

Exercise 8.1

Page No: 8.7

Question 1: Write the complement of each of the following angles: (i)20° (ii)35° (iii)90° (iv) 77° (v)30°

Solution:

(i) The sum of an angle and its complement = 90° Therefore, the complement of $20^{\circ} = 90^{\circ} - 20^{\circ} = 70^{\circ}$

(ii) The sum of an angle and its complement = 90° Therefore, the complement of $35^{\circ} = 90^{\circ} - 35^{\circ} = 55$

(iii) The sum of an angle and its complement = 90° Therefore, the complement of $90^{\circ} = 90^{\circ} - 90^{\circ} = 0^{\circ}$

(iv) The sum of an angle and its complement = 90° Therefore, the complement of $77^{\circ} = 90^{\circ} - 77^{\circ} = 13^{\circ}$

(v) The sum of an angle and its complement = 90° Therefore, the complement of $30^{\circ} = 90^{\circ} - 30^{\circ} = 60^{\circ}$

Question 2 : Write the supplement of each of the following angles:

(i) 54⁰ (ii) 132⁰ (iii) 138⁰

Solution:

(i) The sum of an angle and its supplement = 180° . Therefore supplement of angle $54^{\circ} = 180^{\circ} - 54^{\circ} = 126^{\circ}$

(ii) The sum of an angle and its supplement = 180° . Therefore supplement of angle $132^{\circ} = 180^{\circ} - 132^{\circ} = 48^{\circ}$

(iii) The sum of an angle and its supplement = 180° . Therefore supplement of angle $138^{\circ} = 180^{\circ} - 138^{\circ} = 42^{\circ}$

Question 3: If an angle is 28⁰ less than its complement, find its measure? Solution:

Let the measure of any angle is ' a ' degrees Thus, its complement will be $(90 - a)^0$ So, the required angle = Complement of a - 28a = (90 - a) - 282a = 62a = 31Hence, the angle measured is 31^0 .

Question 4 : If an angle is 30° more than one half of its complement, find the measure of the angle? Solution:

Let an angle measured by ' a ' in degrees Thus, its complement will be $(90 - a)^{0}$

```
Required Angle = 30^{\circ} + complement/2
```

 $a = 30^{\circ} + (90 - a)^{\circ} / 2$

 $a + a/2 = 30^{\circ} + 45^{\circ}$

3a/2 = 75°

Therefore, the measure of required angle is 50°.

Question 5 : Two supplementary angles are in the ratio 4:5. Find the angles? Solution:

Two supplementary angles are in the ratio 4:5. Let us say, the angles are 4a and 5a (in degrees) Since angle are supplementary angles; Which implies, $4a + 5a = 180^{\circ}$ $9a = 180^{\circ}$ $a = 20^{\circ}$

Therefore, $4a = 4 (20) = 80^{\circ}$ and $5(a) = 5 (20) = 100^{\circ}$

Hence, required angles are 80° and 100°.

Question 6 : Two supplementary angles differ by 48°. Find the angles? Solution: Given: Two supplementary angles differ by 48°. Consider a° be one angle then its supplementary angle will be equal to $(180 - a)^{\circ}$ According to the question; (180 - a) - x = 48(180 - 48) = 2a132 = 2a132/2 = aOr $a = 66^{\circ}$

Therefore, $180 - a = 114^{\circ}$ Hence, the two angles are 66° and 114° .

Question 7: An angle is equal to 8 times its complement. Determine its measure?

Solution: Given: Required angle = 8 times of its complement Consider a⁰ be one angle then its complementary angle will be equal to (90 – a)⁰

According to the question;

a = 8 times of its complement a = 8 (90 - a) a = 720 - 8a a + 8a = 720 9a = 720 a = 80 Therefore, the required angle is 80° .

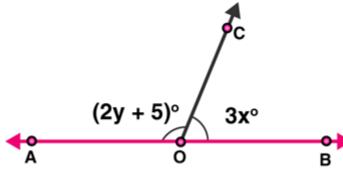
Exercise 8.2

```
Page No: 8.13
```

Question 1: In the below Fig. OA and OB are opposite rays:

(i) If x = 25[°], what is the value of y?

(ii) If y = 35°, what is the value of x?

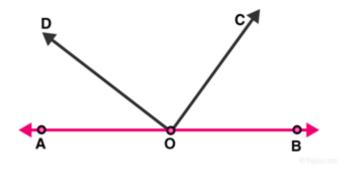


Solution:

(i) Given: x = 25From figure: $\angle AOC$ and $\angle BOC$ form a linear pair Which implies, $\angle AOC + \angle BOC = 180^{\circ}$ From the figure, $\angle AOC = 2y + 5$ and $\angle BOC = 3x$ $\angle AOC + \angle BOC = 180^{\circ}$ (2y + 5) + 3x = 180 (2y + 5) + 3 (25) = 180 2y + 5 + 75 = 180 2y + 80 = 180 2y = 100 y = 100/2 = 50Therefore, $y = 50^{\circ}$. (ii) Given: $y = 35^{\circ}$

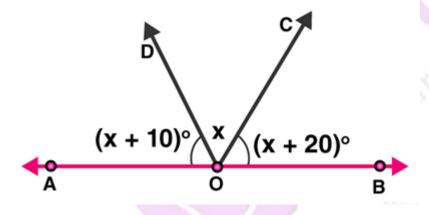
From figure: $\angle AOC + \angle BOC = 180^{\circ}$ (Linear pair angles) (2y + 5) + 3x = 180 (2(35) + 5) + 3x = 180 75 + 3x = 180 3x = 105 x = 35 Therefore, x = 35⁰

Question 2: In the below figure, write all pairs of adjacent angles and all the linear pairs.



Solution: From figure, pairs of adjacent angles are : $(\angle AOC, \angle COB)$; $(\angle AOD, \angle BOD)$; $(\angle AOD, \angle COD)$; $(\angle BOC, \angle COD)$

And Linear pair of angles are ($\angle AOD$, $\angle BOD$) and ($\angle AOC$, $\angle BOC$). [As $\angle AOD + \angle BOD = 180^{\circ}$ and $\angle AOC + \angle BOC = 180^{\circ}$.]



Solution:

From figure, $\angle AOD$ and $\angle BOD$ form a linear pair, Therefore, $\angle AOD + \angle BOD = 180^{\circ}$

Also, $\angle AOD + \angle BOC + \angle COD = 180^{\circ}$

Given: $\angle AOD = (x+10)^{\circ}$, $\angle COD = x^{\circ}$ and $\angle BOC = (x + 20)^{\circ}$

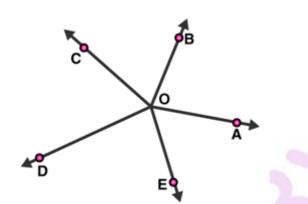
(x + 10) + x + (x + 20) = 180 3x + 30 = 180 3x = 180 - 30

x = 150/3 x = 50⁰

Now, ∠AOD=(x+10) =50 + 10 = 60 ∠COD = x = 50 ∠BOC = (x+20) = 50 + 20 = 70

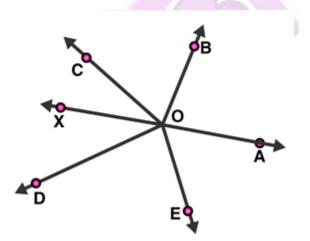
Hence, $\angle AOD=60^{\circ}$, $\angle COD=50^{\circ}$ and $\angle BOC=70^{\circ}$

Question 4: In figure, rays OA, OB, OC, OD and OE have the common end point 0. Show that $\angle AOB + \angle BOC + \angle COD + \angle DOE + \angle EOA = 360^{\circ}$.



Solution:

Given: Rays OA, OB, OC, OD and OE have the common endpoint O. Draw an opposite ray OX to ray OA, which make a straight line AX.



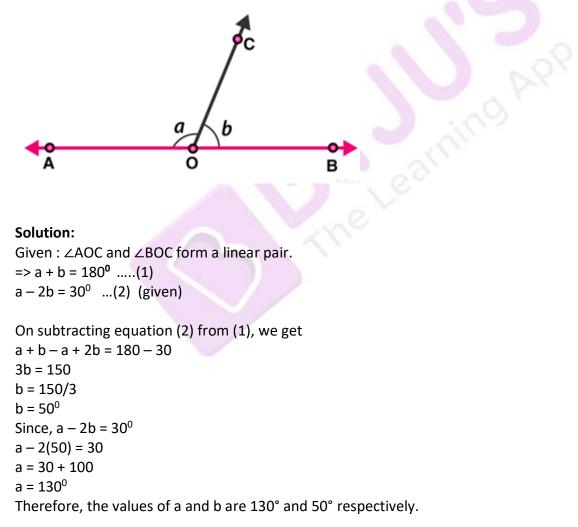
From figure: $\angle AOB$ and $\angle BOX$ are linear pair angles, therefore, $\angle AOB + \angle BOX = 180^{\circ}$ Or, $\angle AOB + \angle BOC + \angle COX = 180^{\circ}$ ———(1)

Also, $\angle AOE$ and $\angle EOX$ are linear pair angles, therefore, $\angle AOE + \angle EOX = 180^{\circ}$ Or, $\angle AOE + \angle DOE + \angle DOX = 180^{\circ}$ ——(2)

By adding equations, (1) and (2), we get; $\angle AOB + \angle BOC + \angle COX + \angle AOE + \angle DOE + \angle DOX = 180^{\circ} + 180^{\circ}$ $\angle AOB + \angle BOC + \angle COD + \angle DOE + \angle EOA = 360^{\circ}$

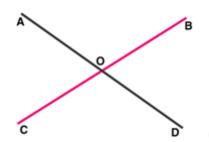
Hence Proved.

Question 5 : In figure, $\angle AOC$ and $\angle BOC$ form a linear pair. If a – 2b = 30°, find a and b?



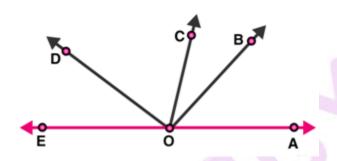
Question 6: How many pairs of adjacent angles are formed when two lines intersect at a point? Solution: Four pairs of adjacent angles are formed when two lines intersect each other at a single point.

For example, Let two lines AB and CD intersect at point O.



The 4 pair of adjacent angles are : $(\angle AOD, \angle DOB), (\angle DOB, \angle BOC), (\angle COA, \angle AOD)$ and $(\angle BOC, \angle COA)$.

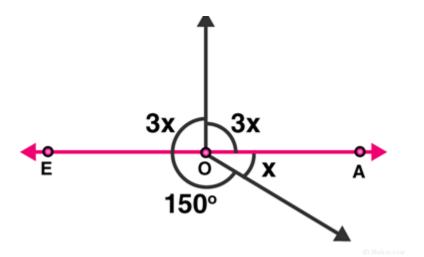
Question 7: How many pairs of adjacent angles, in all, can you name in figure given?



Solution: Number of Pairs of adjacent angles, from the figure, are :

 \angle EOC and \angle DOC \angle EOD and \angle DOB \angle DOC and \angle COB \angle EOD and \angle DOA \angle DOC and \angle COA \angle BOC and \angle BOA \angle BOA and \angle BOA \angle BOA and \angle BOD \angle BOA and \angle BOE \angle EOC and \angle COA \angle EOC and \angle COB Hence, there are 10 pairs of adjacent angles.

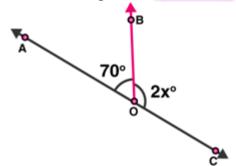
Question 8: In figure, determine the value of x.



The sum of all the angles around a point O is equal to 360°.

Therefore, $3x + 3x + 150 + x = 360^{\circ}$ $7x = 360^{\circ} - 150^{\circ}$ $7x = 210^{\circ}$ x = 210/7 $x = 30^{\circ}$ Hence, the value of x is 30°.

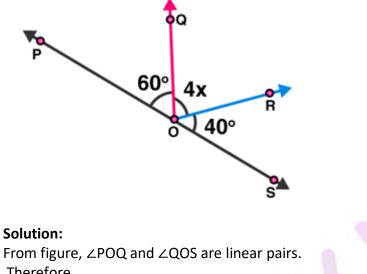
Question 9: In figure, AOC is a line, find x.



Solution:

From the figure, $\angle AOB$ and $\angle BOC$ are linear pairs, $\angle AOB + \angle BOC = 180^{\circ}$ 70 + 2x = 180 2x = 180 - 70 2x = 110 x = 110/2 x = 55 Therefore, the value of x is 55⁰.

Question 10: In figure, POS is a line, find x.



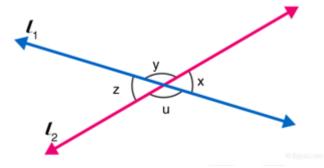
Solution:

Therefore, $\angle POQ + \angle QOS = 180^{\circ}$ $\angle POQ + \angle QOR + \angle SOR = 180^{\circ}$ $60^0 + 4x + 40^0 = 180^0$ $4x = 180^{\circ} - 100^{\circ}$ $4x = 80^{0}$ $x = 20^{0}$ Hence, the value of x is 20° .

Exercise 8.3

Page No: 8.19

Question 1: In figure, lines l_1 , and l_2 intersect at O, forming angles as shown in the figure. If x = 45. Find the values of y, z and u.



Solution:

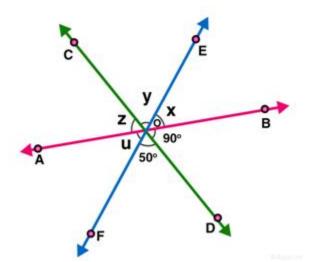
Given: $x = 45^{\circ}$

Since vertically opposite angles are equal, therefore $z = x = 45^{\circ}$

```
z and u are angles that are a linear pair, therefore, z + u = 180^{\circ}
Solve, z + u = 180^{\circ}, for u
u = 180^{\circ} - z
u = 180^{\circ} - 45
u = 135^{\circ}
Again, x and y angles are a linear pair.
x + y = 180^{\circ}
y = 180^{\circ} - x
y = 180^{\circ} - 45^{\circ}
y = 135^{\circ}
```

Hence, remaining angles are $y = 135^{\circ}$, $u = 135^{\circ}$ and $z = 45^{\circ}$.

Question 2 : In figure, three coplanar lines intersect at a point O, forming angles as shown in the figure. Find the values of x, y, z and u.



 $(\angle BOD, z)$; $(\angle DOF, y)$ are pair of vertically opposite angles.

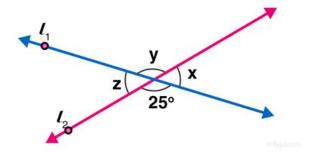
So, $\angle BOD = z = 90^{\circ}$

 \angle DOF = y = 50⁰ [Vertically opposite angles are equal.]

Now, x + y + z = 180 [Linear pair] [AB is a straight line]

x + y + z = 180 x + 50 + 90 = 180 x = 180 - 140 x = 40 Hence values of x, y, z and u are 40° , 50° , 90° and 40° respectively.

Question 3 : In figure, find the values of x, y and z.

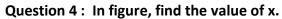


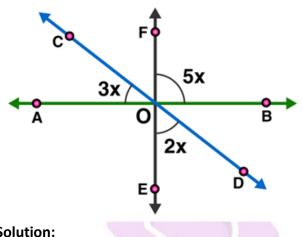
From figure,

y = 25⁰ [Vertically opposite angles are equal] Now $\angle x + \angle y = 180^{\circ}$ [Linear pair of angles]

x = 180 - 25 x = 155

Also, z = x = 155 [Vertically opposite angles] Answer: $y = 25^{\circ}$ and $z = 155^{\circ}$





Solution:

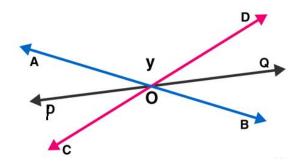
 $\angle AOE = \angle BOF = 5x$ [Vertically opposite angles]

 $\angle COA + \angle AOE + \angle EOD = 180^{\circ}$ [Linear pair]

3x + 5x + 2x = 18010x = 180 x = 180/10x = 18

The value of $x = 18^{\circ}$

Question 5 : Prove that bisectors of a pair of vertically opposite angles are in the same straight line.



Lines AB and CD intersect at point O, such that

 $\angle AOC = \angle BOD$ (vertically angles) ...(1)

Also OP is the bisector of AOC and OQ is the bisector of BOD

To Prove: POQ is a straight line.

OP is the bisector of $\angle AOC$: $\angle AOP = \angle COP \dots (2)$ OQ is the bisector of $\angle BOD$: $\angle BOQ = \angle QOD \dots (3)$

Now, Sum of the angles around a point is 360°.

 $\angle AOC + \angle BOD + \angle AOP + \angle COP + \angle BOQ + \angle QOD = 360^{\circ}$

 $\angle BOQ + \angle QOD + \angle DOA + \angle AOP + \angle POC + \angle COB = 360^{\circ}$

 $2 \angle QOD + 2 \angle DOA + 2 \angle AOP = 360^{\circ}$ (Using (1), (2) and (3))

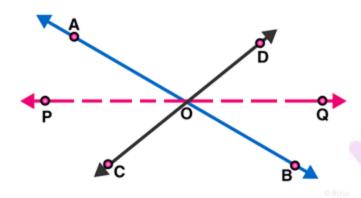
 $\angle QOD + \angle DOA + \angle AOP = 180^{\circ}$ POQ = 180°

Which shows that, the bisectors of pair of vertically opposite angles are on the same straight line.

Hence Proved.

Question 6 : If two straight lines intersect each other, prove that the ray opposite to the bisector of one of the angles thus formed bisects the vertically opposite angle.

Solution: Given AB and CD are straight lines which intersect at O. OP is the bisector of \angle AOC. To Prove : OQ is the bisector of \angle BOD Proof :



AB, CD and PQ are straight lines which intersect in O.

Vertically opposite angles: $\angle AOP = \angle BOQ$

Vertically opposite angles: \angle COP = \angle DOQ

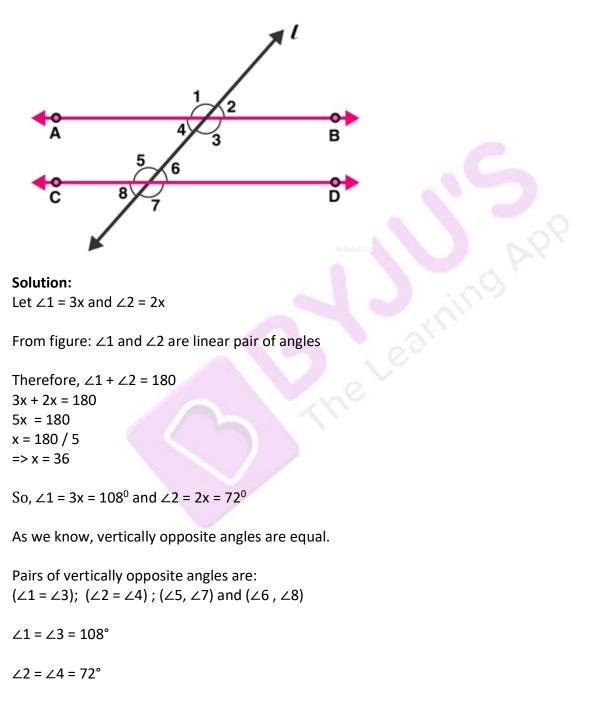
OP is the bisector of \angle AOC : \angle AOP = \angle COP

Therefore, $\angle BOQ = \angle DOQ$ Hence, OQ is the bisector of $\angle BOD$.

Exercise 8.4

Page No: 8.38

Question 1: In figure, AB, CD and $\angle 1$ and $\angle 2$ are in the ratio 3 : 2. Determine all angles from 1 to 8.

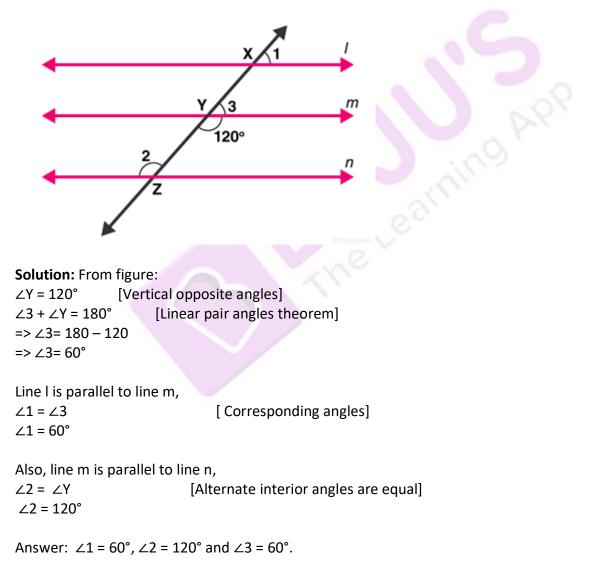


- ∠5 = ∠7
- ∠6 = ∠8

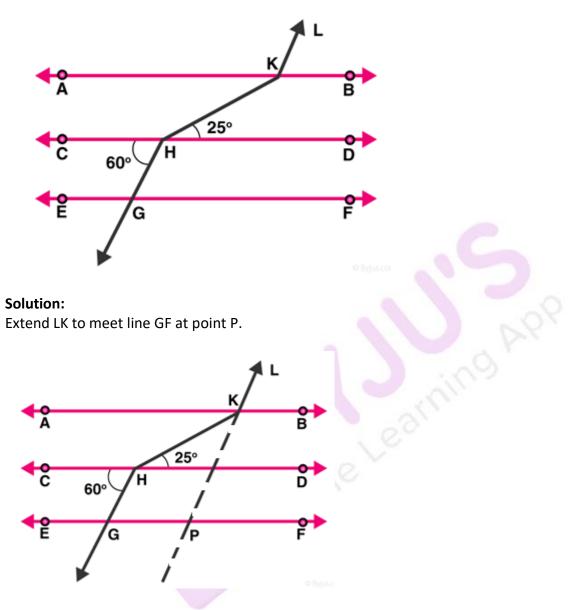
We also know, if a transversal intersects any parallel lines, then the corresponding angles are equal

Answer: ∠1 = 108°, ∠2 = 72°, ∠3 = 108°, ∠4 = 72°, ∠5 = 108°, ∠6 = 72°, ∠7 = 108° and ∠8 = 72°

Question 2: In figure, I, m and n are parallel lines intersected by transversal p at X, Y and Z respectively. Find $\angle 1$, $\angle 2$ and $\angle 3$.



Question 3: In figure, AB || CD || EF and GH || KL. Find ∠HKL.



From figure, CD || GF, so, alternate angles are equal.

∠CHG =∠HGP = 60°

 \angle HGP = \angle KPF = 60° [Corresponding angles of parallel lines are equal]

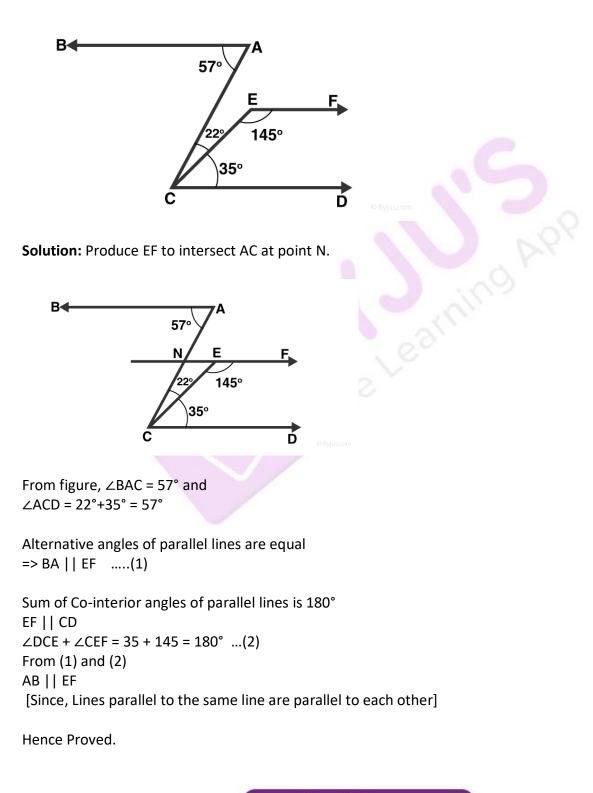
Hence, ∠KPG =180 – 60 = 120°

 $\Rightarrow \angle GPK = \angle AKL = 120^{\circ}$ [Corresponding angles of parallel lines are equal]

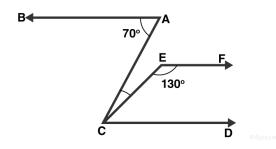
 $\angle AKH = \angle KHD = 25^{\circ}$ [alternate angles of parallel lines]

Therefore, \angle HKL = \angle AKH + \angle AKL = 25 + 120 = 145°

Question 4: In figure, show that AB || EF.



Question 5 : In figure, if AB || CD and CD || EF, find ∠ACE.



Solution:

Given: CD || EF

 \angle FEC + \angle ECD = 180° [Sum of co-interior angles is supplementary to each other]

=>∠ECD = 180° - 130° = 50°

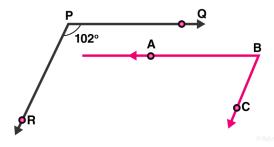
Also, BA || CD

 $\Rightarrow \angle BAC = \angle ACD = 70^{\circ}$ [Alternative angles of parallel lines are equal]

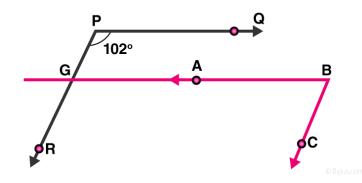
But, ∠ACE + ∠ECD =70°

=> ∠ACE = 70° — 50° = 20°

Question 6: In figure, PQ || AB and PR || BC. If ∠QPR = 102°, determine ∠ABC. Give reasons.



Solution: Extend line AB to meet line PR at point G.



Given: PQ || AB,

 \angle QPR = \angle BGR =102° [Corresponding angles of parallel lines are equal]

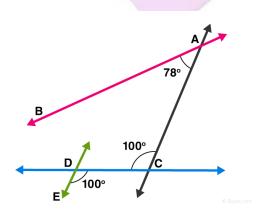
And PR || BC, ∠RGB+ ∠CBG =180° [Corresponding angles are supplementary]

∠CBG = 180° - 102° = 78°

Since, \angle CBG = \angle ABC

=>∠ABC = 78°

Question 7 : In figure, state which lines are parallel and why?



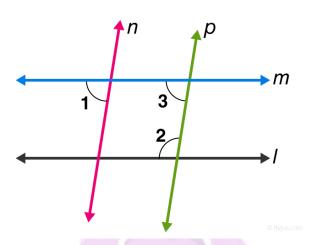
We know, If a transversal intersects two lines such that a pair of alternate interior angles are equal, then the two lines are parallel

From figure: => \angle EDC = \angle DCA = 100°

Lines DE and AC are intersected by a transversal DC such that the pair of alternate angles are equal.

So, DE || AC

Question 8: In figure, if |||m, n|| p and $\angle 1 = 85^{\circ}$, find $\angle 2$.



Solution:

Given: $\angle 1 = 85^{\circ}$ As we know, when a line cuts the parallel lines, the pair of alternate interior angles are equal.

=>∠1 = ∠3 = 85°

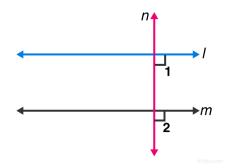
Again, co-interior angles are supplementary, so $\angle 2 + \angle 3 = 180^{\circ}$ $\angle 2 + 55^{\circ} = 180^{\circ}$ $\angle 2 = 180^{\circ} - 85^{\circ}$ $\angle 2 = 95^{\circ}$

Question 9 : If two straight lines are perpendicular to the same line, prove that they are parallel to each other.

Solution:

Let lines I and m are perpendicular to n, then

∠1= ∠2=90°



Since, lines I and m cut by a transversal line n and the corresponding angles are equal, which shows that, line I is parallel to line m.

Question 10: Prove that if the two arms of an angle are perpendicular to the two arms of another angle, then the angles are either equal or supplementary.

Solution: Let the angles be ∠ACB and ∠ABD

Let AC perpendicular to AB, and CD is perpendicular to BD.

To Prove : $\angle ACD = \angle ABD \ OR \angle ACD + \angle ABD = 180^{\circ}$

Proof : In a quadrilateral, $\angle A + \angle C + \angle D + \angle B = 360^{\circ}$ [Sum of angles of quadrilateral is 360°]

=> 180° + ∠C + ∠B = 360°

=>∠C + ∠B = 360° −180°

Therefore, $\angle ACD + \angle ABD = 180^{\circ}$ And $\angle ABD = \angle ACD = 90^{\circ}$

Hence, angles are equal as well as supplementary.

Exercise VSAQs

Page No: 8.42

Question 1: Define complementary angles.

Solution: When the sum of two angles is 90 degrees, then the angles are known as complementary angles.

Question 2: Define supplementary angles.

Solution: When the sum of two angles is 180°, then the angles are known as supplementary angles.

Question 3: Define adjacent angles.

Solution: Two angles are Adjacent when they have a common side and a common vertex.

Question 4: The complement of an acute angle is ____

Solution: An acute angle

Question 5: The supplement of an acute angle is _____

Solution: An obtuse angle

Question 6: The supplement of a right angle is _

Solution: A right angle