10=-28$
$\mathrm{f}(-2) \neq 0$
Let $\mathrm{x}-2=0$ or $\mathrm{x}=2$
$f(2)=(2)^{3}-6(2)^{2}+3(2)+10=8-24+6+10=0$
$f(2)=0$

Let $\mathrm{x}-5=0$ or $\mathrm{x}=5$
$f(5)=(5)^{3}-6(5)^{2}+3(5)+10=125-150+15+10=0$
$f(5)=0$
Therefore, $(x+1),(x-2)$ and $(x-5)$ are factors of $f(x)$
Hence $f(x)=(x+1)(x-2)(x-5)$

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

Question 4: $x^{4}-7 x^{3}+9 x^{2}+7 x-10$

Solution:

Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}-7 \mathrm{x}^{3}+9 \mathrm{x}^{2}+7 \mathrm{x}-10$
Constant term $=-10$
Factors of -10 are $\pm 1, \pm 2, \pm 5, \pm 10$
Let $\mathrm{x}-1=0$ or $\mathrm{x}=1$
$f(1)=(1)^{4}-7(1)^{3}+9(1)^{2}+7(1)-10=1-7+9+7-10=0$
$f(1)=0$

Let $\mathrm{x}+1=0$ or $\mathrm{x}=-1$
$f(-1)=(-1)^{4}-7(-1)^{3}+9(-1)^{2}+7(-1)-10=1+7+9-7-10=0$
$f(-1)=0$
Let $\mathrm{x}-2=0$ or $\mathrm{x}=2$
$f(2)=(2)^{4}-7(2)^{3}+9(2)^{2}+7(2)-10=16-56+36+14-10=0$
$f(2)=0$

Let $\mathrm{x}-5=0$ or $\mathrm{x}=5$
$f(5)=(5)^{4}-7(5)^{3}+9(5)^{2}+7(5)-10=625-875+225+35-10=0$
$f(5)=0$
Therefore, $(x-1),(x+1),(x-2)$ and $(x-5)$ are factors of $f(x)$
Hence $f(x)=(x-1)(x+1)(x-2)(x-5)$
Question 5: $x^{4}-2 x^{3}-7 x^{2}+8 x+12$
Solution:
$f(x)=x^{4}-2 x^{3}-7 x^{2}+8 x+12$
Constant term $=12$
Factors of 12 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$
Let $\mathrm{x}-1=0$ or $\mathrm{x}=1$
$f(1)=(1)^{4}-2(1)^{3}-7(1)^{2}+8(1)+12=1-2-7+8+12=12$
$f(1) \neq 0$

Let $\mathrm{x}+1=0$ or $\mathrm{x}=-1$
$f(-1)=(-1)^{4}-2(-1)^{3}-7(-1)^{2}+8(-1)+12=1+2-7-8+12=0$
$f(-1)=0$

Let $\mathrm{x}+2=0$ or $\mathrm{x}=-2$
$f(-2)=(-2)^{4}-2(-2)^{3}-7(-2)^{2}+8(-2)+12=16+16-28-16+12=0$
$f(-2)=0$
Let $\mathrm{x}-2=0$ or $\mathrm{x}=2$
$f(2)=(2)^{4}-2(2)^{3}-7(2)^{2}+8(2)+12=16-16-28+16+12=0$
$f(2)=0$
Let $\mathrm{x}-3=0$ or $\mathrm{x}=3$
$f(3)=(3)^{4}-2(3)^{3}-7(3)^{2}+8(3)+12=0$
$f(3)=0$
Therefore, $(x+1),(x+2),(x-2)$ and $(x-3)$ are factors of $f(x)$
Hence $f(x)=(x+1)(x+2)(x-2)(x-3)$
Question 6: $\mathrm{x}^{4}+10 \mathrm{x}^{3}+35 \mathrm{x}^{2}+50 \mathrm{x}+24$

Solution:

Let $f(x)=x^{4}+10 x^{3}+35 x^{2}+50 x+24$
Constant term $=24$
Factors of 24 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$
Let $\mathrm{x}+1=0$ or $\mathrm{x}=-1$
$f(-1)=(-1)^{4}+10(-1)^{3}+35(-1)^{2}+50(-1)+24=1-10+35-50+24=0$
$f(1)=0$
$(x+1)$ is a factor of $f(x)$
Likewise, $(x+2),(x+3),(x+4)$ are also the factors of $f(x)$
Hence $f(x)=(x+1)(x+2)(x+3)(x+4)$
Question 7: $2 x^{4}-7 x^{3}-13 x^{2}+63 x-45$
Solution:
Let $f(x)=2 x^{4}-7 x^{3}-13 x^{2}+63 x-45$
Constant term $=-45$
Factors of -45 are $\pm 1, \pm 3, \pm 5, \pm 9, \pm 15, \pm 45$
Here coefficient of $x^{\wedge} 4$ is 2 . So possible rational roots of $f(x)$ are
$\pm 1, \pm 3, \pm 5, \pm 9, \pm 15, \pm 45, \pm 1 / 2, \pm 3 / 2, \pm 5 / 2, \pm 9 / 2, \pm 15 / 2, \pm 45 / 2$
Let $\mathrm{x}-1=0$ or $\mathrm{x}=1$
$f(1)=2(1)^{4}-7(1)^{3}-13(1)^{2}+63(1)-45=2-7-13+63-45=0$
$f(1)=0$

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

$f(x)$ can be written as,
$f(x)=(x-1)\left(2 x^{3}-5 x^{2}-18 x+45\right)$
or $f(x)=(x-1) g(x)$
Let $\mathrm{x}-3=0$ or $\mathrm{x}=3$
$f(3)=2(3)^{4}-7(3)^{3}-13(3)^{2}+63(3)-45==162-189-117+189-45=0$
$f(3)=0$
Now, we are available with 2 factors of $f(x),(x-1)$ and $(x-3)$
Here $g(x)=2 x^{2}(x-3)+x(x-3)-15(x-3)$
Taking ($x-3$) as common
$=(x-3)\left(2 x^{2}+x-15\right)$
$=(x-3)\left(2 x^{2}+6 x-5 x-15\right)$
$=(x-3)(2 x-5)(x+3)$
$=(x-3)(x+3)(2 x-5)$
From (1) and (2)
$f(x)=(x-1)(x-3)(x+3)(2 x-5)$

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

Exercise VSAQs

Question 1: Define zero or root of a polynomial
Solution:
zero or root, is a solution to the polynomial equation, $f(y)=0$.
It is that value of y that makes the polynomial equal to zero.

Question 2: If $x=1 / 2$ is a zero of the polynomial $f(x)=8 x^{\wedge} 3+a x^{\wedge} \mathbf{2}-4 x+2$, find the value of a.

Solution:

If $x=1 / 2$ is a zero of the polynomial $f(x)$, then $f(1 / 2)=0$
$8(1 / 2)^{\wedge} 3+a(1 / 2)^{\wedge} 2-4(1 / 2)+2=0$
$8 \times 1 / 8+a / 4-2+2=0$
$1+a / 4=0$
$a=-4$

Question 3: Write the remainder when the polynomial $f(x)=x^{\wedge} 3+x^{\wedge} \mathbf{2}-3 x+2$ is divided by $x+1$.

Solution:

Using factor theorem,
Put $x+1=0$ or $x=-1$
$f(-1)$ is the remainder.

Now,
$f(-1)=(-1)^{\wedge} 3+(-1)^{\wedge} 2-3(-1)+2$
$=-1+1+3+2$
$=5$
Therefore 5 is the remainder.

RD Sharma Solutions for Class 9 Maths Chapter 6 Factorization of Polynomials

Question 4: Find the remainder when $x^{\wedge} \mathbf{3}+4 x^{\wedge} \mathbf{2}+4 x-3$ if divided by x

Solution:

Using factor theorem,
Put $x=0$
$f(0)$ is the remainder.

Now,
$f(0)=0^{\wedge} 3+4(0)^{\wedge} 2+4 x 0-3=-3$
Therefore -3 is the remainder.

Question 5: If $x+1$ is a factor of $x^{\wedge} 3+a$, then write the value of a.
Solution:
Let $f(x)=x^{\wedge} 3+a$
If $x+1$ is a factor of $x^{\wedge} 3+a$ then $f(-1)=0$
$(-1)^{\wedge} 3+a=0$
$-1+a=0$
or $\mathrm{a}=1$

Question 6: If $f(x)=x^{\wedge} 4-2 x^{\wedge} 3+3 x^{\wedge} 2-a x-b$ when divided by $x-1$, the remainder is 6 , then find the value of $a+b$.

Solution:

From the statement, we have $f(1)=6$
$(1)^{\wedge} 4-2(1)^{\wedge} 3+3(1)^{\wedge} 2-a(1)-b=6$
$1-2+3-a-b=6$
$2-a-b=6$
$a+b=-4$

