

EXERCISE 7.1

P&GE NO: 7.7

1. Identify the monomials, binomials, trinomials and quadrinomials from the following expressions:

- (i) a²
- (ii) $a^2 b^2$
- (iii) $x^3 + y^3 + z^3$
- (iv) $x^3 + y^3 + z^3 + 3xyz$
- (v) 7 + 5
- (vi) abc+1
- (vii) 3x 2 + 5
- (viii) 2x 3y + 4
- (ix) x y + y z + z x
- (x) $ax^3 + bx^2 + cx + d$

- (i) Given a²
- a² is a monomial expression because it contains only one term
- (ii) Given $a^2 b^2$
- a² b² is a binomial expression because it contains two terms
- (iii) Given $x^3 + y^3 + z^3$
- $x^3 + y^3 + z^3$ is a trinomial because it contains three terms
- (iv) Given $x^3 + y^3 + z^3 + 3xyz$
- $x^3 + y^3 + z^3 + 3xyz$ is a quadrinomial expression because it contains four terms
- (v) Given 7 + 5
- 7 + 5 is a monomial expression because it contains only one term
- (vi) Given a b c + 1
- a b c + 1 is a binomial expression because it contains two terms
- (vii) Given 3x 2 + 5
- 3x 2 + 5 is a binomial expression because it contains two terms

(viii) Given
$$2x - 3y + 4$$

2x - 3y + 4 is a trinomial because it contains three terms

(ix) Given
$$xy + yz + zx$$

x y + y z + z x is a trinomial because it contains three terms

(x) Given
$$ax^3 + bx^2 + cx + d$$

 $ax^3 + bx^2 + cx + d$ is a quadrinomial expression because it contains four terms

2. Write all the terms of each of the following algebraic expressions:

- (i) 3x
- (ii) 2x 3
- (iii) $2x^2 7$
- (iv) $2x^2 + y^2 3xy + 4$

Solution:

(i) Given 3x

3x is the only term of the given algebraic expression.

(ii) Given
$$2x - 3$$

2x and -3 are the terms of the given algebraic expression.

(iii) Given
$$2x^2 - 7$$

 $2x^2$ and -7 are the terms of the given algebraic expression.

(iv) Given
$$2x^2 + y^2 - 3xy + 4$$

 $2x^2$, y^2 , -3xy and 4 are the terms of the given algebraic expression.

3. Identify the terms and also mention the numerical coefficients of those terms:

(i)
$$4xy$$
, $-5x^2y$, $-3yx$, $2xy^2$

- (i) Like terms 4xy, -3yx and Numerical coefficients 4, -3
- (ii) Like terms ($-7a^2bc$, $-3ca^2b$) and ($-4/3cba^2$) and their Numerical coefficients 7, -3, (-4/3)

Like terms are $(-5/2abc^2)$ and $(3/2 abc^2)$ and numerical coefficients are (-5/2) and (3/2)

4. Identify the like terms in the following algebraic expressions:

(i)
$$a^2 + b^2 - 2a^2 + c^2 + 4a$$

(ii)
$$3x + 4xy - 2yz + 52zy$$

(iii)
$$abc + ab^2c + 2acb^2 + 3c^2ab + b^2ac - 2a^2bc + 3cab^2$$

Solution:

(i) Given
$$a^2 + b^2 - 2a^2 + c^2 + 4a$$

The like terms in the given algebraic expressions are a^2 and $-2a^2$.

(ii) Given
$$3x + 4xy - 2yz + 52zy$$

The like terms in the given algebraic expressions are -2yz and 52zy.

(iii) Given
$$abc + ab^2c + 2acb^2 + 3c^2ab + b^2ac - 2a^2bc + 3cab^2$$

The like terms in the given algebraic expressions are ab²c, 2acb², b²ac and 3cab².

5. Write the coefficient of x in the following:

- (i) -12x
- (ii) -7xy
- (iii) xyz
- (iv) -7ax

Solution:

(i) Given -12x

The numerical coefficient of x is -12.

(ii) Given -7xy

The numerical coefficient of x is -7y.

(iii) Given xyz

The numerical coefficient of x is yz.

(iv) Given -7ax

The numerical coefficient of x is -7a.

6. Write the coefficient of x^2 in the following:

- (i) $-3x^2$
- (ii) $5x^2yz$
- (iii) 5/7x²z
- (iv) (-3/2) ax² + yx

Solution:

(i) Given $-3x^2$

The numerical coefficient of x^2 is -3.

(ii) Given $5x^2yz$

The numerical coefficient of x^2 is 5yz.

(iii) Given5/7x²z

The numerical coefficient of x^2 is 5/7z.

(iv) Given (-3/2) $ax^2 + yx$

The numerical coefficient of x^2 is -(3/2) a.

7. Write the coefficient of:

- (i) y in -3y
- (ii) a in 2ab
- (iii) z in -7xyz
- (iv) p in -3pqr
- (v) y^2 in $9xy^2z$
- (vi) x^3 in $x^3 + 1$
- (vii) x^2 in $-x^2$

Solution:

(i) Given -3y

The coefficient of y is -3.

(ii) Given 2ab

The coefficient of a is 2b.

(iii) Given -7xyz

The coefficient of z is -7xy.

(iv) Given -3pqr

The coefficient of p is -3qr.

(v) Given 9xy²z

The coefficient of y^2 is 9xz.

(vi) Given $x^3 + 1$

The coefficient of x^3 is 1.

(vii) Given - x²

The coefficient of x^2 is -1.

- 8. Write the numerical coefficient of each in the following:
- (i) xy
- (ii) -6yz
- (iii) 7abc
- (iv) $-2x^3y^2z$

Solution:

(i) Given xy

The numerical coefficient in the term xy is 1.

(ii) Given -6yz

The numerical coefficient in the term - 6yz is - 6.

(iii) Given 7abc

The numerical coefficient in the term 7abc is 7.

(iv) Given -2x³y²z

The numerical coefficient in the term $-2x^3y^2z$ is -2.

- 9. Write the numerical coefficient of each term in the following algebraic expressions:
- (i) $4x^2y (3/2)xy + 5/2 xy^2$
- (ii) $(-5/3)x^2y + (7/4)xyz + 3$

Solution:

(i) Given $4x^2y - (3/2)xy + 5/2xy^2$

Numerical coefficient of following algebraic expressions are given below

Term	Coefficient
4x²y	4
- (3/2) xy	-(3/2)
5/2 xy ²	(5/2)

(ii) Given
$$(-5/3)x^2y + (7/4)xyz + 3$$

Numerical coefficient of following algebraic expressions are given below

Term	Coefficient
$(-5/3)x^2y$	(-5/3)
(7/4)xyz	(7/4)
3	3

10. Write the constant term of each of the following algebraic expressions:

(i)
$$x^2y - xy^2 + 7xy - 3$$

(ii)
$$a^3 - 3a^2 + 7a + 5$$

Solution:

(i) Given
$$x^2y - xy^2 + 7xy - 3$$

The constant term in the given algebraic expressions is -3.

(ii) Given
$$a^3 - 3a^2 + 7a + 5$$

The constant term in the given algebraic expressions is 5.

11. Evaluate each of the following expressions for x = -2, y = -1, z = 3:

(i)
$$(x/y) + (y/z) + (z/x)$$

(ii)
$$x^2 + y^2 + z^2 - xy - yz - zx$$

Solution:

(i) Given
$$x = -2$$
, $y = -1$, $z = 3$

Consider
$$(x/y) + (y/z) + (z/x)$$

On substituting the given values we get,

$$= (-2/-1) + (-1/3) + (3/-2)$$

$$=(12-2-9)/6$$

$$= (1/6)$$

(ii) Given
$$x = -2$$
, $y = -1$, $z = 3$

Consider
$$x^2 + y^2 + z^2 - xy - yz - zx$$

On substituting the given values we get,

$$=(-2)^2+(-1)^2+3^2-(-2)(-1)-(-1)(3)-(3)(-2)$$

$$= 4 + 1 + 9 - 2 + 3 + 6$$

- = 23 2
- = 21

12. Evaluate each of the following algebraic expressions for x = 1, y = -1, z = 2, a = -2, b = 1, c = -2:

- (i) ax + by + cz
- (ii) $ax^2 + by^2 cz$
- (iii) axy + byz + cxy

Solution:

(i) Given
$$x = 1$$
, $y = -1$, $z = 2$, $a = -2$, $b = 1$, $c = -2$

Consider ax + by + cz

On substituting the given values

$$= (-2)(1) + (1)(-1) + (-2)(2)$$

$$= -2 - 1 - 4$$

= -7

(ii) Given
$$x = 1$$
, $y = -1$, $z = 2$, $a = -2$, $b = 1$, $c = 1$

-2 Consider
$$ax^2 + by^2 - cz$$

On substituting the given values

$$= (-2) \times 1^2 + 1 \times (-1)^2 - (-2) \times 2$$

$$= -2 + 1 - (-4)$$

- = 1 + 4
- = 9

(iii) Given
$$x = 1$$
, $y = -1$, $z = 2$, $a = -2$, $b = 1$, $c = 1$

-2 Consider axy + byz + cxy

$$= (-2) \times 1 \times -1 + 1 \times -1 \times 2 + (-2) \times 1 \times (-1)$$

- = 2 + (-2) + 2
- = 4 2
- = 2

EXERCISE 7.2

PAGE NO: 7.13

1. Add the following:

- (i) 3x and 7x
- (ii) -5xy and 9xy

Solution:

- (i) Given 3x and 7x3x + 7x = (3 + 7) x
- = 10x
- (ii) Given -5xy and 9xy

$$-5xy + 9xy = (-5 + 9) xy$$

=4xy

2. Simplify each of the following:

- (i) $7x^3y + 9yx^3$
- (ii) $12a^2b + 3ba^2$

Solution:

(i) Given $7x^3y + 9yx^3$

$$7x^3y + 9yx^3 = (7 + 9) x^3y$$

$$= 16x^3y$$

(ii) Given

$$12a^2b + 3ba^2 = (12 + 3)a^2b$$

 $= 15a^{2}b$

3. Add the following:

- (i) 7abc, -5abc, 9abc, -8abc
- (ii) $2x^2y$, $4x^2y$, $6x^2y$, - $5x^2y$

Solution:

(i) Given 7abc, -5abc, 9abc, -8abc

Consider 7abc + (-5abc) + (9abc) + (-8abc)

= 7abc - 5abc + 9abc - 8abc

=
$$(7-5+9-8)$$
 abc [by taking abc common]
= $(16-13)$ abc

= 3abc

(ii) Given
$$2x^2y$$
, $-4x^2y$, $6x^2y$, $-5x^2y$
 $2x^2y + (-4x^2y) + (6x^2y) + (-5x^2y)$
 $= 2x^2y - 4x^2y + 6x^2y - 5x^2y$
 $= (2-4+6-5) x^2y$ [by taking x^2 y common]
 $= (8-9) x^2y$
 $= -x^2y$

4. Add the following expressions:

(i)
$$x^3 - 2x^2y + 3xy^2 - y^3$$
, $2x^3 - 5xy^2 + 3x^2y - 4y^3$

(ii)
$$a^4 - 2a^3b + 3ab^3 + 4a^2b^2 + 3b^4$$
, $-2a^4 - 5ab^3 + 7a^3b - 6a^2b^2 + b^4$

Solution:

(i) Given
$$x^3 - 2x^2y + 3xy^2 - y^3$$
, $2x^3 - 5xy^2 + 3x^2y - 4y^3$
Collecting positive and negative like terms together, we get
= $x^3 + 2x^3 - 2x^2y + 3x^2y + 3xy^2 - 5xy^2 - y^3 - 4y^3$
= $3x^3 + x^2y - 2xy^2 - 5y^3$

(ii) Given
$$a^4 - 2a^3b + 3ab^3 + 4a^2b^2 + 3b^4$$
, $-2a^4 - 5ab^3 + 7a^3b - 6a^2b^2 + b^4$
= $a^4 - 2a^3b + 3ab^3 + 4a^2b^2 + 3b^4 - 2a^4 - 5ab^3 + 7a^3b - 6a^2b^2 + b^4$
Collecting positive and negative like terms together, we get
= $a^4 - 2a^4 - 2a^3b + 7a^3b + 3ab^3 - 5ab^3 + 4a^2b^2 - 6a^2b^2 + 3b^4 + b^4$
= $-a^4 + 5a^3b - 2ab^3 - 2a^2b^2 + 4b^4$

5. Add the following expressions:

(ii)
$$5x^3 + 7 + 6x - 5x^2$$
, $2x^2 - 8 - 9x$, $4x - 2x^2 + 3x + 3$, $3x + 3 - 9x - x^2$ and $x - x^2 - x^3 - 4$

$$= -2a - 5ab$$

(ii) Given
$$5x^3 + 7 + 6x - 5x^2$$
, $2x^2 - 8 - 9x$, $4x - 2x^2 + 3x^3$, $3x^3 - 9x - x^2$ and $x - x^2 - x^3 - 4 = (5x^3 + 7 + 6x - 5x^2) + (2x^2 - 8 - 9x) + (4x - 2x^2 + 3x^3) + (3x^3 - 9x - x^2) + (x - x^2 - x^3 - 4)$
Collecting positive and negative like terms together, we get $5x^3 + 3x^3 + 3x^3 - x^3 - 5x^2 + 2x^2 - 2x^2 - x^2 + 6x - 9x + 4x - 9x + x + 7 - 8 - 4$
= $10x^3 - 7x^2 - 7x - 5$

6. Add the following:

(i)
$$x - 3y - 2z$$

$$5x + 7y - 8z$$

$$3x - 2y + 5z$$

Solution:

(i) Given
$$x - 3y - 2z$$
, $5x + 7y - 8z$ and $3x - 2y + 5z$

$$= (x-3y-2z) + (5x + 7y - 8z) + (3x - 2y + 5z)$$

Collecting positive and negative like terms together, we get

$$= x + 5x + 3x - 3y + 7y - 2y - 2z - 8z + 5z$$

$$= 9x - 5y + 7y - 10z + 5z$$

$$=9x + 2y - 5z$$

(ii) Given
$$4ab - 5bc + 7ca$$
, $-3ab + 2bc - 3ca$ and $5ab - 3bc + 4ca$

$$= (4ab - 5bc + 7ca) + (-3ab + 2bc - 3ca) + (5ab - 3bc + 4ca)$$

Collecting positive and negative like terms together, we get

$$= 9ab - 3ab - 8bc + 2bc + 11ca - 3ca$$

7. Add $2x^2 - 3x + 1$ to the sum of $3x^2 - 2x$ and 3x + 7.

Given
$$2x^2 - 3x + 1$$
, $3x^2 - 2x$ and $3x + 7$
sum of $3x^2 - 2x$ and $3x + 7$
= $(3x^2 - 2x) + (3x + 7)$

$$=3x^{2}-2x+3x+7$$

$$=(3x^{2}+x+7)$$
Now, required expression = $2x^{2}-3x+1+(3x^{2}+x+7)$

$$= 2x^{2}+3x^{2}-3x+x+1+7$$

$$= 5x^{2}-2x+8$$

8. Add $x^2 + 2xy + y^2$ to the sum of $x^2 - 3y^2$ and $2x^2 - y^2 + 9$.

Solution:

Given
$$x^2 + 2xy + y^2$$
, $x^2 - 3y^2$ and $2x^2 - y^2 + 9$.
First we have to find the sum of $x^2 - 3y^2$ and $2x^2 - y^2 + 9$
= $(x^2 - 3y^2) + (2x^2 - y^2 + 9)$
= $x^2 + 2x^2 - 3y^2 - y^2 + 9$
= $3x^2 - 4y^2 + 9$
Now, required expression = $(x^2 + 2xy + y^2) + (3x^2 - 4y^2 + 9)$
= $x^2 + 3x^2 + 2xy + y^2 - 4y^2 + 9$
= $4x^2 + 2xy - 3y^2 + 9$

9. Add $a^3 + b^3 - 3$ to the sum of $2a^3 - 3b^3 - 3ab + 7$ and $-a^3 + b^3 + 3ab - 9$.

Solution:

Given
$$a^3 + b^3 - 3$$
, $2a^3 - 3b^3 - 3ab + 7$ and $-a^3 + b^3 + 3ab - 9$.
First, we need to find the sum of $2a^3 - 3b^3 - 3ab + 7$ and $-a^3 + b^3 + 3ab - 9$.
 $= (2a^3 - 3b^3 - 3ab + 7) + (-a^3 + b^3 + 3ab - 9)$
Collecting positive and negative like terms together, we get
 $= 2a^3 - a^3 - 3b^3 + b^3 - 3ab + 3ab + 7 - 9$
 $= a^3 - 2b^3 - 2$
Now, the required expression = $(a^3 + b^3 - 3) + (a^3 - 2b^3 - 2)$.
 $= a^3 + a^3 + b^3 - 2b^3 - 3 - 2$
 $= 2a^3 - b^3 - 5$

10. Subtract:

- (i) 7a²b from 3a²b
- (ii) 4xy from -3xy

Solution:

(i) Given 7a²b from 3a²b

$$= 3a^2b - 7a^2b$$

$$= (3 - 7) a^2 b$$

$$= -4a^2b$$

$$= -3xy - 4xy$$

$$=-7xy$$

11. Subtract:

(ii) -
$$2x$$
 from $-5y$

Solution:

$$= (3y) - (-4x)$$

$$= 3y + 4x$$

$$= (-5y) - (-2x)$$

$$=-5y+2x$$

12. Subtract:

(i)
$$6x^3 - 7x^2 + 5x - 3$$
 from $4 - 5x + 6x^2 - 8x^3$

(ii)
$$-x^2-3z$$
 from $5x^2-y+z+7$

(iii)
$$x^3 + 2x^2y + 6xy^2 - y^3$$
 from $y^3 - 3xy^2 - 4x^2y$

(i) Given
$$6x^3 - 7x^2 + 5x - 3$$
 and $4 - 5x + 6x^2 - 8x^3$

$$= (4 - 5x + 6x^2 - 8x^3) - (6x^3 - 7x^2 + 5x - 3)$$

$$= 4 - 5x + 6x^2 - 8x^3 - 6x^3 + 7x^2 - 5x + 3$$

$$= -8x^3 - 6x^3 + 7x^2 + 6x^2 - 5x - 5x + 3 + 4$$

$$= -14x^3 + 13x^2 - 10x + 7$$

(ii) Given
$$-x^2-3z$$
 and $5x^2-y+z+7$

$$= (5x^2 - y + z + 7) - (-x^2 - 3z)$$

$$= 5x^2 - y + z + 7 + x^2 + 3z$$

$$= 5x^2 + x^2 - y + z + 3z + 7$$

$$= 6x^2 - y + 4z + 7$$

(iii) Given
$$x^3 + 2x^2y + 6xy^2 - y^3$$
 and $y^3 - 3xy^2 - 4x^2y$
= $(y^3 - 3xy^2 - 4x^2y) - (x^3 + 2x^2y + 6xy^2 - y^3)$
= $y^3 - 3xy^2 - 4x^2y - x^3 - 2x^2y - 6xy^2 + y^3$
= $y^3 + y^3 - 3xy^2 - 6xy^2 - 4x^2y - 2x^2y - x^3$
= $2y^3 - 9xy^2 - 6x^2y - x^3$

13. From

(i)
$$p^3 - 4 + 3p^2$$
, take away $5p^2 - 3p^3 + p - 6$

(ii)
$$7 + x - x^2$$
, take away $9 + x + 3x^2 + 7x^3$

(iii)
$$1-5y^2$$
, take away $y^3 + 7y^2 + y + 1$

(iv)
$$x^3 - 5x^2 + 3x + 1$$
, take away $6x^2 - 4x^3 + 5 + 3x$

(i) Given
$$p^3 - 4 + 3p^2$$
, take away $5p^2 - 3p^3 + p - 6$
= $(p^3 - 4 + 3p^2) - (5p^2 - 3p^3 + p - 6)$
= $p^3 - 4 + 3p^2 - 5p^2 + 3p^3 - p + 6$
= $p^3 + 3p^3 + 3p^2 - 5p^2 - p - 4 + 6$
= $4p^3 - 2p^2 - p + 2$

(ii) Given
$$7 + x - x^2$$
, take away $9 + x + 3x^2 + 7x^3$
= $(7 + x - x^2) - (9 + x + 3x^2 + 7x^3)$
= $7 + x - x^2 - 9 - x - 3x^2 - 7x^3$
= $-7x^3 - x^2 - 3x^2 + 7 - 9$
= $-7x^3 - 4x^2 - 2$

(iii) Given
$$1-5y^2$$
, take away $y^3 + 7y^2 + y + 1$
= $(1-5y^2) - (y^3 + 7y^2 + y + 1)$
= $1-5y^2 - y^3 - 7y^2 - y - 1$
= $-y^3 - 5y^2 - 7y^2 - y$
= $-y^3 - 12y^2 - y$

(iv) Given
$$x^3 - 5x^2 + 3x + 1$$
, take away $6x^2 - 4x^3 + 5 + 3x$
= $(x^3 - 5x^2 + 3x + 1) - (6x^2 - 4x^3 + 5 + 3x)$
= $x^3 - 5x^2 + 3x + 1 - 6x^2 + 4x^3 - 5 - 3x$
= $x^3 + 4x^3 - 5x^2 - 6x^2 + 1 - 5$

$$=5x^3 - 11x^2 - 4$$

14. From the sum of $3x^2 - 5x + 2$ and $-5x^2 - 8x + 9$ subtract $4x^2 - 7x + 9$.

Solution:

First we have to add $3x^2 - 5x + 2$ and $-5x^2 - 8x + 9$ then from the result we have to subtract $4x^2 - 7x + 9$.

$$= \{(3x^2 - 5x + 2) + (-5x^2 - 8x + 9)\} - (4x^2 - 7x + 9)$$

$$= {3x^2 - 5x + 2 - 5x^2 - 8x + 9} - (4x^2 - 7x + 9)$$

$$= \{3x^2 - 5x^2 - 5x - 8x + 2 + 9\} - (4x^2 - 7x + 9)$$

$$= \{-2x^2 - 13x + 11\} - (4x^2 - 7x + 9)$$

$$= -2x^2 - 13x + 11 - 4x^2 + 7x - 9$$

$$= -2x^2 - 4x^2 - 13x + 7x + 11 - 9$$

$$= -6x^2 - 6x + 2$$

15. Subtract the sum of 13x - 4y + 7z and -6z + 6x + 3y from the sum of 6x - 4y - 4z and 2x + 4y - 7.

Solution:

First we have to find the sum of 13x - 4y + 7z and -6z + 6x + 3y

Therefore, sum of (13x - 4y + 7z) and (-6z + 6x + 3y)

$$= (13x - 4y + 7z) + (-6z + 6x + 3y)$$

$$= (13x - 4y + 7z - 6z + 6x + 3y)$$

$$= (13x + 6x - 4y + 3y + 7z - 6z)$$

$$= (19x - y + z)$$

Now we have to find the sum of (6x - 4y - 4z) and (2x + 4y - 7)

$$= (6x - 4y - 4z) + (2x + 4y - 7)$$

$$= (6x - 4y - 4z + 2x + 4y - 7)$$

$$= (6x + 2x - 4z - 7)$$

$$= (8x - 4z - 7)$$

Now, required expression = (8x - 4z - 7) - (19x - y + z)

$$= 8x - 4z - 7 - 19x + y - z$$

$$= 8x - 19x + y - 4z - z - 7$$

$$= -11x + y - 5z - 7$$

16. From the sum of $x^2 + 3y^2 - 6xy$, $2x^2 - y^2 + 8xy$, $y^2 + 8$ and $x^2 - 3xy$ subtract $-3x^2 + 4y^2 - xy + x - y + 3$.

Solution:

First we have to find the sum of
$$(x^2 + 3y^2 - 6xy)$$
, $(2x^2 - y^2 + 8xy)$, $(y^2 + 8)$ and $(x^2 - 3xy)$ = $\{(x^2 + 3y^2 - 6xy) + (2x^2 - y^2 + 8xy) + (y^2 + 8) + (x^2 - 3xy)\}$ = $\{x^2 + 3y^2 - 6xy + 2x^2 - y^2 + 8xy + y^2 + 8 + x^2 - 3xy\}$ = $\{x^2 + 2x^2 + x^2 + 3y^2 - y^2 + y^2 - 6xy + 8xy - 3xy + 8\}$ = $4x^2 + 3y^2 - xy + 8$ Now, from the result subtract the $-3x^2 + 4y^2 - xy + x - y + 3$. Therefore, required expression = $(4x^2 + 3y^2 - xy + 8) - (-3x^2 + 4y^2 - xy + x - y + 3)$ = $4x^2 + 3y^2 - xy + 8 + 3x^2 - 4y^2 + xy - x + y - 3$ = $4x^2 + 3x^2 + 3y^2 - 4y^2 - x + y - 3 + 8$ = $7x^2 - y^2 - x + y + 5$

17. What should be added to xy - 3yz + 4zx to get 4xy - 3zx + 4yz + 7?

Solution:

By subtracting xy - 3yz + 4zx from 4xy - 3zx + 4yz + 7, we get the required expression. Therefore, required expression = (4xy - 3zx + 4yz + 7) - (xy - 3yz + 4zx) = 4xy - 3zx + 4yz + 7 - xy + 3yz - 4zx = 4xy - xy - 3zx - 4zx + 4yz + 3yz + 7 = 3xy - 7zx + 7yz + 7

18. What should be subtracted from $x^2 - xy + y^2 - x + y + 3$ to obtain $-x^2 + 3y^2 - 4xy + 1$?

Solution:

Let 'E' be the required expression. Then, we have $x^2 - xy + y^2 - x + y + 3 - E = -x^2 + 3y^2 - 4xy + 1$ Therefore, $E = (x^2 - xy + y^2 - x + y + 3) - (-x^2 + 3y^2 - 4xy + 1)$ = $x^2 - xy + y^2 - x + y + 3 + x^2 - 3y^2 + 4xy - 1$ Collecting positive and negative like terms together, we get = $x^2 + x^2 - xy + 4xy + y^2 - 3y^2 - x + y + 3 - 1$ = $2x^2 + 3xy - 2y^2 - x + y + 2$

19. How much is x - 2y + 3z greater than 3x + 5y - 7?

Solution:

By subtracting x - 2y + 3z from 3x + 5y - 7 we can get the required expression, Required expression = (x - 2y + 3z) - (3x + 5y - 7)

$$= x - 2y + 3z - 3x - 5y + 7$$

Collecting positive and negative like terms together, we get

$$= x - 3x - 2y + 5y + 3z + 7$$

$$= -2x - 7y + 3z + 7$$

20. How much is $x^2 - 2xy + 3y^2$ less than $2x^2 - 3y^2 + xy$?

Solution:

By subtracting the x^2 – 2xy + $3y^2$ from $2x^2$ – $3y^2$ + xy we can get the required expression,

Required expression =
$$(2x^2 - 3y^2 + xy) - (x^2 - 2xy + 3y^2)$$

$$= 2x^2 - 3y^2 + xy - x^2 + 2xy - 3y^2$$

Collecting positive and negative like terms together, we get

$$= 2x^2 - x^2 - 3y^2 - 3y^2 + xy + 2xy$$

$$= x^2 - 6y^2 + 3xy$$

21. How much does
$$a^2 - 3ab + 2b^2$$
 exceed $2a^2 - 7ab + 9b^2$?

Solution:

By subtracting $2a^2 - 7ab + 9b^2$ from $a^2 - 3ab + 2b^2$ we get the required expression

Required expression =
$$(a^2 - 3ab + 2b^2) - (2a^2 - 7ab + 9b^2)$$

$$= a^2 - 3ab + 2b^2 - 2a^2 + 7ab - 9b^2$$

Collecting positive and negative like terms together, we get

$$= a^2 - 2a^2 - 3ab + 7ab + 2b^2 - 9b^2$$

$$= -a^2 + 4ab - 7b^2$$

22. What must be added to $12x^3 - 4x^2 + 3x - 7$ to make the sum $x^3 + 2x^2 - 3x + 2$?

Solution:

Let 'E' be the required expression. Thus, we have

$$12x^3 - 4x^2 + 3x - 7 + E = x^3 + 2x^2 - 3x + 2$$

Therefore,
$$E = (x^3 + 2x^2 - 3x + 2) - (12x^3 - 4x^2 + 3x - 7)$$

$$= x^3 + 2x^2 - 3x + 2 - 12x^3 + 4x^2 - 3x + 7$$

Collecting positive and negative like terms together, we get

$$= x^3 - 12x^3 + 2x^2 + 4x^2 - 3x - 3x + 2 + 7$$

$$= -11x^3 + 6x^2 - 6x + 9$$

23. If
$$P = 7x^2 + 5xy - 9y^2$$
, $Q = 4y^2 - 3x^2 - 6xy$ and $R = -4x^2 + xy + 5y^2$, show that $P + Q + R$

= 0.

Solution:

Given
$$P = 7x^2 + 5xy - 9y^2$$
, $Q = 4y^2 - 3x^2 - 6xy$ and $R = -4x^2 + xy + 5y^2$
Now we have to prove $P + Q + R = 0$,
Consider $P + Q + R = (7x^2 + 5xy - 9y^2) + (4y^2 - 3x^2 - 6xy) + (-4x^2 + xy + 5y^2)$
 $= 7x^2 + 5xy - 9y^2 + 4y^2 - 3x^2 - 6xy - 4x^2 + xy + 5y^2$
Collecting positive and negative like terms together, we get
 $= 7x^2 - 3x^2 - 4x^2 + 5xy - 6xy + xy - 9y^2 + 4y^2 + 5y^2$
 $= 7x^2 - 7x^2 + 6xy - 6xy - 9y^2 + 9y^2$
 $= 0$

24. If
$$P = a^2 - b^2 + 2ab$$
, $Q = a^2 + 4b^2 - 6ab$, $R = b^2 + b$, $S = a^2 - 4ab$ and $T = -2a^2 + b^2 - ab + a$. Find $P + Q + R + S - T$.

Solution:

Given
$$P = a^2 - b^2 + 2ab$$
, $Q = a^2 + 4b^2 - 6ab$, $R = b^2 + b$, $S = a^2 - 4ab$ and $T = -2a^2 + b^2 - ab + a$.

Now we have to find P + Q + R + S - T

Substituting all values we get

Consider P + Q + R + S - T =
$$\{(a^2 - b^2 + 2ab) + (a^2 + 4b^2 - 6ab) + (b^2 + b) + (a^2 - 4ab)\}$$
 - $\{(a^2 + b^2 - ab + a)\}$

=
$${a^2 - b^2 + 2ab + a^2 + 4b^2 - 6ab + b^2 + b + a^2 - 4ab}$$
- $(-2a^2 + b^2 - ab + a)$

$$= {3a^2 + 4b^2 - 8ab + b} - (-2a^2 + b^2 - ab + a)$$

$$= 3a^2 + 4b^2 - 8ab + b + 2a^2 - b^2 + ab - a$$

Collecting positive and negative like terms together, we get

$$3a^2 + 2a^2 + 4b^2 - b^2 - 8ab + ab - a + b$$

$$= 5a^2 + 3b^2 - 7ab - a + b$$

EXERCISE 7.3

PAGE NO: 7.16

1. Place the last two terms of the following expressions in parentheses preceded by a minus sign:

(i)
$$x + y - 3z + y$$

(ii)
$$3x - 2y - 5z - 4$$

(iii)
$$3a - 2b + 4c - 5$$

(iv)
$$7a + 3b + 2c + 4$$

(v)
$$2a^2 - b^2 - 3ab + 6$$

(vi)
$$a^2 + b^2 - c^2 + ab - 3ac$$

Solution:

(i) Given
$$x + y - 3z + y$$

 $x + y - 3z + y = x + y - (3z - y)$

(ii) Given
$$3x - 2y - 5z - 4$$

$$3x - 2y - 5z - 4 = 3x - 2y - (5z + 4)$$

(iii) Given
$$3a - 2b + 4c - 5$$

$$3a - 2b + 4c - 5 = 3a - 2b - (-4c + 5)$$

(iv) Given
$$7a + 3b + 2c + 4$$

$$7a + 3b + 2c + 4 = 7a + 3b - (-2c - 4)$$

(v) Given
$$2a^2 - b^2 - 3ab + 6$$

$$2a^2 - b^2 - 3ab + 6 = 2a^2 - b^2 - (3ab - 6)$$

(vi) Given
$$a^2 + b^2 - c^2 + ab - 3ac$$

$$a^2 + b^2 - c^2 + ab - 3ac = a^2 + b^2 - c^2 - (-ab + 3ac)$$

2. Write each of the following statements by using appropriate grouping symbols:

- (i) The sum of a b and 3a 2b + 5 is subtracted from 4a + 2b 7.
- (ii) Three times the sum of 2x + y [5 (x 3y)] and 7x 4y + 3 is subtracted from 3x 4y + 7
- (iii) The subtraction of $x^2 y^2 + 4xy$ from $2x^2 + y^2 3xy$ is added to $9x^2 3y^2 xy$.

Solution:

(i) Given the sum of a - b and 3a - 2b + 5 = [(a - b) + (3a - 2b + 5)].

This is subtracted from 4a + 2b - 7.

Thus, the required expression is (4a + 2b - 7) - [(a - b) + (3a - 2b + 5)]

(ii) Given three times the sum of $2x + y - \{5 - (x - 3y)\}\$ and $7x - 4y + 3 = 3[(2x + y - \{5 - (x - 3y)\}) + (7x - 4y + 3)]$

This is subtracted from 3x - 4y + 7.

Thus, the required expression is (3x - 4y + 7) - 3[(2x + y - (5 - (x - 3y))) + (7x - 4y + 3)]

(iii) Given the product of subtraction of x^2 - y^2 + 4xy from $2x^2$ + y^2 - 3xy is given by $\{(2x^2 + y^2 - 3xy) - (x^2-y^2 + 4xy)\}$

When the above equation is added to $9x^2 - 3y^2 - xy$, we get

$$\{(2x^2 + y^2 - 3xy) - (x^2 - y^2 + 4xy)\} + (9x^2 - 3y^2 - xy)\}$$

This is the required expression.

EXERCISE 7.4

PAGE NO: 7.20

Simplify each of the following algebraic expressions by removing grouping symbols.

1.
$$2x + (5x - 3y)$$

Solution:

Given
$$2x + (5x - 3y)$$

Since the '+' sign precedes the parentheses, we have to retain the sign of each term in the parentheses when we remove them.

$$= 2x + 5x - 3y$$

On simplifying, we get

$$= 7x - 3y$$

2.
$$3x - (y - 2x)$$

Solution:

Given
$$3x - (y - 2x)$$

Since the '-' sign precedes the parentheses, we have to change the sign of each term in the parentheses when we remove them. Therefore, we have

$$= 3x - y + 2x$$

On simplifying, we get

$$= 5x - y$$

$$3.5a - (3b - 2a + 4c)$$

Solution:

Given
$$5a - (3b - 2a + 4c)$$

Since the '-'sign precedes the parentheses, we have to change the sign of each term in the parentheses when we remove them.

$$= 5a - 3b + 2a - 4c$$

On simplifying, we get

$$= 7a - 3b - 4c$$

4.
$$-2(x^2 - y^2 + xy) - 3(x^2 + y^2 - xy)$$

Given -
$$2(x^2 - y^2 + xy) - 3(x^2 + y^2 - xy)$$

Since the '-' sign precedes the parentheses, we have to change the sign of each term in the parentheses when we remove them. Therefore, we have

$$= -2x^2 + 2y^2 - 2xy - 3x^2 - 3y^2 + 3xy$$

On rearranging,

$$= -2x^2 - 3x^2 + 2y^2 - 3y^2 - 2xy + 3xy$$

On simplifying, we get

$$= -5x^2 - y^2 + xy$$

5.
$$3x + 2y - \{x - (2y - 3)\}$$

Solution:

Given
$$3x + 2y - \{x - (2y - 3)\}$$

First, we have to remove the parentheses. Then, we have to remove the braces.

Then we get,

$$= 3x + 2y - \{x - 2y + 3\}$$

$$= 3x + 2y - x + 2y - 3$$

On simplifying, we get

$$= 2x + 4y - 3$$

6.
$$5a - {3a - (2 - a) + 4}$$

Solution:

Given
$$5a - \{3a - (2 - a) + 4\}$$

First, we have to remove the parentheses. Then, we have to remove the braces.

Then we get,

$$= 5a - {3a - 2 + a + 4}$$

$$= 5a - 3a + 2 - a - 4$$

On simplifying, we get

$$= a - 2$$

7.
$$a - [b - {a - (b - 1) + 3a}]$$

Solution:

Given
$$a - [b - \{a - (b - 1) + 3a\}]$$

First we have to remove the parentheses, then the curly brackets, and then the square

brackets.

Then we get,

$$= a - [b - {a - (b - 1) + 3a}]$$

$$= a - [b - {a - b + 1 + 3a}]$$

$$= a - [b - {4a - b + 1}]$$

$$= a - [b - 4a + b - 1]$$

$$= a - [2b - 4a - 1]$$

On simplifying, we get

$$= a - 2b + 4a + 1$$

$$= 5a - 2b + 1$$

8.
$$a - [2b - {3a - (2b - 3c)}]$$

Solution:

Given
$$a - [2b - {3a - (2b - 3c)}]$$

First we have to remove the parentheses, then the braces, and then the square brackets.

Then we get,

$$= a - [2b - {3a - (2b - 3c)}]$$

$$= a - [2b - {3a - 2b + 3c}]$$

$$= a - [2b - 3a + 2b - 3c]$$

$$= a - [4b - 3a - 3c]$$

On simplifying we get,

$$= a - 4b + 3a + 3c$$

$$= 4a - 4b + 3c$$

9.
$$-x + [5y - {2x - (3y - 5x)}]$$

Solution:

Given
$$-x + [5y - {2x - (3y - 5x)}]$$

First we have to remove the parentheses, then remove braces, and then the square brackets.

Then we get,

$$= -x + [5y - {2x - (3y - 5x)}]$$

$$= -x + [5y - (2x - 3y + 5x)]$$

$$= -x + [5y - {7x - 3y}]$$

$$= -x + [5y - 7x + 3y]$$

$$= -x + [8y - 7x]$$
On simplifying we get
$$= -x + 8y - 7x$$

$$= -8x + 8y$$

10.
$$2a - [4b - \{4a - 3(2a - b)\}]$$

Solution:

Given $2a - [4b - \{4a - 3(2a - b)\}]$

First we have to remove the parentheses, then remove braces, and then the square brackets.

Then we get, = $2a - [4b - \{4a - 3(2a - b)\}]$ = $2a - [4b - \{4a - 6a + 3b\}]$ = $2a - [4b - \{-2a + 3b\}]$ = 2a - [4b + 2a - 3b]= 2a - [b + 2a]

On simplifying, we get = 2a - b - 2a

$$= 2a - b$$

Solution:

Given $-a - [a + {a + b - 2a - (a - 2b)} - b]$

First we have to remove the parentheses, then remove braces, and then the square brackets.

Then we get,

$$= -a - [a + {a + b - 2a - (a - 2b)} - b]$$

= $-a - [a + {a + b - 2a - a + 2b} - b]$

$$= -a - [a + {-2a + 3b} - b]$$

$$= -a - [a - 2a + 3b - b]$$

$$= -a - [-a + 2b]$$

On simplifying, we get

$$= -a + a - 2b$$

$$= -2b$$

12.
$$2x - 3y - [3x - 2y - (x - z - (x - 2y))]$$

Solution:

Given
$$2x - 3y - [3x - 2y - (x - z - (x - 2y))]$$

First we have to remove the parentheses, then remove braces, and then the square brackets.

Then we get,

$$= 2x - 3y - [3x - 2y - (x - z - (x - 2y))]$$

$$= 2x - 3y - [3x - 2y - \{x - z - x + 2y\}]$$

$$= 2x - 3y - [3x - 2y - {-z + 2y}]$$

$$= 2x - 3y - [3x - 2y + z - 2y]$$

$$= 2x - 3y - [3x - 4y + z]$$

On simplifying, we get

$$= 2x - 3y - 3x + 4y - z$$

$$= -x + y - z$$

13.
$$5 + [x - {2y - (6x + y - 4) + 2x} - {x - (y - 2)}]$$

Solution:

Given
$$5 + [x - \{2y - (6x + y - 4) + 2x\} - \{x - (y - 2)\}]$$

First we have to remove the parentheses, then remove braces, and then the square brackets.

Then we get,

$$= 5 + [x - {2y - (6x + y - 4) + 2x} - {x - (y - 2)}]$$

$$= 5 + [x - \{2y - 6x - y + 4 + 2x\} - \{x - y + 2\}]$$

$$= 5 + [x - {y - 4x + 4} - {x - y + 2}]$$

$$= 5 + [x - y + 4x - 4 - x + y - 2]$$

$$= 5 + [4x - 6]$$

$$= 5 + 4x - 6$$

$$= 4x - 1$$

14.
$$x^2$$
 - $[3x + [2x - (x^2 - 1)] + 2]$

Solution:

Given
$$x^2$$
 - $[3x + [2x - (x^2 - 1)] + 2]$

First we have to remove the parentheses, then remove braces, and then the square brackets.

Then we get,

$$= x^2 - [3x + [2x - (x^2 - 1)] + 2]$$

$$= x^2 - [3x + [2x - x^2 + 1] + 2]$$

$$= x^2 - [3x + 2x - x^2 + 1 + 2]$$

$$= x^2 - [5x - x^2 + 3]$$

On simplifying we get

$$= x^2 - 5x + x^2 - 3$$

$$= 2x^2 - 5x - 3$$

15. 20 - $[5xy + 3[x^2 - (xy - y) - (x - y)]]$

Solution:

Given 20 -
$$[5xy + 3[x^2 - (xy - y) - (x - y)]]$$

First we have to remove the parentheses, then remove braces, and then the square brackets.

Then we get,

$$= 20 - [5xy + 3[x^2 - (xy - y) - (x - y)]]$$

$$= 20 - [5xy + 3[x^2 - xy + y - x + y]]$$

$$= 20 - [5xy + 3[x^2 - xy + 2y - x]]$$

$$= 20 - [5xy + 3x^2 - 3xy + 6y - 3x]$$

$$= 20 - [2xy + 3x^2 + 6y - 3x]$$

On simplifying we get

$$= 20 - 2xy - 3x^2 - 6y + 3x$$

$$= -3x^2 - 2xy - 6y + 3x + 20$$

16.
$$85 - [12x - 7(8x - 3) - 2\{10x - 5(2 - 4x)\}]$$

Solution:

Given
$$85 - [12x - 7(8x - 3) - 2\{10x - 5(2 - 4x)\}]$$

First we have to remove the parentheses, then remove braces, and then the square brackets.

Then we get,

$$= 85 - [12x - 7(8x - 3) - 2\{10x - 5(2 - 4x)\}]$$

$$= 85 - [12x - 56x + 21 - 2\{10x - 10 + 20x\}]$$

$$= 85 - [12x - 56x + 21 - 2{30x - 10}]$$

$$= 85 - [12x - 56x + 21 - 60x + 20]$$

$$= 85 - [12x - 116x + 41]$$

$$= 85 - [-104x + 41]$$

On simplifying, we get

$$= 85 + 104x - 41$$

$$= 44 + 104x$$

17.
$$xy [yz - zx - {yx - (3y - xz) - (xy - zy)}]$$

Solution:

Given xy
$$[yz - zx - \{yx - (3y - xz) - (xy - zy)\}]$$

First we have to remove the parentheses, then remove braces, and then the square brackets.

Then we get,

$$= xy - [yz - zx - \{yx - (3y - xz) - (xy - zy)\}]$$

$$= xy - [yz - zx - \{yx - 3y + xz - xy + zy\}]$$

$$= xy - [yz - zx - {-3y + xz + zy}]$$

$$= xy - [yz - zx + 3y - xz - zy]$$

$$= xy - [-zx + 3y - xz]$$

On simplifying, we get

$$= xy - [-2zx + 3y]$$

$$= xy + 2xz - 3y$$

