1. Identify the monomials, binomials, trinomials and quadrinomials from the following expressions:
(i) a^{2}
(ii) $a^{2}-b^{2}$
(iii) $x^{3}+y^{3}+z^{3}$
(iv) $x^{3}+y^{3}+z^{3}+3 x y z$
(v) $7+5$
(vi) abc+1
(vii) $3 x-2+5$
(viii) $2 x-3 y+4$
(ix) $x y+y z+z x$
(x) $a x^{3}+b x^{2}+c x+d$

Solution:

(i) Given a^{2}
a^{2} is a monomial expression because it contains only one term
(ii) Given $a^{2}-b^{2}$
$a^{2}-b^{2}$ is a binomial expression because it contains two terms
(iii) Given $x^{3}+y^{3}+z^{3}$
$x^{3}+y^{3}+z^{3}$ is a trinomial because it contains three terms
(iv) Given $x^{3}+y^{3}+z^{3}+3 x y z$
$x^{3}+y^{3}+z^{3}+3 x y z$ is a quadrinomial expression because it contains four terms
(v) Given $7+5$
$7+5$ is a monomial expression because it contains only one term
(vi) Given a b c + 1
$a b c+1$ is a binomial expression because it contains two terms
(vii) Given $3 x-2+5$
$3 x-2+5$ is a binomial expression because it contains two terms
(viii) Given $2 x-3 y+4$
$2 x-3 y+4$ is a trinomial because it contains three terms
(ix) Given $x y+y z+z x$
$x y+y z+z x$ is a trinomial because it contains three terms
(x) Given $a x^{3}+b x^{2}+c x+d$
$a x^{3}+b x^{2}+c x+d$ is a quadrinomial expression because it contains four terms
2. Write all the terms of each of the following algebraic expressions:
(i) $3 x$
(ii) $2 x-3$
(iii) $2 x^{2}-7$
(iv) $2 x^{2}+y^{2}-3 x y+4$

Solution:

(i) Given $3 x$
$3 x$ is the only term of the given algebraic expression.
(ii) Given $2 x-3$
$2 x$ and -3 are the terms of the given algebraic expression.
(iii) Given $2 x^{2}-7$
$2 x^{2}$ and -7 are the terms of the given algebraic expression.
(iv) Given $2 x^{2}+y^{2}-3 x y+4$
$2 x^{2}, y^{2},-3 x y$ and 4 are the terms of the given algebraic expression.
3. Identify the terms and also mention the numerical coefficients of those terms:
(i) $4 x y,-5 x^{2} y,-3 y x, 2 x y^{2}$
(ii) $7 a^{2} b c,-3 c a^{2} b,-(5 / 2) a b c^{2}, 3 / 2 a b c^{2},(-4 / 3) c b a^{2}$

Solution:

(i) Like terms 4xy, -3yx and Numerical coefficients 4, -3
(ii) Like terms $\left(-7 a^{2} b c,-3 c a^{2} b\right)$ and $\left(-4 / 3 c b a^{2}\right)$ and their Numerical coefficients $7,-3$, (-4/3)

Like terms are $\left(-5 / 2 \mathrm{abc}^{2}\right)$ and $\left(3 / 2 \mathrm{abc}^{2}\right)$ and numerical coefficients are $(-5 / 2)$ and (3/2)
4. Identify the like terms in the following algebraic expressions:
(i) $a^{2}+b^{2}-2 a^{2}+c^{2}+4 a$
(ii) $3 x+4 x y-2 y z+52 z y$
(iii) $a b c+a b^{2} c+2 a c b^{2}+3 c^{2} a b+b^{2} a c-2 a^{2} b c+3 c a b^{2}$

Solution:

(i) Given $a^{2}+b^{2}-2 a^{2}+c^{2}+4 a$

The like terms in the given algebraic expressions are a^{2} and $-2 a^{2}$.
(ii) Given $3 x+4 x y-2 y z+52 z y$

The like terms in the given algebraic expressions are $-2 y z$ and $52 z y$.
(iii) Given $a b c+a b^{2} c+2 a c b^{2}+3 c^{2} a b+b^{2} a c-2 a^{2} b c+3 c a b^{2}$

The like terms in the given algebraic expressions $a r e a b^{2} c, 2 a c b^{2}, b^{2} a c$ and $3 c a b^{2}$.
5. Write the coefficient of x in the following:
(i) $-12 x$
(ii) $-7 x y$
(iii) $x y z$
(iv) $-7 a x$

Solution:

(i) Given - 12 x

The numerical coefficient of x is -12 .
(ii) Given -7xy

The numerical coefficient of x is $-7 y$.
(iii) Given xyz

The numerical coefficient of x is yz .
(iv) Given -7ax

The numerical coefficient of x is $-7 a$.
6. Write the coefficient of x^{2} in the following:
(i) $-3 x^{2}$
(ii) $5 x^{2} y z$
(iii) $5 / 7 x^{2} z$
(iv) $(-3 / 2) a x^{2}+y x$

Solution:

(i) Given $-3 x^{2}$

The numerical coefficient of x^{2} is -3 .
(ii) Given $5 x^{2} y z$

The numerical coefficient of x^{2} is $5 y z$.
(iii) Given5/7x x^{2}

The numerical coefficient of x^{2} is $5 / 7 z$.
(iv) Given (-3/2) $a x^{2}+y x$

The numerical coefficient of x^{2} is $-(3 / 2)$ a.
7. Write the coefficient of:
(i) y in -3 y
(ii) a in 2ab
(iii) z in $-7 x y z$
(iv) p in -3pqr
(v) y^{2} in $9 x y^{2} z$
(vi) x^{3} in $x^{3}+1$
(vii) x^{2} in $-x^{2}$

Solution:

(i) Given -3y

The coefficient of y is -3 .
(ii) Given 2ab

The coefficient of a is $2 b$.
(iii) Given -7xyz

The coefficient of z is $-7 x y$.
(iv) Given -3pqr

The coefficient of p is $-3 q$ r.
(v) Given $9 x y^{2} z$

The coefficient of y^{2} is 9 xz .
(vi) Given $x^{3}+1$

The coefficient of x^{3} is 1 .
(vii) Given - x^{2}

The coefficient of x^{2} is -1 .
8. Write the numerical coefficient of each in the following:
(i) $x y$
(ii) $-6 y z$
(iii) 7abc
(iv) $-2 x^{3} y^{2} z$

Solution:

(i) Given $x y$

The numerical coefficient in the term xy is 1 .
(ii) Given -6yz

The numerical coefficient in the term-6yz is -6 .
(iii) Given 7abc

The numerical coefficient in the term 7abc is 7 .
(iv) Given $-2 x^{3} y^{2} z$

The numerical coefficient in the term $-2 x^{3} y^{2} z$ is -2 .
9. Write the numerical coefficient of each term in the following algebraic expressions:
(i) $4 x^{2} y-(3 / 2) x y+5 / 2 x y^{2}$
(ii) $(-5 / 3) x^{2} y+(7 / 4) x y z+3$

Solution:

(i) Given $4 x^{2} y-(3 / 2) x y+5 / 2 x y^{2}$

Numerical coefficient of following algebraic expressions are given below

Term	Coefficient
$4 x^{2} y$	4
$-(3 / 2) x y$	$-(3 / 2)$
$5 / 2 x y^{2}$	$(5 / 2)$

(ii) Given $(-5 / 3) x^{2} y+(7 / 4) x y z+3$

Numerical coefficient of following algebraic expressions are given below

Term	Coefficient
$(-5 / 3) x^{2} y$	$(-5 / 3)$
$(7 / 4) x y z$	$(7 / 4)$
3	3

10. Write the constant term of each of the following algebraic expressions:
(i) $x^{2} y-x y^{2}+7 x y-3$
(ii) $a^{3}-3 a^{2}+7 a+5$

Solution:

(i) Given $x^{2} y-x y^{2}+7 x y-3$

The constant term in the given algebraic expressions is -3 .
(ii) Given $a^{3}-3 a^{2}+7 a+5$

The constant term in the given algebraic expressions is 5 .
11. Evaluate each of the following expressions for $x=-2, y=-1, z=3$:
(i) $(x / y)+(y / z)+(z / x)$
(ii) $x^{2}+y^{2}+z^{2}-x y-y z-z x$

Solution:

(i) Given $x=-2, y=-1, z=3$

Consider (x / y) $+(y / z)+(z / x)$
On substituting the given values we get, $=(-2 /-1)+(-1 / 3)+(3 /-2)$
The LCM of 3 and 2 is 6
$=(12-2-9) / 6$
$=(1 / 6)$
(ii) Given $x=-2, y=-1, z=3$

Consider $x^{2}+y^{2}+z^{2}-x y-y z-z x$
On substituting the given values we get,
$=(-2)^{2}+(-1)^{2}+3^{2}-(-2)(-1)-(-1)(3)-(3)(-2)$
$=4+1+9-2+3+6$
$=23-2$
$=21$
12. Evaluate each of the following algebraic expressions for $x=1, y=-1, z=2, a=-2, b$ $=1, c=-2$:
(i) $\mathrm{ax}+\mathrm{by}+\mathrm{cz}$
(ii) $a x^{2}+b y^{2}-c z$
(iii) axy + byz + cxy

Solution:

(i) Given $\mathrm{x}=1, \mathrm{y}=-1, \mathrm{z}=2, \mathrm{a}=-2, \mathrm{~b}=1, \mathrm{c}=-2$

Consider ax + by +cz
On substituting the given values
$=(-2)(1)+(1)(-1)+(-2)(2)$
$=-2-1-4$
$=-7$
(ii) Given $x=1, y=-1, z=2, a=-2, b=1, c=$
-2 Consider $a^{2}+b^{2}-c z$
On substituting the given values
$=(-2) \times 1^{2}+1 \times(-1)^{2}-(-2) \times 2$
$=-2+1-(-4)$
$=-1+4$
$=9$
(iii) Given $x=1, y=-1, z=2, a=-2, b=1, c=$
-2 Consider axy + byz + cxy
$=(-2) \times 1 \times-1+1 \times-1 \times 2+(-2) \times 1 \times(-1)$
$=2+(-2)+2$
$=4-2$
$=2$

1. Add the following:

(i) $3 x$ and $7 x$
(ii) $-5 x y$ and $9 x y$

Solution:

(i) Given $3 x$ and $7 x$
$3 x+7 x=(3+7) x$
$=10 x$
(ii) Given $-5 x y$ and $9 x y$
$-5 x y+9 x y=(-5+9) x y$
$=4 x y$
2. Simplify each of the following:
(i) $7 x^{3} y+9 y x^{3}$
(ii) $12 a^{2} b+3 b a^{2}$

Solution:

(i) Given $7 x^{3} y+9 y x^{3}$
$7 x^{3} y+9 y x^{3}=(7+9) x^{3} y$
$=16 x^{3} y$
(ii) Given
$12 a^{2} b+3 b a^{2}=(12+3) a^{2} b$
$=15 a^{2} b$

3. Add the following:

(i) 7abc, -5abc, 9abc, -8abc
(ii) $2 x^{2} y,-4 x^{2} y, 6 x^{2} y,-5 x^{2} y$

Solution:

(i) Given 7abc, -5abc, 9abc, -8abc Consider 7abc + (-5abc) + (9abc) $+(-8 a b c)$
$=7 a b c-5 a b c+9 a b c-8 a b c$
$=(7-5+9-8) a b c$ [by taking abc common]
$=(16-13) a b c$
$=3 a b c$
(ii) Given $2 x^{2} y,-4 x^{2} y, 6 x^{2} y,-5 x^{2} y$
$2 x^{2} y+\left(-4 x^{2} y\right)+\left(6 x^{2} y\right)+\left(-5 x^{2} y\right)$
$=2 x^{2} y-4 x^{2} y+6 x^{2} y-5 x^{2} y$
$=(2-4+6-5) x^{2} y$ [by taking $x^{2} y$ common]
$=(8-9) x^{2} y$
$=-x^{2} y$

4. Add the following expressions:

(i) $x^{3}-2 x^{2} y+3 x y^{2}-y^{3}, 2 x^{3}-5 x y^{2}+3 x^{2} y-4 y^{3}$
(ii) $a^{4}-2 a^{3} b+3 a b^{3}+4 a^{2} b^{2}+3 b^{4},-2 a^{4}-5 a b^{3}+7 a^{3} b-6 a^{2} b^{2}+b^{4}$

Solution:

(i) Given $x^{3}-2 x^{2} y+3 x y^{2}-y^{3}, 2 x^{3}-5 x y^{2}+3 x^{2} y-4 y^{3}$

Collecting positive and negative like terms together, we get
$=x^{3}+2 x^{3}-2 x^{2} y+3 x^{2} y+3 x y^{2}-5 x y^{2}-y^{3}-4 y^{3}$
$=3 x^{3}+x^{2} y-2 x y^{2}-5 y^{3}$
(ii) Given $a^{4}-2 a^{3} b+3 a b^{3}+4 a^{2} b^{2}+3 b^{4},-2 a^{4}-5 a b^{3}+7 a^{3} b-6 a^{2} b^{2}+b^{4}$
$=a^{4}-2 a^{3} b+3 a b^{3}+4 a^{2} b^{2}+3 b^{4}-2 a^{4}-5 a b^{3}+7 a^{3} b-6 a^{2} b^{2}+b^{4}$
Collecting positive and negative like terms together, we get
$=a^{4}-2 a^{4}-2 a^{3} b+7 a^{3} b+3 a b^{3}-5 a b^{3}+4 a^{2} b^{2}-6 a^{2} b^{2}+3 b^{4}+b^{4}$
$=-a^{4}+5 a^{3} b-2 a b^{3}-2 a^{2} b^{2}+4 b^{4}$

5. Add the following expressions:

(i) $8 a-6 a b+5 b,-6 a-a b-8 b$ and $-4 a+2 a b+3 b$
(ii) $5 x^{3}+7+6 x-5 x^{2}, 2 x^{2}-8-9 x, 4 x-2 x^{2}+3 x 3,3 x 3-9 x-x^{2}$ and $x-x^{2}-x^{3}-4$

Solution:

(i) Given $8 a-6 a b+5 b,-6 a-a b-8 b$ and $-4 a+2 a b+3 b$
$=(8 a-6 a b+5 b)+(-6 a-a b-8 b)+(-4 a+2 a b+3 b)$
Collecting positive and negative like terms together, we get
$=8 a-6 a-4 a-6 a b-a b+2 a b+5 b-8 b+3 b$
$=8 a-10 a-7 a b+2 a b+8 b-8 b$
$=-2 a-5 a b$
(ii) Given $5 x^{3}+7+6 x-5 x^{2}, 2 x^{2}-8-9 x, 4 x-2 x^{2}+3 x^{3}, 3 x^{3}-9 x-x^{2}$ and $x-x^{2}-x^{3}-4=$ $\left(5 x^{3}+7+6 x-5 x^{2}\right)+\left(2 x^{2}-8-9 x\right)+\left(4 x-2 x^{2}+3 x^{3}\right)+\left(3 x^{3}-9 x-x^{2}\right)+\left(x-x^{2}-x^{3}-4\right)$
Collecting positive and negative like terms together, we get
$5 x^{3}+3 x^{3}+3 x^{3}-x^{3}-5 x^{2}+2 x^{2}-2 x^{2}-x^{2}-x^{2}+6 x-9 x+4 x-9 x+x+7-8-4$
$=10 x^{3}-7 x^{2}-7 x-5$

6. Add the following:

(i) $x-3 y-2 z$
$5 x+7 y-8 z$
$3 x-2 y+5 z$
(ii) $4 a b-5 b c+7 c a$
$-3 a b+2 b c-3 c a$
$5 a b-3 b c+4 c a$

Solution:

(i) Given $x-3 y-2 z, 5 x+7 y-8 z$ and $3 x-2 y+5 z$
$=(x-3 y-2 z)+(5 x+7 y-8 z)+(3 x-2 y+5 z)$
Collecting positive and negative like terms together, we get
$=x+5 x+3 x-3 y+7 y-2 y-2 z-8 z+5 z$
$=9 x-5 y+7 y-10 z+5 z$
$=9 x+2 y-5 z$
(ii) Given $4 a b-5 b c+7 c a,-3 a b+2 b c-3 c a$ and $5 a b-3 b c+4 c a$ $=(4 a b-5 b c+7 c a)+(-3 a b+2 b c-3 c a)+(5 a b-3 b c+4 c a)$
Collecting positive and negative like terms together, we get
$=4 a b-3 a b+5 a b-5 b c+2 b c-3 b c+7 c a-3 c a+4 c a$
$=9 a b-3 a b-8 b c+2 b c+11 c a-3 c a$
$=6 a b-6 b c+8 c a$
7. Add $2 x^{2}-3 x+1$ to the sum of $3 x^{2}-2 x$ and $3 x+7$.

Solution:

Given $2 x^{2}-3 x+1,3 x^{2}-2 x$ and $3 x+7$
sum of $3 x^{2}-2 x$ and $3 x+7$
$=\left(3 x^{2}-2 x\right)+(3 x+7)$
$=3 x^{2}-2 x+3 x+7$
$=\left(3 x^{2}+x+7\right)$
Now, required expression $=2 x^{2}-3 x+1+\left(3 x^{2}+x+7\right)$
$=2 x^{2}+3 x^{2}-3 x+x+1+7$
$=5 x^{2}-2 x+8$
8. Add $x^{2}+2 x y+y^{2}$ to the sum of $x^{2}-3 y^{2}$ and $2 x^{2}-y^{2}+9$.

Solution:

Given $x^{2}+2 x y+y^{2}, x^{2}-3 y^{2}$ and $2 x^{2}-y^{2}+9$.
First we have to find the sum of $x^{2}-3 y^{2}$ and $2 x^{2}-y^{2}+9$
$=\left(x^{2}-3 y^{2}\right)+\left(2 x^{2}-y^{2}+9\right)$
$=x^{2}+2 x^{2}-3 y^{2}-y^{2}+9$
$=3 x^{2}-4 y^{2}+9$
Now, required expression $=\left(x^{2}+2 x y+y^{2}\right)+\left(3 x^{2}-4 y^{2}+9\right)$
$=x^{2}+3 x^{2}+2 x y+y^{2}-4 y^{2}+9$
$=4 x^{2}+2 x y-3 y^{2}+9$
9. Add $a^{3}+b^{3}-3$ to the sum of $2 a^{3}-3 b^{3}-3 a b+7 a n d-a^{3}+b^{3}+3 a b-9$.

Solution:

Given $a^{3}+b^{3}-3,2 a^{3}-3 b^{3}-3 a b+7$ and $-a^{3}+b^{3}+3 a b-9$.
First, we need to find the sum of $2 a^{3}-3 b^{3}-3 a b+7$ and $-a^{3}+b^{3}+3 a b-9$.
$=\left(2 a^{3}-3 b^{3}-3 a b+7\right)+\left(-a^{3}+b^{3}+3 a b-9\right)$
Collecting positive and negative like terms together, we get
$=2 a^{3}-a^{3}-3 b^{3}+b^{3}-3 a b+3 a b+7-9$
$=a^{3}-2 b^{3}-2$
Now, the required expression $=\left(a^{3}+b^{3}-3\right)+\left(a^{3}-2 b^{3}-2\right)$.
$=a^{3}+a^{3}+b^{3}-2 b^{3}-3-2$
$=2 a^{3}-b^{3}-5$
10. Subtract:
(i) $7 a^{2} b$ from $3 a^{2} b$
(ii) $4 x y$ from $-3 x y$

Solution:

(i) Given $7 a^{2} b$ from $3 a^{2} b$
$=3 a^{2} b-7 a^{2} b$
$=(3-7) a^{2} b$
$=-4 a^{2} b$
(ii) Given $4 x y$ from - $3 x y$
$=-3 x y-4 x y$
$=-7 x y$

11. Subtract:

(i) $-4 x$ from $3 y$
(ii) $-2 x$ from $-5 y$

Solution:

(i) Given - $4 x$ from $3 y$
$=(3 y)-(-4 x)$
$=3 y+4 x$
(ii) Given - $2 x$ from $-5 y$
$=(-5 y)-(-2 x)$
$=-5 y+2 x$

12. Subtract:

(i) $6 x^{3}-7 x^{2}+5 x-3$ from $4-5 x+6 x^{2}-8 x^{3}$
(ii) $-x^{2}-3 z$ from $5 x^{2}-y+z+7$
(iii) $x^{3}+2 x^{2} y+6 x y^{2}-y^{3}$ from $y^{3}-3 x y^{2}-4 x^{2} y$

Solution:

(i) Given $6 x^{3}-7 x^{2}+5 x-3$ and $4-5 x+6 x^{2}-8 x^{3}$
$=\left(4-5 x+6 x^{2}-8 x^{3}\right)-\left(6 x^{3}-7 x^{2}+5 x-3\right)$
$=4-5 x+6 x^{2}-8 x^{3}-6 x^{3}+7 x^{2}-5 x+3$
$=-8 x^{3}-6 x^{3}+7 x^{2}+6 x^{2}-5 x-5 x+3+4$
$=-14 x^{3}+13 x^{2}-10 x+7$
(ii) Given $-x^{2}-3 z$ and $5 x^{2}-y+z+7$
$=\left(5 x^{2}-y+z+7\right)-\left(-x^{2}-3 z\right)$
$=5 x^{2}-y+z+7+x^{2}+3 z$
$=5 x^{2}+x^{2}-y+z+3 z+7$
$=6 x^{2}-y+4 z+7$
(iii) Given $x^{3}+2 x^{2} y+6 x y^{2}-y^{3}$ and $y^{3}-3 x y^{2}-4 x^{2} y$
$=\left(y^{3}-3 x y^{2}-4 x^{2} y\right)-\left(x^{3}+2 x^{2} y+6 x y^{2}-y^{3}\right)$
$=y^{3}-3 x y^{2}-4 x^{2} y-x^{3}-2 x^{2} y-6 x y^{2}+y^{3}$
$=y^{3}+y^{3}-3 x y^{2}-6 x y^{2}-4 x^{2} y-2 x^{2} y-x^{3}$
$=2 y^{3}-9 x y^{2}-6 x^{2} y-x^{3}$

13. From

(i) $p^{3}-4+3 p^{2}$, take away $5 p^{2}-3 p^{3}+p-6$
(ii) $7+x-x^{2}$, take away $9+x+3 x^{2}+7 x^{3}$
(iii) $1-5 y^{2}$, take away $y^{3}+7 y^{2}+y+1$
(iv) $x^{3}-5 x^{2}+3 x+1$, take away $6 x^{2}-4 x^{3}+5+3 x$

Solution:

(i) Given $\mathrm{p}^{3}-4+3 \mathrm{p}^{2}$, take away $5 \mathrm{p}^{2}-3 \mathrm{p}^{3}+\mathrm{p}-6$
$=\left(p^{3}-4+3 p^{2}\right)-\left(5 p^{2}-3 p^{3}+p-6\right)$
$=p^{3}-4+3 p^{2}-5 p^{2}+3 p^{3}-p+6$
$=p^{3}+3 p^{3}+3 p^{2}-5 p^{2}-p-4+6$
$=4 p^{3}-2 p^{2}-p+2$
(ii) Given $7+x-x^{2}$, take away $9+x+3 x^{2}+7 x^{3}$
$=\left(7+x-x^{2}\right)-\left(9+x+3 x^{2}+7 x^{3}\right)$
$=7+x-x^{2}-9-x-3 x^{2}-7 x^{3}$
$=-7 x^{3}-x^{2}-3 x^{2}+7-9$
$=-7 x^{3}-4 x^{2}-2$
(iii) Given $1-5 y^{2}$, take away $y^{3}+7 y^{2}+y+1$
$=\left(1-5 y^{2}\right)-\left(y^{3}+7 y^{2}+y+1\right)$
$=1-5 y^{2}-y^{3}-7 y^{2}-y-1$
$=-y^{3}-5 y^{2}-7 y^{2}-y$
$=-y^{3}-12 y^{2}-y$
(iv) Given $x^{3}-5 x^{2}+3 x+1$, take away $6 x^{2}-4 x^{3}+5+3 x$
$=\left(x^{3}-5 x^{2}+3 x+1\right)-\left(6 x^{2}-4 x^{3}+5+3 x\right)$
$=x^{3}-5 x^{2}+3 x+1-6 x^{2}+4 x^{3}-5-3 x$
$=x^{3}+4 x^{3}-5 x^{2}-6 x^{2}+1-5$
$=5 x^{3}-11 x^{2}-4$
14. From the sum of $3 x^{2}-5 x+2$ and $-5 x^{2}-8 x+9$ subtract $4 x^{2}-7 x+9$.

Solution:

First we have to add $3 x^{2}-5 x+2$ and $-5 x^{2}-8 x+9$ then from the result we have to subtract $4 x^{2}-7 x+9$.
$=\left\{\left(3 x^{2}-5 x+2\right)+\left(-5 x^{2}-8 x+9\right)\right\}-\left(4 x^{2}-7 x+9\right)$
$=\left\{3 x^{2}-5 x+2-5 x^{2}-8 x+9\right\}-\left(4 x^{2}-7 x+9\right)$
$=\left\{3 x^{2}-5 x^{2}-5 x-8 x+2+9\right\}-\left(4 x^{2}-7 x+9\right)$
$=\left\{-2 x^{2}-13 x+11\right\}-\left(4 x^{2}-7 x+9\right)$
$=-2 x^{2}-13 x+11-4 x^{2}+7 x-9$
$=-2 x^{2}-4 x^{2}-13 x+7 x+11-9$
$=-6 x^{2}-6 x+2$
15. Subtract the sum of $13 x-4 y+7 z$ and $-6 z+6 x+3 y$ from the sum of $6 x-4 y-4 z$ and $2 x+4 y-7$.

Solution:

First we have to find the sum of $13 x-4 y+7 z$ and $-6 z+6 x+3 y$
Therefore, sum of $(13 x-4 y+7 z)$ and $(-6 z+6 x+3 y)$
$=(13 x-4 y+7 z)+(-6 z+6 x+3 y)$
$=(13 x-4 y+7 z-6 z+6 x+3 y)$
$=(13 x+6 x-4 y+3 y+7 z-6 z)$
$=(19 x-y+z)$
Now we have to find the sum of $(6 x-4 y-4 z)$ and $(2 x+4 y-7)$
$=(6 x-4 y-4 z)+(2 x+4 y-7)$
$=(6 x-4 y-4 z+2 x+4 y-7)$
$=(6 x+2 x-4 z-7)$
$=(8 x-4 z-7)$
Now, required expression $=(8 x-4 z-7)-(19 x-y+z)$
$=8 x-4 z-7-19 x+y-z$
$=8 x-19 x+y-4 z-z-7$
$=-11 x+y-5 z-7$
16. From the sum of $x^{2}+3 y^{2}-6 x y, 2 x^{2}-y^{2}+8 x y, y^{2}+8$ and $x^{2}-3 x y$ subtract $-3 x^{2}+$ $4 y^{2}-x y+x-y+3$.

Solution:

First we have to find the sum of $\left(x^{2}+3 y^{2}-6 x y\right),\left(2 x^{2}-y^{2}+8 x y\right),\left(y^{2}+8\right)$ and $\left(x^{2}-3 x y\right)$ $=\left\{\left(x^{2}+3 y^{2}-6 x y\right)+\left(2 x^{2}-y^{2}+8 x y\right)+\left(y^{2}+8\right)+\left(x^{2}-3 x y\right)\right\}$
$=\left\{x^{2}+3 y^{2}-6 x y+2 x^{2}-y^{2}+8 x y+y^{2}+8+x^{2}-3 x y\right\}$
$=\left\{x^{2}+2 x^{2}+x^{2}+3 y^{2}-y^{2}+y^{2}-6 x y+8 x y-3 x y+8\right\}$
$=4 x^{2}+3 y^{2}-x y+8$
Now, from the result subtract the $-3 x^{2}+4 y^{2}-x y+x-y+3$.
Therefore, required expression $=\left(4 x^{2}+3 y^{2}-x y+8\right)-\left(-3 x^{2}+4 y^{2}-x y+x-y+3\right)$
$=4 x^{2}+3 y^{2}-x y+8+3 x^{2}-4 y^{2}+x y-x+y-3$
$=4 x^{2}+3 x^{2}+3 y^{2}-4 y^{2}-x+y-3+8$
$=7 x^{2}-y^{2}-x+y+5$
17. What should be added to $x y-3 y z+4 z x$ to get $4 x y-3 z x+4 y z+7$?

Solution:

By subtracting $x y-3 y z+4 z x$ from $4 x y-3 z x+4 y z+7$, we get the required expression.
Therefore, required expression $=(4 x y-3 z x+4 y z+7)-(x y-3 y z+4 z x)$
$=4 x y-3 z x+4 y z+7-x y+3 y z-4 z x$
$=4 x y-x y-3 z x-4 z x+4 y z+3 y z+7$
$=3 x y-7 z x+7 y z+7$
18. What should be subtracted from $x^{2}-x y+y^{2}-x+y+3$ to obtain $-x^{2}+3 y^{2}-4 x y+1$?

Solution:

Let ' E ' be the required expression. Then, we have
$x^{2}-x y+y^{2}-x+y+3-E=-x^{2}+3 y^{2}-4 x y+1$
Therefore, $\mathrm{E}=\left(\mathrm{x}^{2}-\mathrm{xy}+\mathrm{y}^{2}-\mathrm{x}+\mathrm{y}+3\right)-\left(-\mathrm{x}^{2}+3 \mathrm{y}^{2}-4 \mathrm{xy}+1\right)$
$=x^{2}-x y+y^{2}-x+y+3+x^{2}-3 y^{2}+4 x y-1$
Collecting positive and negative like terms together, we get
$=x^{2}+x^{2}-x y+4 x y+y^{2}-3 y^{2}-x+y+3-1$
$=2 x^{2}+3 x y-2 y^{2}-x+y+2$
19. How much is $x-2 y+3 z$ greater than $3 x+5 y-7$?

Solution:

By subtracting $x-2 y+3 z$ from $3 x+5 y-7$ we can get the required expression, Required expression $=(x-2 y+3 z)-(3 x+5 y-7)$
$=x-2 y+3 z-3 x-5 y+7$
Collecting positive and negative like terms together, we get
$=x-3 x-2 y+5 y+3 z+7$
$=-2 x-7 y+3 z+7$
20. How much is $x^{2}-2 x y+3 y^{2}$ less than $2 x^{2}-3 y^{2}+x y$?

Solution:

By subtracting the $x^{2}-2 x y+3 y^{2}$ from $2 x^{2}-3 y^{2}+x y$ we can get the required expression, Required expression $=\left(2 x^{2}-3 y^{2}+x y\right)-\left(x^{2}-2 x y+3 y^{2}\right)$
$=2 x^{2}-3 y^{2}+x y-x^{2}+2 x y-3 y^{2}$
Collecting positive and negative like terms together, we get
$=2 x^{2}-x^{2}-3 y^{2}-3 y^{2}+x y+2 x y$
$=x^{2}-6 y^{2}+3 x y$
21. How much does $a^{2}-3 a b+2 b^{2}$ exceed $2 a^{2}-7 a b+9 b^{2}$?

Solution:

By subtracting $2 a^{2}-7 a b+9 b^{2}$ from $a^{2}-3 a b+2 b^{2}$ we get the required expression
Required expression $=\left(a^{2}-3 a b+2 b^{2}\right)-\left(2 a^{2}-7 a b+9 b^{2}\right)$
$=a^{2}-3 a b+2 b^{2}-2 a^{2}+7 a b-9 b^{2}$
Collecting positive and negative like terms together, we get
$=a^{2}-2 a^{2}-3 a b+7 a b+2 b^{2}-9 b^{2}$
$=-a^{2}+4 a b-7 b^{2}$
22. What must be added to $12 x^{3}-4 x^{2}+3 x-7$ to make the sum $x^{3}+2 x^{2}-3 x+2$?

Solution:

Let ' E ' be the required expression. Thus, we have
$12 x^{3}-4 x^{2}+3 x-7+E=x^{3}+2 x^{2}-3 x+2$
Therefore, $\mathrm{E}=\left(\mathrm{x}^{3}+2 \mathrm{x}^{2}-3 \mathrm{x}+2\right)-\left(12 \mathrm{x}^{3}-4 \mathrm{x}^{2}+3 \mathrm{x}-7\right)$
$=x^{3}+2 x^{2}-3 x+2-12 x^{3}+4 x^{2}-3 x+7$
Collecting positive and negative like terms together, we get
$=x^{3}-12 x^{3}+2 x^{2}+4 x^{2}-3 x-3 x+2+7$
$=-11 x^{3}+6 x^{2}-6 x+9$
23. If $P=7 x^{2}+5 x y-9 y^{2}, Q=4 y^{2}-3 x^{2}-6 x y$ and $R=-4 x^{2}+x y+5 y^{2}$, show that $P+Q+R$
$=0$.

Solution:

Given $P=7 x^{2}+5 x y-9 y^{2}, Q=4 y^{2}-3 x^{2}-6 x y$ and $R=-4 x^{2}+x y+5 y^{2}$
Now we have to prove $P+Q+R=0$,
Consider $P+Q+R=\left(7 x^{2}+5 x y-9 y^{2}\right)+\left(4 y^{2}-3 x^{2}-6 x y\right)+\left(-4 x^{2}+x y+5 y^{2}\right)$
$=7 x^{2}+5 x y-9 y^{2}+4 y^{2}-3 x^{2}-6 x y-4 x^{2}+x y+5 y^{2}$
Collecting positive and negative like terms together, we get
$=7 x^{2}-3 x^{2}-4 x^{2}+5 x y-6 x y+x y-9 y^{2}+4 y^{2}+5 y^{2}$
$=7 x^{2}-7 x^{2}+6 x y-6 x y-9 y^{2}+9 y^{2}$
$=0$
24. If $P=a^{2}-b^{2}+2 a b, Q=a^{2}+4 b^{2}-6 a b, R=b^{2}+b, S=a^{2}-4 a b$ and $T=-2 a^{2}+b^{2}-a b+$ a. Find $P+Q+R+S-T$.

Solution:

Given $P=a^{2}-b^{2}+2 a b, Q=a^{2}+4 b^{2}-6 a b, R=b^{2}+b, S=a^{2}-4 a b$ and $T=-2 a^{2}+b^{2}-a b+$ a.

Now we have to find $P+Q+R+S-T$
Substituting all values we get
Consider $P+Q+R+S-T=\left\{\left(a^{2}-b^{2}+2 a b\right)+\left(a^{2}+4 b^{2}-6 a b\right)+\left(b^{2}+b\right)+\left(a^{2}-4 a b\right)\right\}-(-$
$\left.2 a^{2}+b^{2}-a b+a\right)$
$=\left\{a^{2}-b^{2}+2 a b+a^{2}+4 b^{2}-6 a b+b^{2}+b+a^{2}-4 a b\right\}-\left(-2 a^{2}+b^{2}-a b+a\right)$
$=\left\{3 a^{2}+4 b^{2}-8 a b+b\right\}-\left(-2 a^{2}+b^{2}-a b+a\right)$
$=3 a^{2}+4 b^{2}-8 a b+b+2 a^{2}-b^{2}+a b-a$
Collecting positive and negative like terms together, we get
$3 a^{2}+2 a^{2}+4 b^{2}-b^{2}-8 a b+a b-a+b$
$=5 a^{2}+3 b^{2}-7 a b-a+b$

1. Place the last two terms of the following expressions in parentheses preceded by a minus sign:
(i) $x+y-3 z+y$
(ii) $3 x-2 y-5 z-4$
(iii) $3 a-2 b+4 c-5$
(iv) $7 a+3 b+2 c+4$
(v) $2 a^{2}-b^{2}-3 a b+6$
(vi) $a^{2}+b^{2}-c^{2}+a b-3 a c$

Solution:

(i) Given $x+y-3 z+y$
$x+y-3 z+y=x+y-(3 z-y)$
(ii) Given $3 x-2 y-5 z-4$
$3 x-2 y-5 z-4=3 x-2 y-(5 z+4)$
(iii) Given $3 a-2 b+4 c-5$
$3 a-2 b+4 c-5=3 a-2 b-(-4 c+5)$
(iv) Given $7 a+3 b+2 c+4$
$7 a+3 b+2 c+4=7 a+3 b-(-2 c-4)$
(v) Given $2 a^{2}-b^{2}-3 a b+6$
$2 a^{2}-b^{2}-3 a b+6=2 a^{2}-b^{2}-(3 a b-6)$
(vi) Given $a^{2}+b^{2}-c^{2}+a b-3 a c$
$a^{2}+b^{2}-c^{2}+a b-3 a c=a^{2}+b^{2}-c^{2}-(-a b+3 a c)$
2. Write each of the following statements by using appropriate grouping symbols:
(i) The sum of $a-b$ and $3 a-2 b+5$ is subtracted from $4 a+2 b-7$.
(ii) Three times the sum of $2 x+y-[5-(x-3 y)]$ and $7 x-4 y+3$ is subtracted from $3 x-$ $4 y+7$
(iii) The subtraction of $x^{2}-y^{2}+4 x y$ from $2 x^{2}+y^{2}-3 x y$ is added to $9 x^{2}-3 y^{2}-x y$.

Solution:

(i) Given the sum of $a-b$ and $3 a-2 b+5=[(a-b)+(3 a-2 b+5)]$.

This is subtracted from $4 a+2 b-7$.
Thus, the required expression is $(4 a+2 b-7)-[(a-b)+(3 a-2 b+5)]$
(ii) Given three times the sum of $2 x+y-\{5-(x-3 y)\}$ and $7 x-4 y+3=3[(2 x+y-\{5-(x$
$-3 y)\})+(7 x-4 y+3)]$
This is subtracted from $3 x-4 y+7$.
Thus, the required expression is $(3 x-4 y+7)-3[(2 x+y-\{5-(x-3 y)\})+(7 x-4 y+3)]$
(iii) Given the product of subtraction of $x^{2}-y^{2}+4 x y$ from $2 x^{2}+y^{2}-3 x y$ is given by $\left\{\left(2 x^{2}+\right.\right.$ $\left.\left.y^{2}-3 x y\right)-\left(x^{2}-y^{2}+4 x y\right)\right\}$
When the above equation is added to $9 x^{2}-3 y^{2}-x y$, we get $\left.\left\{\left(2 x^{2}+y^{2}-3 x y\right)-\left(x^{2}-y^{2}+4 x y\right)\right\}+\left(9 x^{2}-3 y^{2}-x y\right)\right)$
This is the required expression.

Simplify each of the following algebraic expressions by removing grouping symbols.

1. $2 x+(5 x-3 y)$

Solution:

Given $2 x+(5 x-3 y)$
Since the ' + ' sign precedes the parentheses, we have to retain the sign of each term in the parentheses when we remove them.
$=2 \mathrm{x}+5 \mathrm{x}-3 \mathrm{y}$
On simplifying, we get
$=7 x-3 y$
2. $3 x-(y-2 x)$

Solution:

Given $3 x-(y-2 x)$
Since the ' - ' sign precedes the parentheses, we have to change the sign of each term in the parentheses when we remove them. Therefore, we have

$$
=3 x-y+2 x
$$

On simplifying, we get

$$
=5 x-y
$$

3. $5 a-(3 b-2 a+4 c)$

Solution:

Given 5a-(3b-2a + 4c)
Since the '-'sign precedes the parentheses, we have to change the sign of each term in the parentheses when we remove them.
$=5 a-3 b+2 a-4 c$
On simplifying, we get
$=7 a-3 b-4 c$
4. $-2\left(x^{2}-y^{2}+x y\right)-3\left(x^{2}+y^{2}-x y\right)$

Solution:

Given $-2\left(x^{2}-y^{2}+x y\right)-3\left(x^{2}+y^{2}-x y\right)$
Since the ' - ' sign precedes the parentheses, we have to change the sign of each term in the parentheses when we remove them. Therefore, we have
$=-2 x^{2}+2 y^{2}-2 x y-3 x^{2}-3 y^{2}+3 x y$
On rearranging,
$=-2 x^{2}-3 x^{2}+2 y^{2}-3 y^{2}-2 x y+3 x y$
On simplifying, we get
$=-5 x^{2}-y^{2}+x y$

5. $3 x+2 y-\{x-(2 y-3)\}$

Solution:

Given $3 x+2 y-\{x-(2 y-3)\}$
First, we have to remove the parentheses. Then, we have to remove the braces.
Then we get,

$$
=3 x+2 y-\{x-2 y+3\}
$$

$=3 x+2 y-x+2 y-3$
On simplifying, we get
$=2 x+4 y-3$
6. $5 a-\{3 a-(2-a)+4\}$

Solution:

Given $5 a-\{3 a-(2-a)+4\}$
First, we have to remove the parentheses. Then, we have to remove the braces.
Then we get,
$=5 a-\{3 a-2+a+4\}$
$=5 a-3 a+2-a-4$
On simplifying, we get
$=5 a-4 a-2$
$=a-2$
7. $a-[b-\{a-(b-1)+3 a\}]$

Solution:

Given $a-[b-\{a-(b-1)+3 a\}]$
First we have to remove the parentheses, then the curly brackets, and then the square
brackets.
Then we get,
$=a-[b-\{a-(b-1)+3 a\}]$
$=a-[b-\{a-b+1+3 a\}]$
$=a-[b-\{4 a-b+1\}]$
$=a-[b-4 a+b-1]$
$=a-[2 b-4 a-1]$
On simplifying, we get
$=a-2 b+4 a+1$
$=5 a-2 b+1$
8. $a-[2 b-\{3 a-(2 b-3 c)\}]$

Solution:

Given a - [2b-\{3a-(2b-3c)\}]
First we have to remove the parentheses, then the braces, and then the square brackets.
Then we get,
$=a-[2 b-\{3 a-(2 b-3 c)\}]$
$=a-[2 b-\{3 a-2 b+3 c\}]$
$=a-[2 b-3 a+2 b-3 c]$
$=a-[4 b-3 a-3 c]$
On simplifying we get,
$=a-4 b+3 a+3 c$
$=4 a-4 b+3 c$
9. $-x+[5 y-\{2 x-(3 y-5 x)\}]$

Solution:

Given $-x+[5 y-\{2 x-(3 y-5 x)\}]$
First we have to remove the parentheses, then remove braces, and then the square brackets.
Then we get,
$=-x+[5 y-\{2 x-(3 y-5 x)\}]$
$=-x+[5 y-\{2 x-3 y+5 x)]$
$=-x+[5 y-\{7 x-3 y\}]$
$=-x+[5 y-7 x+3 y]$
$=-x+[8 y-7 x]$
On simplifying we get
$=-x+8 y-7 x$
$=-8 x+8 y$
10. $2 a-[4 b-\{4 a-3(2 a-b)\}]$

Solution:

Given $2 \mathrm{a}-[4 \mathrm{~b}-\{4 \mathrm{a}-3(2 \mathrm{a}-\mathrm{b})\}]$
First we have to remove the parentheses, then remove braces, and then the square brackets.
Then we get,
$=2 a-[4 b-\{4 a-3(2 a-b)\}]$
$=2 a-[4 b-\{4 a-6 a+3 b\}]$
$=2 a-[4 b-\{-2 a+3 b\}]$
$=2 a-[4 b+2 a-3 b]$
$=2 a-[b+2 a]$
On simplifying, we get
$=2 a-b-2 a$
$=-b$
11. $-a-[a+\{a+b-2 a-(a-2 b)\}-b]$

Solution:

Given -a - $[a+\{a+b-2 a-(a-2 b)\}-b]$
First we have to remove the parentheses, then remove braces, and then the square brackets.
Then we get,
$=-a-[a+\{a+b-2 a-(a-2 b)\}-b]$
$=-a-[a+\{a+b-2 a-a+2 b\}-b]$
$=-a-[a+\{-2 a+3 b\}-b]$
$=-a-[a-2 a+3 b-b]$
$=-a-[-a+2 b]$
On simplifying, we get
$=-a+a-2 b$
$=-2 b$
12. $2 x-3 y-[3 x-2 y-\{x-z-(x-2 y)\}]$

Solution:

Given $2 x-3 y-[3 x-2 y-\{x-z-(x-2 y)\}]$
First we have to remove the parentheses, then remove braces, and then the square brackets.
Then we get,
$=2 x-3 y-[3 x-2 y-\{x-z-(x-2 y)\})$
$=2 x-3 y-[3 x-2 y-\{x-z-x+2 y\}]$
$=2 x-3 y-[3 x-2 y-\{-z+2 y\}]$
$=2 x-3 y-[3 x-2 y+z-2 y]$
$=2 x-3 y-[3 x-4 y+z]$
On simplifying, we get
$=2 x-3 y-3 x+4 y-z$
$=-x+y-z$
13. $5+[x-\{2 y-(6 x+y-4)+2 x\}-\{x-(y-2)\}]$

Solution:

Given $5+[x-\{2 y-(6 x+y-4)+2 x\}-\{x-(y-2)\}]$
First we have to remove the parentheses, then remove braces, and then the square brackets.
Then we get,
$=5+[x-\{2 y-(6 x+y-4)+2 x\}-\{x-(y-2)\}]$
$=5+[x-\{2 y-6 x-y+4+2 x\}-\{x-y+2\}]$
$=5+[x-\{y-4 x+4\}-\{x-y+2\}]$
$=5+[x-y+4 x-4-x+y-2]$
$=5+[4 x-6]$
$=5+4 x-6$
$=4 \mathrm{x}-1$
14. $x^{2}-\left[3 x+\left[2 x-\left(x^{2}-1\right)\right]+2\right]$

Solution:

Given $x^{2}-\left[3 x+\left[2 x-\left(x^{2}-1\right)\right]+2\right]$
First we have to remove the parentheses, then remove braces, and then the square brackets.

Then we get,
$=x^{2}-\left[3 x+\left[2 x-\left(x^{2}-1\right)\right]+2\right]$
$=x^{2}-\left[3 x+\left[2 x-x^{2}+1\right]+2\right]$
$=x^{2}-\left[3 x+2 x-x^{2}+1+2\right]$
$=x^{2}-\left[5 x-x^{2}+3\right]$
On simplifying we get
$=x^{2}-5 x+x^{2}-3$
$=2 x^{2}-5 x-3$
15. $20-\left[5 x y+3\left[x^{2}-(x y-y)-(x-y)\right]\right]$

Solution:

Given $20-\left[5 x y+3\left[x^{2}-(x y-y)-(x-y)\right]\right]$
First we have to remove the parentheses, then remove braces, and then the square brackets.
Then we get,
$=20-\left[5 x y+3\left[x^{2}-(x y-y)-(x-y)\right]\right]$
$=20-\left[5 x y+3\left[x^{2}-x y+y-x+y\right]\right]$
$=20-\left[5 x y+3\left[x^{2}-x y+2 y-x\right]\right]$
$=20-\left[5 x y+3 x^{2}-3 x y+6 y-3 x\right]$
$=20-\left[2 x y+3 x^{2}+6 y-3 x\right]$
On simplifying we get
$=20-2 x y-3 x^{2}-6 y+3 x$
$=-3 x^{2}-2 x y-6 y+3 x+20$
16. $85-[12 x-7(8 x-3)-2\{10 x-5(2-4 x)\}]$

Solution:

Given $85-[12 x-7(8 x-3)-2\{10 x-5(2-4 x)\}]$
First we have to remove the parentheses, then remove braces, and then the square brackets.
Then we get,
$=85-[12 x-7(8 x-3)-2\{10 x-5(2-4 x)\}]$
$=85-[12 x-56 x+21-2\{10 x-10+20 x\}]$
$=85-[12 x-56 x+21-2\{30 x-10\}]$
$=85-[12 x-56 x+21-60 x+20]$
$=85-[12 x-116 x+41]$
$=85-[-104 x+41]$
On simplifying, we get
$=85+104 x-41$
$=44+104 x$
17. $x y[y z-z x-\{y x-(3 y-x z)-(x y-z y)\}]$

Solution:

Given $x y[y z-z x-\{y x-(3 y-x z)-(x y-z y)\}]$
First we have to remove the parentheses, then remove braces, and then the square brackets.
Then we get,
$=x y-[y z-z x-\{y x-(3 y-x z)-(x y-z y)\}]$
$=x y-[y z-z x-\{y x-3 y+x z-x y+z y\}]$
$=x y-[y z-z x-\{-3 y+x z+z y\}]$
$=x y-[y z-z x+3 y-x z-z y]$
$=x y-[-z x+3 y-x z]$
On simplifying, we get
$=x y-[-2 z x+3 y]$
$=x y+2 x z-3 y$

